Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to analyse and identify specific buffalo seminal plasma proteins (SPPs) responsible for sperm cryotolerance during low temperature storage. Computer Assisted Sperm Analysis (CASA) of the motility and viability of buffalo spermatozoa was performed before freezing and after thawing. Two sample groups were formed – ejaculates with high cryotol- erance (group A) and low cryotolerance (group B). CASA demonstrated that the initial progres- sive motility after thawing of the spermatozoa in group A is significantly higher than in group B (p<0.001). Group B showed a significant increase in the percentage of static and non-progressive spermatozoa at 240 min, when compared to group A (p<0.05). SPPs, proteins in the cryoprotec- tive medium (PM) and proteins in the mixture of PM and SP were separated by High Perfor- mance Liquid Chromatography (HPLC). Comparative analysis of the chromatographic profiles was performed to identify specific proteins related to sperm cryotolerance. SPPs profiles showed 5 distinct protein peaks in both groups, ranging from 500 kDa to 50 Da. Chromatograms of group A and group B showed quantitative and qualitative differences in protein content. Chromato- grams of proteins in PM showed 11 well-expressed peaks. HPLC analysis of the mixtures of SPPs from the two groups and PM visualized the formation of a new bio-complex structure expressed by a protein peak specific for group A (7.674 min, AU 1.50). This protein peak can be referred as a phenotypic trait for buffalo ejaculates with high sperm cryotolerance.

Go to article

Authors and Affiliations

M.G. Ivanova
D.G. Gradinarska
T.S. Tsvetkov
I.V. Kirilova
B.A. Georgiev
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to identify the proteoforms of albumin and kallikrein in stallion seminal plasma (SP), and to determine their correlations with sperm motility parameters. The experimental material consisted of ejaculates from 8 stallions, which were collected during the breeding and non-breeding seasons (BS and NBS, respectively). SP proteins were identified by 2-D PAGE and mass spectrometry (MALDI TOT/TOF MS). Sperm motility parameters were analyzed using the CASA system. Protein expression (integrated optical density-IOD) of albumin proteoforms 1 (ALB 1) and 2 (ALB 2) and kallikrein proteoforms 1 (KAL 1) and 2 (KAL 2) was correlated (p<0.05) with sperm motility parameters (total motility and progressive motility) during the BS. No significant correlations were found between the expression of albumin or kallikrein and sperm motility parameters during the NBS. The presence of correlations between the expression of ALB 1, ALB 2, KAL 1, KAL 2 and selected sperm motility parameters could suggest that the analyzed components of the SP belong to the group of fertility-associated pro- teins (FAPs).

Go to article

Authors and Affiliations

M. Mogielnicka-Brzozowska
L. Fraser
A. Dziekońska
K. Gackowska
M. Sobiewska
A. Kuzborska
A.M. Majewska
K. Filipowicz
W. Kordan
Download PDF Download RIS Download Bibtex

Abstract

The identification of various substances in seminal plasma has opened the way to study their functionality. It was aimed to identify the electrophoretic protein profile (EPP) and biochemical parameters (BP) of seminal plasma (SP) as predictors of semen quality and fertility in stallion. Forty-six ejaculates from 7 fertile stallions, aged between 6-26 years, were collected from May to July and 117 mares were used to obtain fertility data. For each ejaculate, volume, sperm motility, concentration were determined and seminal plasma samples were collected to perform one- -dimensional electrophoresis and biochemical profiling. Following the estrus detection, mares were inseminated with fresh sperm. Pregnancy rates and foal rates were recorded. The concentration of 15-18 kDa molecular weight (MW) proteins has shown a positive correlation with sperm concentration and foal rate. Besides, a strong positive correlation was found between sperm concentration and 23-28 kDa MW proteins (r=0.77). The volume of 19-22 kDa MW proteins was negatively correlated with pregnancy and foal rate. Similarly, the volume of high MW proteins (173-385 kDa) correlated negatively with sperm motility and foal rate. Apart from the protein profile, while Magnesium and Glucose levels were negatively correlated with sperm quality and foal rate, Cholesterol level was a positive indicator of the quality of semen as well as the foaling rate. Moreover, the total protein level was correlated negatively with the sperm concentration whereas triglyceride was correlated positively. In conclusion, EPP and BP of seminal plasma are valuable clinical tools as predictors of fertility and semen quality in the stallion.
Go to article

Bibliography


Akcay E, Reilas T, Andersson M, Katila T (2006) Effect of seminal plasma fractions on stallion sperm survival after cooled storage. J Vet Med A 53: 481-485.

Amann RP, Cristanelli MJ, Squires EL (1985) Proteins in stallion seminal plasma. J Reprod Fertil 35: 113-120.

Argañaraz ME, Apichela SA, Zampini R, Vencato J, Stelletta C (2015) Biochemical and Protein Profile of Alpaca (V icugna pacos) Uterine Horn Fluid During Early Pregnancy. Reprod Domest Anim 50: 121-128.

Ball BA, Gravance CG, Wessel MT, Sabeur K (2003) Activity of Angiotensin-converting enzyme (ACE) in reproductive tissues of the stal-lion and effects of angiotensin II on sperm motility. Theriogenology 59: 901-914.

Brandon CI, Heussner GL, Caudle AB, Fayrer-Hosken RA (1999) Two-dimensional polyacrylamid electrophoresis of equine seminal plasma proteins and their correlation with fertility. Theriogenology 52: 863-873.

Calvete JJ, Mann K, Schafer W, Sanz L, Reinert M, Nessau S, Raida M, Töpfer-Petersen E. (1995) Amino acid sequence of HSP-1, a major protein of stallion seminal plasma: effect of glycosylation on its heparin- and gelatin-binding capabilities. Biochem J 310: 615-622.

Calvete JJ, Nessau S, Mann K, Sanz L, Sieme H, Klug E, Töpfer-Petersen E (1994) Isolation and Biochemical characterization of stallion seminal-plasma proteins. Reprod Domest Anim 29: 411-426.

Carver DA, Ball BA (2002) Lipase activity in stallion seminal plasma and the effect of lipase on stallion spermatozoa during storage at 5 de-grees C. Theriogenology 58: 1587-1595.

Champion ZJ, Vickers MH, Gravance CG, Breier BH, Casey PJ (2002) Growth hormone or insulin-like growth factor-I extends longevity of equine spermatozoa in vitro. Theriogenology 57: 1793-1800.

Cross NL (2003) Decrease in order of human sperm lipids during capacitation. Biol Reprod 69: 529-534.

Costello LC, Franklin R.B. (1991) Concepts of citrate production and secretion by prostate 1. Metabolic relationships. The Prostate 18: 25-46.

Da Ros VG, Maldera JA, Willis WD, Cohen DJ, Goulding EH, Gelman DM, Cuasnicu PS (2008) Impaired sperm fertilizing ability in mice lacking Cysteine-Rich Secretory Protein 1 (CRISP1). Dev Biol, 320: 12-18.

Da Ros VG, Muñoz MW, Battistone MA, Brukman NG, Carvajal G, Curci L, Cuasnicu PS (2015) From the epididymis to the egg: participa-tion of CRISP proteins in mammalian fertilization. Asian J Androl 17: 711-715.

Dias AJ, Maia MS, Retamal CA, Lopez ML (2004) Identification and partial characterization of alpha-1,4-glucosidase activity in equine epi-didymal fluid. Theriogenology 61: 1545-1558.

Doty A, Buhi WC, Benson S, Scoggin KE, Pozor M, Macpherson M, Troedsson MH (2011) Equine CRISP3 modulates interaction between spermatozoa and polymorphonuclear neutrophils. Biol Reprod 85: 157-164.

Druart X, De Graaf S (2018) Seminal plasma proteomes and sperm fertility. Anim Reprod Sci 194: 33-40

Gadella BM, Harrison RA (2002) Capacitation induces cyclic adenosine 3,5-mono-phosphate-dependent, but apoptosis-unrelated, exposure of amino-phospholipids at the apical head plasma membrane of boar sperm cells. Biol Reprod 67: 340-50.

Gebauer MR, Pickett BW, Faulkner LC, Remenga EE, Berndtson WE (1976) Reproductive physiology of the stallion. Chemical characteris-tics of seminal plasma and spermatozoa. J Anim Sci 43: 628-632.

Garcia B, González-Fernández L, Loux SC, Rocha AM, Guimarães T, Pena F.J, Hinrichs K (2015) Effect of calcium, bicarbonate, and albu-min on capacitation-related events in equine sperm. Reproduction 149: 87-99.

Huang YL, Tseng WC, Cheng SY, Lin TH (2007) Trace elements and lipid peroxidation in human seminal plasma. Biol Trace Elem Res 76: 207–215.

Inagaki M, Kikuchi M, Orino K, Ohnami Y, Watanabe K (2002) Purification and quantification of lactoferrin in equine seminal plasma. J Vet Med Sci 64: 75-77.

Jobim MI, Oberst ER, Salbego CG, Souza DO, Wald VB, Tramontina F, Mattos RC (2004) Two-dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability. Theriogenology 61: 255-266.

Jobim MI, Oberst ER, Salbego CG, Wald VB, Horn AP, Mattos RC (2005) BSP A1/A2-like proteins in ram seminal plasma. Theriogenology 63: 2053-2062.

Kareskoski AM, Sankari S, Johannisson A, Kindahl H, Andersson M, Katila T (2011) The association of the presence of seminal plasma and its components with sperm longevity in fractionated stallion ejaculates. Reprod Domest Anim 46: 1073-1081.

Kikuchi M, Mizoroki S, Kubo T, Ohiwa Y, Kubota M, Yamada N, Orino K, Ohnami Y Watanabe K (2003) Seminal plasma lactoferrin but not transferrin reflects gonadal function in dogs. J Vet Med Sci 65: 679-684.

Kosiniak K (1975) Characteristics of the successive jets of ejaculated semen of stallions.” J Reprod Fertil (Suppl) 23: 59-61.

Kosiniak K (1980) The role of the accessory gland secretions during the ejaculate production in stallions. Acta Agrar Silvestria Ser Zootech 2: 75-86.

Kosiniak K, Bittmar A (1981) Biochemical components of stallion seminal plasma before and after the breeding season. Anim Reprod Sci 4: 39-47.

Lackey BR, Gray SL, Henricks DM (2002) Measurement of leptin and insulin-like growth factor-I in seminal plasma from different species. Physiol Res 51: 309-311.

Mann T (1964) The Biochemistry of Semen and of the Male Reproductive Tract, 2nd ed., Methuen & Co press, London, pp 334-337

Mann T (1974) Secretory function of the prostate, seminal vesicle and other male accessory organs of reproduction. J Reprod Fertil 37: 179-188.

Mann T (1975) Biochemistry of stallion semen. J Reprod Fertil (Suppl) 23: 47-52.

Melotti C, Parente R, Di Stasio D, Vitali G, Basunti G, Marchese S, Di Marzio G (1996) Citric acid and fructose seminal plasma concentra-tions and semen characteristics in the stallion. Bioch Clin 20: 90-97.

Novak S, Smith TA, Paradis F, Burwash L, Dyck MK, Foxcroft GR, Dixon WT (2010). Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions. Theriogenology 74: 956-967.

Pandy VK, Parmeshwaran M, Soman SD, Dacosta JC (1983) Concentrations of morphologically normal, motile spermatozoa: Mg, Ca and Zn in the semen of infertile men. Sci Total Environ 27: 49-52.

Pesch S, Bergmann M, Bostedt H (2006) Determination of some enzymes and macro-and microelements in stallion seminal plasma and their correlations to semen quality. Theriogenology 66: 307-313.

Pickett BW, Sullivan JJ, Seidel GE Jr (1975) Reproductive physiology of the stallion. V. Effect of frequency of ejaculation on seminal char-acteristics and spermatozoal output. J Anim Sci 40: 917-923.

Restrepo G, Rojano, B, Usuga A (2019). Relationship of cysteine-rich secretory protein-3 gene and protein with semen quality in stallions. Reprod Domest Anim 54: 39-45.

Schambony A, Gentzel M, Wolfes H, Raida M, Neumann U, Töpfer-Petersen E (1998) Equine CRISP-3: primary structure and expression in the male genital tract. Biochim Biophys Acta 1387: 206-216.

Sieber F (1987) Merocyanine 540. Photochem Photobiol 46: 1035-1042.

Stanwell-Smith R, Thompson SG, Haines AP, Ward RJ, Cashmore G, Stedronska J, Hendry W F (1983) A comparative study of zinc, cop-per, cadmium, and lead levels in fertile and infertile men. Fertil Steril 40: 670-677.

Strzezek J, Wysocki P, Kordan W, Kuklinska M, Mogielnicka M, Soliwoda D, Fraser L (2005) Proteomics of boar seminal plasma-current studies and possibility of their application in biotechnology of animal reproduction. Reprod Biol 5: 279-290.

Talluri TR, Mal G, Ravi SK (2017) Biochemical components of seminal plasma and their correlation to the fresh seminal characteristics in Marwari stallions and Poitou jacks. Vet World 10: 214-220.

Tischner M, Kosiniak K, Bielanski W (1974) Analysis of the pattern of ejaculation in stallions. J Reprod Fertil 41: 329-335.

Töpfer-Petersen E, Ekhlasi-Hundrieser M, Kirchhoff C, Leeb T, Sieme H (2005) The role of stallion seminal proteins in fertilisation. Anim Reprod Sci 89: 159-170.

Usuga A, Rojano B, Restrepo G (2017) Effect of seminal plasma components on the quality of fresh and cryopreserved stallion semen. J Equine Vet Sci 58: 103-111.

Varner DD, Schumacher J, Blanchard T, Johnson L (1991) Breeding soundness examination. In: Diseases and management of breeding stallions. American Veterinary Publications, pp 61-96.

Von Fellenberg R, Zweifel HR, Grunig G, Pellegrini A (1985) Proteinase inhibitors of horse seminal plasma. A high molecular mass, ac-id-soluble proteinase inhibitor. Biol Chem Hoppe Seyler 366: 705-712.

Wong WY, Flik G, Groenen PM, Swinkels DW, Thomas CM, Copius-Peereboom JH, Steegers-Theunissen RP (2001) The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod Toxicol 15: 131-136.
Go to article

Authors and Affiliations

C. Stelletta
1
S. Alberti
2
B. Cil
3
K. Tekin
3
M.B. Tirpan
3
M. Arganaraz
4
E. Akcay
3
A. Daskin
3

  1. Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell’Università - 35020 Legnaro, Italy
  2. Practitioner, Veneto Region, Italy
  3. Department of Animal Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, 06110, Ankara, Turkey
  4. Instituto Superior de Investigaciones Biológicas (INSIBIO) and Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y Farmacia, UNT Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina

This page uses 'cookies'. Learn more