Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An original wireless sensor network for vibration measurements was designed. Its primary purpose is modal analysis of vibrations of large structures. A number of experiments have been performed to evaluate the system, with special emphasis on the influence of different effects on simultaneity of data acquired from remote nodes, which is essential for modal analysis. One of the issues is that quartz crystal oscillators, which provide time reading on the devices, are optimized for use in the room temperature and exhibit significant frequency variations if operated outside the 20–30°C range. Although much research was performed to optimize algorithms of synchronization in wireless networks, the subject of temperature fluctuations was not investigated and discussed in proportion to its significance. This paper describes methods used to evaluate data simultaneity and some algorithms suitable for its improvement in small to intermediate size ad-hoc wireless sensor networks exposed to varying temperatures often present in on-site civil engineering measurements.
Go to article

Authors and Affiliations

Miodrag Malović
Ljiljana Brajović
Zoran Mišković
Tomislav Šekara
Download PDF Download RIS Download Bibtex

Abstract

In the last decades Real Options Valuation (ROV) has been gaining a leading role among methods of economic evaluation and risk analysis of projects. This method enables valuation of managerial flexibility which includes postponing investments and reformulating of operating strategies of companies. By doing this, the method delivers higher project values than derived from the classical discount approaches, such as NPV. The value of flexibility may be of lower or greater importance - depending on types, configuration and sequence of occurring real options. Common methods of real options valuation are built on lattice models which approximate continuous stochastic process. One of the most popular techniques used for real options valuation - a marketed asset disclaimer approach (MAD) - is based on the binomial tree. The paper presents valuation of the mineral project with three simultaneous options: option-to-expand, option-to-contract and option-to-abandon.

Go to article

Authors and Affiliations

Piotr Saługa
Download PDF Download RIS Download Bibtex

Abstract

Most antiseptic agents are intended for use on intact skin, e.g. for hand hygiene or skin preparation before any medical procedure. This paper presents multiple emulsion-based antiseptic agents as formulations for application to body surfaces with modified release rates.
Multiple emulsions with a co-encapsulated antiseptic (phenyl salicylate – salol) and an agent preventing microorganism growth (benzoic acid) were formed in a Couette–Taylor flow apparatus. Results confirmed the possibility of the release kinetics modification while two compounds were encapsulated in the internal droplets of emulsions to control the release rates and time of the dose release. The addition of benzoic acid as a second active compound of the encapsulation process in the internal phase of double O1/W/O2 emulsion reduced the time necessary for the total release of salol triggering a two-step release.
Go to article

Bibliography

Chan R.J., Keller J., Cheuk R., Blades R., Tripcony L., Keogh S., 2012. A double-blind randomised controlled trial of a natural oil-based emulsion (Moogoo Udder Cream®) containing allantoin versus aqueous cream for managing radiation-induced skin reactions in patients with cancer. Radiat. Oncol., 7, 121. DOI: 10.1186/1748-717X-7-121.
Chan R.J., Mann J., Tripcony L., Keller J., Cheuk R., Blades R., Keogh S., Poole C., Walsh C., 2014. Natural oil-based emulsion containing allantoin versus aqueous cream for managing radiation-induced skin reactions in patients with cancer: A phase 3, double-blind, randomized, controlled trial. Int. J. Radiat. Oncol. Biol. Phys., 90, 756–764. DOI: 10.1016/j.ijrobp.2014.06.034.
Cohen J.L., Jorizzo J.L., Kircik L.H., 2007. Use of a topical emulsion for wound healing. J. Support Oncol., 5(10 Suppl 5): 1–9.
Dluska E., Cui Z., Markowska-Radomska A., Metera A., Kosicki K., 2017a. Cryoprotection and banking of living cells in a 3D multiple emulsion-based carrier. Biotechnol. J., 12, 1600692. DOI: 10.1002/biot.201600692.
Dluska E., Hubacz R., Wronski S., Kamienski J., Dylag M., Wojtowicz R., 2007. The influence of helical flow on water fuel emulsion preparation. Chem. Eng. Commun., 194, 1271–1286. DOI: 10.1080/00986440701293959.
Dłuska E., Hubacz, R., 2000. Mass transfer in the two-phase helicoidal contactor. Chem. Process Eng., 21, 103–113. Dluska E., Markowska-Radomska A., 2010. Regimes of multiple emulsions ofW1/O/W2 and O1/W/O2 type in the continuous Couette–Taylor flow contactor. Chem. Eng. Technol., 33, 113–120. DOI: 10.1002/ceat.200900278.
Dluska E., Markowska-Radomska A., Metera A., Tudek B., Kosicki K., 2017b. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery. Nanomed., 12, 2183–2197. DOI: 10.2217/nnm-2017-0112.
Durand L., Habran N., Henschel V., Amighi K., 2009. In vitro evaluation of the cutaneous penetration of sprayable sunscreen emulsions with high concentrations ofUVfilters. Int. J. Cosmet. Sci., 31, 279–292. DOI: 10.1111/j.1468-2494.2009.00498.x.
Fabbrocini G., CameliN.,Romano M.C., Mariano M., Panariello L., Bianca D., Monfrecola G., 2012. Chemotherapy and skin reactions. J. Exp. Clin. Cancer Res., 31, 50. DOI: 10.1186/1756-9966-31-50.
Goldstein D., Gofrit O., Nyska A., Benita, S., 2007. Anti-HER2 cationic immunoemulsion as a potential targeted drug delivery system for the treatment of prostate cancer. Cancer Res., 67, 269–275. DOI: 10.1158/0008-5472.CAN-06-2731.
Hymes S.R., Strom E.A., Fife C., 2006. Radiation dermatitis: Clinical presentation, pathophysiology, and treatment 2006. J. Am. Acad. Dermatol., 54, 28–46. DOI: 10.1016/j.jaad.2005.08.054.
Lam P.L., Gambari R., 2014. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J. Controlled Release, 178, 25–45. DOI: 10.1016/j.jconrel.2013.12.028.
Ma Y., Liu D., Wang D., Wang Y., Fu Q., Fallon J. K., Liu, F., 2014. Combinational delivery of hydrophobic and hydrophilic anticancer drugs in single nanoemulsions to treat MDR in cancer. Mol. Pharmaceutics, 11, 2623–2630. DOI: 10.1021/mp400778r.
Markowska-Radomska A., Dluska E., 2012. The multiple emulsion entrapping active agent produced via one-step preparation method in the liquid-liquid helical flow for drug release study and modelling, In: Starov V., Griffiths P. (Eds.), UK Colloids 2011. Progress in Colloid and Polymer Science, Vol 139. Springer, Berlin, Heidelberg, 29–34. DOI: 10.1007/978-3-642-28974-3_6.
Markowska-Radomska A., Dluska E., 2016. An evaluation of a mass transfer rate at the boundary of different release mechanisms in complex liquid dispersion. Chem. Eng. Process. Process Intensif., 101, 56–71. DOI: 10.1016/j.cep.2015.12.006.
Montenegro L., Carbone C., Paolino D., Drago R., Stancampiano A.H., Puglisi G., 2008. In vitro skin permeation of sunscreen agents from O/W emulsions. Int. J. Cosmet. Sci., 30, 57–65. DOI: 10.1111/j.1468-2494.2008.00417.x.
Otto A., du Plessis J., Wiechers J.W., 2009. Formulation effects of topical emulsions on transdermal and dermal delivery. Int. J. Cosmet. Sci., 31, 1–19. DOI: 10.1111/j.1468-2494.2008.00467.x.
Özer Ö., Özyazici M., Tedajo M., Taner M. S., Köseoglu K., 2007. W/O/W multiple emulsions containing nitroimidazole derivates for vaginal delivery. Drug Delivery, 14, 139–145. DOI: 10.1080/10717540601067463.
Perrie Y., Rades T., 2012. Pharmaceutics – Drug delivery and targeting. 2nd Ed. Pharmaceutical Press, London.
Priyadarshini C., Mohapatra J., Kumar Sahoo T., Sekhar Pattnaik S., 2016. Chemotherapy induced skin toxicities and review of literature. J. Cancer Tumor Int., 3, 1–16. DOI: 10.9734/JCTI/2016/22651.
PubChem CID 243, Benzoic acid. National Institutes of Health. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Benzoic-acid.
PubChem CID 8361, Phenyl salicylate.National Institutes of Health.Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Phenyl-salicylate.
Purnamawati S., Indrastuti N., Danarti R., Saefudin T., 2017. The role of moisturizers in addressing various kinds of dermatitis: A review. Clin. Med. Res., 15, 75–87. DOI: 10.3121/cmr.2017.1363.
Raynal S., Grossiord J.L., Seiller M., Clausse, D., 1993. A topical W/O/W multiple emulsion containing several active substances: formulation, characterization and study of release. J. Controlled Release, 26, 129–140. DOI: 10.1016/0168-3659(93)90112-I.
Siegel R.A., Rathbone M.J., 2012. Overview of controlled release mechanisms. In: Siepmann J., Siegel R.A., Rathbone M.J. (Eds.). Fundamentals and applications of controlled release drug delivery. Advances in Delivery Science and Technology. Springer, Boston, MA, 19–43. DOI: 10.1007/978-1-4614-0881-9_2.
Spałek M., 2016. Chronic radiation-induced dermatitis: challenges and solutions. Clin. Cosmet. Invest. Dermatol., 9, 473–482. DOI: 10.2147/CCID.S94320.
Wilson C.G., 2012. The need for drugs and drug delivery systems. In: Siepmann J., Siegel R.A., Rathbone M.J. (Eds.). Fundamentals and applications of controlled release drug delivery. Advances in Delivery Science and Technology. Springer, Boston, MA, 3–18. DOI: 10.1007/978-1-4614-0881-9_1.
Go to article

Authors and Affiliations

Agnieszka Markowska-Radomska
1
ORCID: ORCID
Ewa Dluska
1
ORCID: ORCID
Agata Metera
1
Maria Wojcieszak
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article offers a discourse-analytic examination of original (English) and interpreted (Polish) versions of several extracts from plenary speeches by three Members of the European Parliament (Janusz Korwin-Mikke, Nigel Farage and Guy Verhofstadt). Controversial statements that have met with adverse reactions of the audience and/or the media are selected for analysis. The author endeavours to assess the degree to which pragmatic equivalence has been achieved by Polish interpreters. Another pertinent question is whether the identifi ed shifts are due to some systemic differences between the pragmatics of the source and target languages or to other factors, such as the constraints typical for simultaneous interpreting or specific, local problems.

Go to article

Authors and Affiliations

Magdalena Bartłomiejczyk
Download PDF Download RIS Download Bibtex

Abstract

An organobentonite modified with an amphoteric surfactant, tallow dihydroxyethyl betaine (TDHEB), was used as an adsorbent to simultaneously remove Cu(II) and phenol from wastewater. The characteristic of the organobentonite (named TDHEB-bentonite) was analyzed by X-ray diffraction, Fourier-transform infrared spectra and nitrogen adsorption-desorption isotherm. Batch tests were conducted to evaluate the adsorption capacities of TDHEB-bentonite for the two contaminants. Experiment results demonstrated that the adsorption of both contaminants is highly pH-dependent under acidic conditions. TDHEB-bentonite had about 2.0 and 5.0 times higher adsorption capacity toward Cu(II) and phenol, respectively, relative to the corresponding raw Na-bentonite. Adsorption isotherm data showed that the adsorption processes of both contaminants were well described by Freundlich model. Kinetic experiment demonstrated that both contaminants adsorption processes correlated well with pseudo-second-order model. Cu(II) had a negative impact on phenol adsorption, but not vice versa. Cu(II) was removed mainly through chelating with the organic groups (-CH2CH2OH and -COO-) of TDHEB. Otherwise, partition into the organic phase derived from the adsorbed surfactant was the primarily mechanism for phenol removal. Overall, TDHEB-bentonite was a promising adsorbent for removing Cu(II) and phenol simultaneously from wastewater.
Go to article

Bibliography

  1. Andronico, M. & Bajda, T. (2019). Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials, 12(22), 3772. DOI:10.3390/ma12223772
  2. Banat, F. A., Al-Bashir, B., Al-Asheh, S. & Hayajneh, O. (2000). Adsorption of phenol by bentonite. Environmental Pollution, 107(3), pp. 391-398. DOI:10.1016/S0269-7491(99)00173-6
  3. Bhattacharyya, K. G. & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), pp. 114-131. DOI:10.1016/j.cis.2007.12.008
  4. Cao, L., Li, Z., Xiang, S., Huang, Z., Ruan, R. & Liu, Y. (2019). Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater. Bioresource Technology, 284, pp. 448-455. DOI:10.1016/j.biortech.2019.03.043
  5. Chen, H., Zhou, W., Zhu, K., Zhan, H. & Jiang, M. (2004). Sorption of ionizable organic compounds on HDTMA-modified loess soil. Science of The Total Environment, 326(1), pp. 217-223. DOI:10.1016/j.scitotenv.2003.12.011
  6. Chen, Y., Zhang, X., Wang, L., Cheng, X. & Shang, Q. (2020). Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: Adsorption combined with photocatalysis. Chemical Engineering Journal, 402, 126260. DOI:10.1016/j.cej.2020.126260
  7. Chu, Y., Khan, M. A., Xia, M., Lei, W., Wang, F., Zhu, S. & Yan, X. (2020). Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead(II) and copper(II) adsorption from wastewater. Chemical Engineering Research and Design, 157, pp. 142-152. DOI:10.1016/j.cherd.2020.02.020
  8. Díaz-Nava, M. C., Olguín, M. T. & Solache-Ríos, M. (2012). Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74(1), 67-75. DOI:10.1007/s10847-011-0084-6
  9. Fan, H., Zhou, L., Jiang, X., Huang, Q. & Lang, W. (2014). Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Applied Clay Science, 95, pp. 150-158. DOI:10.1016/j.clay.2014.04.001
  10. Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry A, 57(385471), pp. 1100-1107. DOI:10.1515/zpch-1907-5723
  11. Griffin, R. A. & Shimp, N. F. (1976). Effect of pH on exchange-adsorption or precipitation of lead from landfill leachates by clay minerals. Environmental science & technology, 10(13), pp. 1256-1261. DOI:10.1021/es60123a003
  12. He, Y., Chen, Y., Zhang, K., Ye, W. & Wu, D. (2019). Removal of chromium and strontium from aqueous solutions by adsorption on laterite. Archives of Environmental Protection, 45(3), pp. 11-20. DOI:10.24425/aep.2019.128636
  13. Kong, Y., Wang, L., Ge, Y., Su, H. & Li, Z. (2019). Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. Journal of Hazardous Materials, 368, pp. 33-41. DOI:10.1016/j.jhazmat.2019.01.026
  14. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), pp. 1361-1403. DOI:10.1021/ja02242a004
  15. Lee, C., Lee, S., Park, J., Park, C., Lee, S. J., Kim, S., An, B., Yun, S., Lee, S. & Choi, J. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, pp. 203-211. DOI:10.1016/j.chemosphere.2016.09.093
  16. Lin, S. & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), pp. 315-326. DOI:10.1016/S0304-3894(02)00026-2
  17. Liu, C., Wu, P., Zhu, Y. & Tran, L. (2016). Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere, 144, pp. 1026-1032. DOI:10.1016/j.chemosphere.2015.09.063
  18. Long, H., Wu, P. & Zhu, N. (2013). Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chemical Engineering Journal, 225, pp. 237-244. DOI:10.1016/j.cej.2013.03.088
  19. Ma, J. & Zhu, L. (2006). Simultaneous sorption of phosphate and phenanthrene to inorgano–organo-bentonite from water. Journal of Hazardous Materials, 136(3), pp. 982-988. DOI:10.1016/j.jhazmat.2006.01.046
  20. Ma, J. & Zhu, L. (2007). Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. Chemosphere, 68(10), pp. 1883-1888. DOI:10.1016/j.chemosphere.2007.03.002
  21. Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q. & Ayoko, G. A. (2016). Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, pp. 880-888. DOI:10.1016/j.cej.2015.08.009
  22. Matthes, W., Madsen, F. T. & Kahr, G. (1999). Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite. Clays and Clay Minerals, 47(5), pp. 617-629. DOI:10.1346/CCMN.1999.0470508
  23. Meng, Z., Zhang, Y. & Zhang, Z. (2008). Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials, 159(2), pp. 492-498. DOI:10.1016/j.jhazmat.2008.02.045
  24. Nourmoradi, H., Nikaeen, M. & Khiadani Hajian, M. (2012). Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 191, pp. 341-348. DOI:10.1016/j.cej.2012.03.029
  25. Pal, A., Jayamani, J. & Prasad, R. (2014). An urgent need to reassess the safe levels of copper in the drinking water: Lessons from studies on healthy animals harboring no genetic deficits. NeuroToxicology, 44, pp. 58-60. DOI:10.1016/j.neuro.2014.05.005
  26. Park, Y., Ayoko, G. A., Horváth, E., Kurdi, R., Kristof, J. & Frost, R. L. (2013). Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. Journal of Colloid and Interface Science, 393, pp. 319-334. DOI:10.1016/j.jcis.2012.10.067
  27. Qu, Y., Qin, L., Liu, X. & Yang, Y. (2020). Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 251, 126376. DOI:10.1016/j.chemosphere.2020.126376
  28. Redlich, O. & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of physical chemistry, 63(6), 1024. DOI:10.1021/j150576a611
  29. Ren, S., Meng, Z., Sun, X., Lu, H., Zhang, M., Lahori, A. H. & Bu, S. (2020). Comparison of Cd2+ adsorption onto amphoteric, amphoteric-cationic and amphoteric-anionic modified magnetic bentonites. Chemosphere, 239, 124840. DOI:10.1016/j.chemosphere.2019.124840
  30. Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C. & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 172(1), pp. 353-362. DOI:10.1016/j.jhazmat.2009.07.019
  31. Taffarel, S. R. & Rubio, J. (2010). Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), pp. 771-779. DOI:10.1016/j.mineng.2010.05.018
  32. Tri, N. L. M., Thang, P. Q., Van Tan, L., Huong, P. T., Kim, J., Viet, N. M., Phuong, N. M. & Al Tahtamouni, T. M. (2020). Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. Journal of Water Process Engineering, 33, 101070. DOI:10.1016/j.jwpe.2019.101070
  33. Veli, S. & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), pp. 226-233. DOI:10.1016/j.jhazmat.2007.04.109
  34. Wang, G., Wang, X., Zhang, S., Ma, S., Wang, Y. & Qiu, J. (2020). Adsorption of heavy metal and organic pollutant by organo-montmorillonites in binary-component system. Journal of Porous Materials, 27(5), pp. 1515-1522. DOI:10.1007/s10934-020-00927-8
  35. Wang, G., Zhang, S., Hua, Y., Su, X., Ma, S., Wang, J., Tao, Q., Wang, Y. & Komarneni, S. (2017). Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Applied Clay Science, 140, pp. 1-9. DOI:10.1016/j.clay.2017.01.023
  36. Yan, L., Shan, X., Wen, B. & Zhang, S. (2007). Effect of lead on the sorption of phenol onto montmorillonites and organo-montmorillonites. Journal of Colloid and Interface Science, 308(1), pp. 11-19. DOI:10.1016/j.jcis.2006.12.027
  37. Yang, G., Tang, L., Zeng, G., Cai, Y., Tang, J., Pang, Y., Zhou, Y., Liu, Y., Wang, J., Zhang, S. & Xiong, W. (2015). Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259, pp. 854-864. DOI:10.1016/j.cej.2014.08.081
  38. Yoo, J., Choi, J., Lee, T. & Park, J. (2004). Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water, Air, and Soil Pollution, 154(1), pp. 225-237. DOI:10.1023/B:WATE.0000022970.21712.64
  39. Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W. & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, pp.884-891. DOI:10.1016/j.chemosphere.2017.06.040
  40. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev, B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87-96. DOI:10.24425/118185
  41. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J. & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, pp. 239-258. DOI:10.1016/j.clay.2015.12.024
  42. Andronico, M. & Bajda, T. (2019). Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials, 12(22), 3772. DOI:10.3390/ma12223772
  43. Banat, F. A., Al-Bashir, B., Al-Asheh, S. & Hayajneh, O. (2000). Adsorption of phenol by bentonite. Environmental Pollution, 107(3), pp. 391-398. DOI:10.1016/S0269-7491(99)00173-6
  44. Bhattacharyya, K. G. & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), pp. 114-131. DOI:10.1016/j.cis.2007.12.008
  45. Cao, L., Li, Z., Xiang, S., Huang, Z., Ruan, R. & Liu, Y. (2019). Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater. Bioresource Technology, 284, pp. 448-455. DOI:10.1016/j.biortech.2019.03.043
  46. Chen, H., Zhou, W., Zhu, K., Zhan, H. & Jiang, M. (2004). Sorption of ionizable organic compounds on HDTMA-modified loess soil. Science of The Total Environment, 326(1), pp. 217-223. DOI:10.1016/j.scitotenv.2003.12.011
  47. Chen, Y., Zhang, X., Wang, L., Cheng, X. & Shang, Q. (2020). Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: Adsorption combined with photocatalysis. Chemical Engineering Journal, 402, 126260. DOI:10.1016/j.cej.2020.126260
  48. Chu, Y., Khan, M. A., Xia, M., Lei, W., Wang, F., Zhu, S. & Yan, X. (2020). Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead(II) and copper(II) adsorption from wastewater. Chemical Engineering Research and Design, 157, pp. 142-152. DOI:10.1016/j.cherd.2020.02.020
  49. Díaz-Nava, M. C., Olguín, M. T. & Solache-Ríos, M. (2012). Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74(1), 67-75. DOI:10.1007/s10847-011-0084-6
  50. Fan, H., Zhou, L., Jiang, X., Huang, Q. & Lang, W. (2014). Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Applied Clay Science, 95, pp. 150-158. DOI:10.1016/j.clay.2014.04.001
  51. Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry A, 57(385471), pp. 1100-1107. DOI:10.1515/zpch-1907-5723
  52. Griffin, R. A. & Shimp, N. F. (1976). Effect of pH on exchange-adsorption or precipitation of lead from landfill leachates by clay minerals. Environmental science & technology, 10(13), pp. 1256-1261. DOI:10.1021/es60123a003
  53. He, Y., Chen, Y., Zhang, K., Ye, W. & Wu, D. (2019). Removal of chromium and strontium from aqueous solutions by adsorption on laterite. Archives of Environmental Protection, 45(3), pp. 11-20. DOI:10.24425/aep.2019.128636
  54. Kong, Y., Wang, L., Ge, Y., Su, H. & Li, Z. (2019). Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. Journal of Hazardous Materials, 368, pp. 33-41. DOI:10.1016/j.jhazmat.2019.01.026
  55. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), pp. 1361-1403. DOI:10.1021/ja02242a004
  56. Lee, C., Lee, S., Park, J., Park, C., Lee, S. J., Kim, S., An, B., Yun, S., Lee, S. & Choi, J. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, pp. 203-211. DOI:10.1016/j.chemosphere.2016.09.093
  57. Lin, S. & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), pp. 315-326. DOI:10.1016/S0304-3894(02)00026-2
  58. Liu, C., Wu, P., Zhu, Y. & Tran, L. (2016). Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere, 144, pp. 1026-1032. DOI:10.1016/j.chemosphere.2015.09.063
  59. Long, H., Wu, P. & Zhu, N. (2013). Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chemical Engineering Journal, 225, pp. 237-244. DOI:10.1016/j.cej.2013.03.088
  60. Ma, J. & Zhu, L. (2006). Simultaneous sorption of phosphate and phenanthrene to inorgano–organo-bentonite from water. Journal of Hazardous Materials, 136(3), pp. 982-988. DOI:10.1016/j.jhazmat.2006.01.046
  61. Ma, J. & Zhu, L. (2007). Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. Chemosphere, 68(10), pp. 1883-1888. DOI:10.1016/j.chemosphere.2007.03.002
  62. Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q. & Ayoko, G. A. (2016). Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, pp. 880-888. DOI:10.1016/j.cej.2015.08.009
  63. Matthes, W., Madsen, F. T. & Kahr, G. (1999). Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite. Clays and Clay Minerals, 47(5), pp. 617-629. DOI:10.1346/CCMN.1999.0470508
  64. Meng, Z., Zhang, Y. & Zhang, Z. (2008). Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials, 159(2), pp. 492-498. DOI:10.1016/j.jhazmat.2008.02.045
  65. Nourmoradi, H., Nikaeen, M. & Khiadani Hajian, M. (2012). Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 191, pp. 341-348. DOI:10.1016/j.cej.2012.03.029
  66. Pal, A., Jayamani, J. & Prasad, R. (2014). An urgent need to reassess the safe levels of copper in the drinking water: Lessons from studies on healthy animals harboring no genetic deficits. NeuroToxicology, 44, pp. 58-60. DOI:10.1016/j.neuro.2014.05.005
  67. Park, Y., Ayoko, G. A., Horváth, E., Kurdi, R., Kristof, J. & Frost, R. L. (2013). Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. Journal of Colloid and Interface Science, 393, pp. 319-334. DOI:10.1016/j.jcis.2012.10.067
  68. Qu, Y., Qin, L., Liu, X. & Yang, Y. (2020). Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 251, 126376. DOI:10.1016/j.chemosphere.2020.126376
  69. Redlich, O. & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of physical chemistry, 63(6), 1024. DOI:10.1021/j150576a611
  70. Ren, S., Meng, Z., Sun, X., Lu, H., Zhang, M., Lahori, A. H. & Bu, S. (2020). Comparison of Cd2+ adsorption onto amphoteric, amphoteric-cationic and amphoteric-anionic modified magnetic bentonites. Chemosphere, 239, 124840. DOI:10.1016/j.chemosphere.2019.124840
  71. Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C. & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 172(1), pp. 353-362. DOI:10.1016/j.jhazmat.2009.07.019
  72. Taffarel, S. R. & Rubio, J. (2010). Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), pp. 771-779. DOI:10.1016/j.mineng.2010.05.018
  73. Tri, N. L. M., Thang, P. Q., Van Tan, L., Huong, P. T., Kim, J., Viet, N. M., Phuong, N. M. & Al Tahtamouni, T. M. (2020). Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. Journal of Water Process Engineering, 33, 101070. DOI:10.1016/j.jwpe.2019.101070
  74. Veli, S. & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), pp. 226-233. DOI:10.1016/j.jhazmat.2007.04.109
  75. Wang, G., Wang, X., Zhang, S., Ma, S., Wang, Y. & Qiu, J. (2020). Adsorption of heavy metal and organic pollutant by organo-montmorillonites in binary-component system. Journal of Porous Materials, 27(5), pp. 1515-1522. DOI:10.1007/s10934-020-00927-8
  76. Wang, G., Zhang, S., Hua, Y., Su, X., Ma, S., Wang, J., Tao, Q., Wang, Y. & Komarneni, S. (2017). Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Applied Clay Science, 140, pp. 1-9. DOI:10.1016/j.clay.2017.01.023
  77. Yan, L., Shan, X., Wen, B. & Zhang, S. (2007). Effect of lead on the sorption of phenol onto montmorillonites and organo-montmorillonites. Journal of Colloid and Interface Science, 308(1), pp. 11-19. DOI:10.1016/j.jcis.2006.12.027
  78. Yang, G., Tang, L., Zeng, G., Cai, Y., Tang, J., Pang, Y., Zhou, Y., Liu, Y., Wang, J., Zhang, S. & Xiong, W. (2015). Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259, pp. 854-864. DOI:10.1016/j.cej.2014.08.081
  79. Yoo, J., Choi, J., Lee, T. & Park, J. (2004). Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water, Air, and Soil Pollution, 154(1), pp. 225-237. DOI:10.1023/B:WATE.0000022970.21712.64
  80. Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W. & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, pp.884-891. DOI:10.1016/j.chemosphere.2017.06.040
  81. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev, B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87-96. DOI:10.24425/118185
  82. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J. & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, pp. 239-258. DOI:10.1016/j.clay.2015.12.024
Go to article

Authors and Affiliations

Xiangyang Hu
1
Bao Wang
2
ORCID: ORCID
Gengsheng Yan
1
Bizhou Ge
2

  1. PowerChina Northwest Engineering Corporation Limited, China
  2. Xi’an University of Architecture and Technology, China
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to investigate the role conceptual compressions play in the strategy of transcoding commonly applied in simultaneous interpreting. First, the most fundamental rules of the form-based transcoding and the meaning-based translation will be described. Second, the idea of conceptual compressions derived from the Conceptual Integration Theory will be discussed. As the last step, a specific pattern of conceptual compressions typical for the strategy of transcoding will be outlined.
Go to article

Bibliography

BRUNNER T. (2007): Output beim Simultandolmetschen – Kulturtransfer, Voice-Over-Text oder was? Diplomarbeit. Innsbruck.
CHMIEL A. (2015): Przetwarzanie w tłumaczeniu symultanicznym. < https://repozytorium.amu.edu.pl/bitstream/10593/14245/1/chmiel_agnieszka_przetwarzanie_symultaniczne.pdf> [ostatni do-stęp: 17.10.21].
DAM H. (2001): On the option between form-based and meaning-based interpreting: The effect of source text difficulty on lexical target text form in simultaneous interpreting, “The Interpreters’ Newsletter”, 11: 27–55.
DAVIS M.H. (2015): The neurobiology of lexical access, “Neurobiology of Language Volume”, SMALL S.L., HICKOK G.G. (red.), Academic Press, London: 541–557.
DE GROOT A.M.B. (1997): The cognitive study of translation and interpretation: Three approaches, w: DANKS J.H., SHREVE G.M., FOUNTAIN S.B., MCBEATH M.K. (red.), Cognitive processes in translation and interpretation, Thousand oaks: sage publications, London: 25–56.
ID. (2011): Language and Cognition in Bilinguals and Multilinguals: An Introduction, Psychology Press, New York.
GRUCZA S. (2008): Lingwistyka języków specjalistycznych, Euro-Edukacja, Warszawa.
HEJWOWSKI K. (2004): Kognitywno-komunikacyjna teoria przekładu, Wydawnictwo Naukowe PWN, Warszawa.
MAŁGORZEWICZ A. (2003): Prozessorientierte Dolmetschdidaktik, Oficyna Wydawnicza Atut, Wrocław. ID. (2014): Językowe i niejęzykowe kompetencje tłumacza. Próba zdefiniowania celów trans-lodydaktyki akademickiej, “Lingwistyka Stosowana”, 11: 1–10.
MOSER-MERCER B. (1978): Simultaneous Interpretation: A Hypothetical Model and its Practical Application, w: GERVER D., SINAIKO H.W. (red.), Plenum Press, New York: 353–369.
PARADIS M. (1994): Neurolinguistic aspects of implicit and explicit memory: implication for bilingualism and SLA, w: ELLIS N. (red.), Implicit and explicit learning of languages, Academic Press, London: 393–419.
TURNER M., FAUCONNIER G. (2003): Conceptual Blending, Form and Meaning, “Sémiotique cognitive-Cognitive Semiotics”, 19: 57–86.
ID. (2019): Jak myślimy. Mieszaniny pojęciowe i ukryta złożoność umysłu, Biblioteka Kwartalnika Kronos, Warszawa.
SELESKOVITCH D. (1968): L’interprète dans les conférences internationales: problèmes de langage et de communication, Classiques Garnier, Paris.
WÖRRLEIN M. (2007): Der Simultandolmetschprozess. Eine empirische Untersuchung, Martin Meidenbauer, München.
ZYBATOW L. (2013): Des Simultandolmetschers rӓtselhafte Kompetenzen, “Studia Translatorica”, 4: 23–38. < http://www.studia-translatorica.pl/articles/04/02_zybatow.pdf> [ostatni dostęp: 17.10.21].
Go to article

Authors and Affiliations

Anna Bajerowska
1
ORCID: ORCID

  1. Uniwersytet Warszawski
Download PDF Download RIS Download Bibtex

Abstract

The article presents a comprehensive study of a visual-inertial simultaneous localization and mapping (SLAM) algorithm designed for aerial vehicles. The goal of the research is to propose an improvement to the particle filter SLAM system that allows for more accurate and robust navigation of unknown environments. The authors introduce a modification that utilizes a homography matrix decomposition calculated from the camera frame-to-frame relationships. This procedure aims to refine the particle filter proposal distribution of the estimated robot state. In addition, the authors implement a mechanism of calculating a homography matrix from robot displacement, which is utilized to eliminate outliers in the frame-to-frame feature detection procedure. The algorithm is evaluated using simulation and real-world datasets, and the results show that the proposed improvements make the algorithm more accurate and robust. Specifically, the use of homography matrix decomposition allows the algorithm to be more efficient, with a smaller number of particles, without sacrificing accuracy. Furthermore, the incorporation of robot displacement information helps improve the accuracy of the feature detection procedure, leading to more reliable and consistent results. The article concludes with a discussion of the implemented and tested SLAM solution, highlighting its strengths and limitations. Overall, the proposed algorithm is a promising approach for achieving accurate and robust autonomous navigation of unknown environments.
Go to article

Authors and Affiliations

Paweł Leszek Słowak
1
Piotri Kaniewsk
1

  1. Military University of Technology, Faculty of Electronics, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Recently, simultaneous monitoring of process mean and variability has gained increasing attention. By departing from the accurate measurements assumption, this paper investigates the effect of gauge measurement errors on the performance of the maximum generally weighted moving average (Max-GWMA) chart for simultaneous monitoring of process mean and variability under an additive covariate model. Multiple measurements procedure is employed to compensate for the undesired impact of gauge inaccuracy on detection capability of the Max- GWMA chart. Simulation experiments in terms of average run length (ARL) are conducted to assess the power of the developed chart to detect different out-of-control scenarios. The results confirm that the gauge inaccuracy affects the sensitivity of the Max-GWMA chart. Moreover, the results show that taking multiple measurements per item adequately decreases the adverse effect of measurement errors. Finally, a real-life example is presented to demonstrate how measurement errors increases the false alarm rate of the Max-GWMA chart.
Go to article

Authors and Affiliations

Saeid Sharafi
1
Mohammad Reza Maleki
2
Ali Salmasnia
3
Reihaneh Mansoor
4

  1. Smart Research Center, Häme University of Applied Sciences, Finland
  2. Industrial Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
  3. Department of Industrial Engineering, Faculty of Engineering, University of Qom, Iran
  4. Department of Industrial Engineering, University of Eyvanekey, Eyvanekey, Iran

This page uses 'cookies'. Learn more