Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper an alternative method for increasing punching shear resistance of the flat slabs from lightweight aggregate concrete by means of hidden steel fibre reinforced capital was presented. Previous experimental studies demonstrated that the addition of steel fibres to concrete allows for increase in the punching shear resistance of flat slab. Steel fibres modify the tensile strength of concrete, which translates into increased ductility of the material. The results of the experimental investigations were presented, the aim of which was to assess the effectiveness of the proposed solution. For economic and technological reasons, a hidden capital of a height equal to half of the slabs depth was made so that the top reinforcement could be installed later. It was found that presented solution allowed to increase the load carrying capacity by about 36% with respect to the control element, made entirely of lightweight aggregate concrete.

Go to article

Authors and Affiliations

M. Gołdyn
T. Urban
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the fresh and mechanical performance of concrete incorporating sintered fly ash lightweight aggregates (SFLWA) both with and without steel fibers. Comparative assessments of natural aggregates with sintered fly ash aggregates were evaluated. Mix design was obtained by the IS method for M30 grade concrete, and within the natural aggregates were replaced with 20%, 40%, and 60% amounts of SFLWA. The addition of SFLWA shows an increase in the workability of the concrete. Replacement with SFLWA increases with an increase in slump value, and decreases in strength parameters. Compressive strength of 42.6 MPa was achieved with a 40% replacement of SFLWA with steel fibers. The mechanical properties such as compressive strength, split tensile strength, flexural strength, elastic modulus, and structural efficiency of SFLWAC were examined, both with and without fibers. The incorporation of fibers drastically improved the mechanical properties of the mix.

Go to article

Authors and Affiliations

B. Ranjith Babu
R. Thenmozhi

This page uses 'cookies'. Learn more