Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Light-weight Self-Compacting Concrete (LWSCC) might be the answer to the increasing construction requirements of slenderer and more heavily reinforced structural elements. However there are limited studies to prove its ability in real construction projects. In conjunction with the traditional methods, artificial intelligent based modeling methods have been applied to simulate the non-linear and complex behavior of concrete in the recent years. Twenty one laboratory experimental investigations on the mechanical properties of LWSCC; published in recent 12 years have been analyzed in this study. The collected information is used to investigate the relationship between compressive strength, elasticity modulus and splitting tensile strength in LWSCC. Analytically proposed model in ANFIS is verified by multi factor linear regression analysis. Comparing the estimated results, ANFIS analysis gives more compatible results and is preferred to estimate the properties of LWSCC.

Go to article

Authors and Affiliations

B. Vakhshouri
S. Nejadi
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the fresh and mechanical performance of concrete incorporating sintered fly ash lightweight aggregates (SFLWA) both with and without steel fibers. Comparative assessments of natural aggregates with sintered fly ash aggregates were evaluated. Mix design was obtained by the IS method for M30 grade concrete, and within the natural aggregates were replaced with 20%, 40%, and 60% amounts of SFLWA. The addition of SFLWA shows an increase in the workability of the concrete. Replacement with SFLWA increases with an increase in slump value, and decreases in strength parameters. Compressive strength of 42.6 MPa was achieved with a 40% replacement of SFLWA with steel fibers. The mechanical properties such as compressive strength, split tensile strength, flexural strength, elastic modulus, and structural efficiency of SFLWAC were examined, both with and without fibers. The incorporation of fibers drastically improved the mechanical properties of the mix.

Go to article

Authors and Affiliations

B. Ranjith Babu
R. Thenmozhi

This page uses 'cookies'. Learn more