Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The steel pipe umbrella is a widely used technology when tunnelling in weak soils in order to create pre-support ahead of the tunnel face. The design of steel pipes is frequently done through simplified analytical approaches which are easy to apply but require proper assessment of the loads acting on the pipe. To provide information on this key design aspect, the results of the comparison between a three-dimensional numerical model developed with the code FLAC 3D and an analytical model based on the approach of a beam on yielding supports is presented and discussed. The comparison refers to a shallow tunnel with an overburden of three times its diameter for two different types of weak rock masses. The obtained results provide suggestions about the load that has to be applied in the analytical model for the design phase.

Go to article

Authors and Affiliations

D. Peila
C. Marchino
C. Todaro
A. Luciani
Download PDF Download RIS Download Bibtex

Abstract

In this paper, four full-scale concrete columns with high-strength spiral stirrups (HSSS) are constructed and tested under low-cycle repeated loading. The specimens consisted of two castin- place columns and two precast concrete columns encased by a partly square steel pipe and bolt bars.The structural analysis of the HSSS columns of precast concrete conducted here is novel, and past experimental data for this are not available.To assess the seismic behavior and failure mechanisms of the new connections, quasi-static tests were carried out on columns prefabricated with them and cast-in-place specimens.The responses of all columns were compared, and the results showed that the failure modes of all columns are the large eccentric damage, and the destruction of all specimens occur at the column foot. The anti-seismic property of the precast HSSS concrete columns was comparable to that of the HSSS cast-in-place columns. A comparison of such performance parameters as energy dissipation and coefficient of ductility revealed that the precast HSSS concrete columns are suitable for use in earthquake zones.
Go to article

Authors and Affiliations

Zheng Xianchao
1
ORCID: ORCID
Fan Liyun
1
ORCID: ORCID
Jun Zhao
2
ORCID: ORCID

  1. Department of Civil and Architecture Engineering in Hezhou University, Hezhou 542899, China
  2. Department of Civil and Architectural Engineering in Anyang Institute of Technology, Anyang,Henan Province, 455000, China

This page uses 'cookies'. Learn more