Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the problem of position and speed estimation methods in SRM (Switched Reluctance Motor) drive equipped with hysteresis band current controller with MRAS (Model Reference Adaptive System) type observer. An adaptive flux model uses equation set of one-dimensional equations instead of one two-dimensional equation. The reference model is the formal one. Instead of measured current the observer utilizes reference current. Such drive system works well at speed range up to 600 rad/s. The observer's gains must change depend on the speed range. The robustness on motor parameter poor estimation is presented.
Go to article

Authors and Affiliations

Konrad Urbański
Download PDF Download RIS Download Bibtex

Abstract

An approach helpful when developing an optimized construction of a 6/4 type switched reluctance motor (SRM) is described in the paper. The analytical modeling procedure, based on the reluctance network method and analytical solution of an ordinary differential equation, enables applying a gradient optimization routine and better control of optimization process. The model allows for estimation of the efficiency, torque, and acoustic noise of the motor taking into account the magnetic non-linearity and the control algorithm to keep a constant input power. A bicriterial optimization routine has been applied to find optimal constructions. Eleven geometric and winding parameters are supposed to be the optimization quantities. Analyzed constructions – the initial one and the optimized ones, were validated by means of FEM calculations. The proposed approach can be employed in designing the SRM to be a drive motor in an electrical vehicle, at least as a first attempt.
Go to article

Authors and Affiliations

Wiesław Jażdżyński
Michał Majchrowicz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents optimization results for a two-phase, modular transverse flux switched reluctance motor (TFSRM) with an outer rotor. In particular, the main disadvantage of the considered motor structure, that is the zero starting torque in some rotor positions, is eliminated by construction optimization. A numerical model of the motor developed in the Flux3D program is coupled with a Matlab-based evolutionary algorithm for optimization of construction parameters of the magnetic circuit. The elaboratem algorithm is also connected with a database to limit the computation costs. Three objective functions are taken into account for the motor integral parameter improvement. The fundamental role of a type of an optimization criterion function is comparatively analyzed and a new effective criterion function is introduced.

Go to article

Authors and Affiliations

Marian Łukaniszyn
Marcin Kowol
Janusz Kołodziej
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the modified (compared to the classical asymmetric half-bridge) converter for a switched reluctance machine with an asymmetric rotor magnetic circuit was analysed. An analysis for two various structures of switched reluctance motors was conducted. The rotor shaping was used to obtain required start-up torque or/and to obtain less electromagnetic torque ripple. The discussed converter gives a possibility to turn a phase off much later while reduced time of a current flows in a negative slope of inductance. The results of the research in the form of waveforms of currents, voltages and electromagnetic torque were presented. Conclusions were formulated concerning the comparison of the characteristics of SRM supplied by the classic converter and by the one supplied by the analysed converter.

Go to article

Authors and Affiliations

Piotr Bogusz
Mariusz Korkosz
Jan Prokop
Download PDF Download RIS Download Bibtex

Abstract

The performance of drives with switched reluctance motors (SRMs) depends on magnetic materials used in their construction which influence static parameters such as inductance and electromagnetic torque profiles. The paper deals with simulations of switched reluctance motors in the finite element method and their comparison with measurements. Two kinds of switched reluctance motors were analysed, the modified Emerson Electric motor with a laminated steel core and a prototype, the one with a magnetic core made of iron-based powder composite materials. In the first part of the research, magnetization curves of magnetic materials were measured for static and dynamic conditions with 50 Hz. Next, simulations and measurements of inductance and developed torque were compared and analysed. In the last part of the research, simulations of magnetic flux density in motors were conducted. As the result of the research, it occurred that the simulations and measurements are quite close and two kinds of motors exhibit similar performance.
Go to article

Bibliography

[1] Miller T.J.E., Brushless permanent-magnet and reluctance motor drives, Oxford University Press (1989).
[2] Krishnan R., Switched reluctance motor drives: modelling, simulation, analysis, design, and applications, CRC Press (2001).
[3] Ahn J.-W., Switched reluctance motor, in book Torque control Ed. Lamchich M.T., Intech (2011), DOI: 10.5772/10520.
[4] Lawrenson P.J., Stephenson J.M., Blenkinsop P.T., Corda J., Fulton N.N., Variable-speed switched reluctance motors, IEE Proceedings B. (Electric Power Applications), vol. 127, no. 4, pp. 253–265 (1980), DOI: 10.1049/ip-b.1980.0034.
[5] Widmer J.D., Martin R., Kimiabeigi M., Electric vehicle traction motors without rare earth magnets, Sustainable Materials and Technologies, vol. 3, pp. 7–13 (2015), DOI: 10.1016/j.susmat.2015.02.001.
[6] Riba J.-R., López-Torres C., Romeral L., Garcia A., Rare-earth-free propulsion motors for electric vehicles: A technology review, Renewable and Sustainable Energy Reviews, vol. 57, pp. 367–379 (2016), DOI: 10.1016/j.rser.2015.12.121.
[7] Nakamura H., The current and future status of rare earth permanent magnets, Scripta Materialia, vol. 154, pp. 273–276 (2018), DOI: 10.1016/j.scriptamat.2017.11.010.
[8] Coey J.M.D., Magnetism and Magnetic Materials, Cambridge University Press (2010).
[9] Shokrollahi H., Janghorban K., Soft magnetic composite materials (SMCs), Journal of Materials Processing Technology, vol. 189, no. 1–3, pp. 1–12 (2007), DOI: 10.1016/j.jmatprotec.2007.02.034.
[10] Périgo E.A.,Weidenfeller B., Kollár P., Füzer J., Past, present, and future of soft magnetic composites, Applied Physics Reviews, vol. 5, no. 3 (2018), DOI: 10.1063/1.5027045.
[11] Przybylski M., Modelling and analysis of the low-power 3-phase switched reluctance motor, Archives of Electrical Engineering, vol. 68, no. 2, pp. 443–454 (2019), DOI: 10.24425/aee.2019.128279.
[12] Przybylski M., Slusarek B., Di Barba P., Mognaschi M.E.,Wiak S., Temperature and torque measurements of switched reluctance actuator with composite or laminated magnetic cores, Sensors, vol. 20, no. 3065, pp. 1–14 (2020), DOI: 10.3390/s20113065.
[13] Meeker D., Finite element method magnetics – User’s manual, ver. 4.2 (2018).
[14] Miller T.J.E., Optimal design of switched reluctance motors, IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 15–27 (2002), DOI: 10.1109/41.982244.
Go to article

Authors and Affiliations

Marek Przybylski
1
ORCID: ORCID

  1. Łukasiewicz Research Network – Tele and Radio Research Institute, Poland
Download PDF Download RIS Download Bibtex

Abstract

Switched reluctance motors (SRMs) are still under development to maximise their already proven usefulness.Amagnetic circuit of theSRMcan be made of soft magnetic composites (SMCs). The SMCs are composed of iron powder with dielectric and have a lot of advantages in comparison to commonly used electrical steel. The paper deals with the modelling and analysis of theSRMproduced by Emerson Electric Co. forwashing machines. Numerical calculations and modelling were done using the FEMM 4.2 program. Magnetic flux densities and magnetic flux lines were calculated, as well as electromagnetic torque and inductance for changing the position of a stator to a rotor. The obtained results were compared with other measurement results and are quite similar. The developed numerical model will be used for the project of a motor with an SMC magnetic circuit.

Go to article

Authors and Affiliations

Marek Przybylski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an analysis of the properties of a switched reluctance motor (SRM) 8/6 in an extended constant power range is presented. The typical constant power range to constant torque range ratio is between 2 and 3. In the case of machines designed as an electric vehicle drive, it is important to maximize this ratio. In the case of an SRM, it is possible to achieve this by applying an appropriate control strategy. An analysis of the SRM operation utilizing a modified control algorithm allows control of the maximum value of the motor phase current. As a consequence, using the so-called nonzero initial conditions for the current and flux allows the output power to be maintained in a wide speed range. For the improvement of drive system efficiency, the work of the phase current regulator should be limited to a minimum. The most advantageous work conditions we obtain with single-time current regulator work. Laboratory verification has been performed for selected states of motor work.
Go to article

Authors and Affiliations

Mariusz Korkosz
1
ORCID: ORCID
Grzegorz Podskarbi
1
Krystyna Krzywdzińska-Kornak
1

  1. Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Al. Powstanców Warszawy 12, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more