Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents a study of a hybrid structure based on the combination of a tapered optical fibre and gold nanoparticles dispersed in a liquid crystal material. Sensitivity to changes of the refractive index of the environment in which the structure is located, as well as the possibility of changing the refractive index of liquid crystals by external factors, such as temperature and electric field, were investigated. Electro- and thermally-induced changes of the refractive index of a liquid crystal through the rotation of a molecule director, which cause changes in the light propagated in a tapered optical fibre, were described. The most important issue in the article is to determine the influence of doping a liquid crystal with gold nanoparticles the concentration of which varies between 0.1 and 0.3 wt.%. The paper presents transmission measurements in a wide optical range depending on voltage, temperature, and frequency changes. Additionally, time courses of the obtained signal were measured. The study shows that the appropriate selection of nanoparticle concentration has a huge impact on the optical wave propagation. The experimental results show that the optical changes obtained for the investigated hybrid structure prefer it for use as an electro-optical switcher, filter, or sensor.
Go to article

Bibliography

  1. Taha, B. A. et al. Comprehensive review tapered optical fiber configurations for sensing application: trend and challenges. Biosensors 11, 253 (2021). https://doi.org/10.3390/bios11080253
  2. Joe, H.-E., Yun, H., Jo, S.-H., Jun, M. B. G. & Min, B.-K. A review on optical fiber sensors for environmental monitoring. Int. Pr. Eng. Man.-Gr. 5, 173–191 (2018). https://doi.org/10.1007/s40684-018-0017-6
  3. Korposh, S., James, S. W., Lee, S.-W. & Tatan, R. P. Tapered optical fibre sensors: current trends and future perspectives. Sensors 19, 2294 (2019). https://doi.org/10.3390/s19102294
  4. Adhikari R., Chauhan, D., Mola, G. T. & Dwivedi, R. P. A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications. Opto-Electron. Rev. 29, 148–166 (2021). https://doi.org/10.24425/opelre.2021.139601
  5. Elosua, C. et al. Micro and nanostructured materials for the development of optical fibre. Sensors 17, 2312 (2017). https://doi.org/10.3390/s17102312
  6. Tong, L. Micro/nanofibre optical sensors: challenges and prospects. Sensors 18, 903 (2018). https://doi.org/10.3390/s18030903
  7. Moś, J., Stasiewicz, K., Matras-Postołek, K. & Jaroszewicz, L. R. Thermo-optical switching effect based on a tapered optical fiber and higher alkanes doped with ZnS:Mn. Materials 13, 5044 (2020). https://doi.org/10.3390/ma13215044
  8. Wang, P., Zhao, H., Wang, X., Farrell, G. & Brambilla, G. A Review of multimode interference in tapered optical fibers and related appli-cations. Sensors 18, 858 (2018). https://doi.org/10.3390/s18030858
  9. Komaneca, M. et al. Structurally-modified tapered optical fiber sensors for long-term detection of liquids. Fiber Technol. 47, 187–191 (2019). https://doi.org/10.1016/j.yofte.2018.11.010
  10. Ni, K., Chan, C. C., Dong, X. & Li, L. Temperature independent accelerometer using a fiber Bragg grating incorporating a biconical taper. Fiber Technol. 19, 410–413 (2013). https://doi.org/10.1016/j.yofte.2013.05.008
  11. Wieduwilt, T., Bruckner, S. & Bartelt, H. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform waist fiber tapers. Sci. Technol. 22, 075201 (2011). https://doi.org/10.1088/0957-0233/22/7/075201
  12. Xuan, H., Jin, W. & Zhang, M. CO2 laser induced long period gratings in optical microfibers. Express 17, 21882–21890 (2009). https://doi.org/10.1364/OE.17.021882
  13. Fan, P. et al. Higher-order diffraction of long-period microfiber gratings realized by arc discharge method. Express 24, 25380–25388 (2016). https://doi.org/10.1364/OE.24.025380
  14. Tian, Z., Yam, S. S.-H. & Loock, H. P. Refractive index sensor based on an abrut taper Michelson interferometer in single mode Fiber. Lett. 33, 1105–1107 (2008). https://doi.org/10.1364/OL.33.001105
  15. Bhardwaj, V., Kishor, K. & Sharma, A. C. Tapered optical fiber geometries and sensing applications based on Mach-Zehnder Interferometer: A review. Fiber Technol. 58, 1–12 (2020). https://doi.org/10.1016/j.yofte.2020.102302
  16. Pu, S., Luo, L., Tang, J., Mao, L. & Zeng, X. Ultrasensitive refractive-index sensors based on a tapered fiber coupler with Sagnac loop. IEEE Photon. Technol. Lett. 28, 1073–1076 (2016). https://doi.org/10.1109/LPT.2016.2529181
  17. Chen, Y., Yan, S.-C., Zheng, X., Xu, F. & Lu, Y.-G. A miniature reflective micro-force sensor based on a microfiber coupler. Express 3, 24443–2450 (2014). https://doi.org/10.1364/OE.22.002443
  18. Wu, Y., Zhang, T. H., Rao, Y. J. & Gong, Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B Chem. 155, 258–263 (2011). https://doi.org/10.1016/j.snb.2010.12.030
  19. Li, X. & Ding, H. A stable evanescent field based microfiber knot resonator refractive index sensor. IEEE Photon. Technol. Lett. 26, 1625–1628 (2014). https://doi.org/10.1109/LPT.2014.2329321
  20. Lach C. N. H. C., Jamaludin, N., Rokhani, F. Z., Rashid, S. A. & Noor, A. S. M. Lard detection using a tapered optical fiber sensor integrated with gold-graphene quantum dots. Bio-Sens. Res. 26, 100306 (2019). https://doi.org/10.1016/j.sbsr.2019.100306
  21. Korec, J., Stasiewicz, K. A., Garbat, K. & Jaroszewicz, L. R. Enhancement of the SPR Effect in an optical fiber device utilizing a thin ag layer and a 3092A liquid crystal mixture. Molecules 26, 7553 (2021). https://doi.org/3390/molecules26247553
  22. Lin, H.-Y., Huang, Ch.-H., Cheng, G.-L., Chen, N.-K. & Chui, H.-Ch. Tapered optical fiber sensor based on localized surface plasmon resonance Express 20, 21693–21701 (2012). https://doi.org/10.1364/OE.20.021693
  23. Socorro, A. B., Del Villar, I., Corres, J. M., Arregui, F. J. & Matias I. R. Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sens. Actuators B Chem. 200, 53–60 (2014). https://doi.org/10.1016/j.snb.2014.04.017
  24. Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluorobutyl acrylate-coated tapered optical fibers. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612
  25. Zhu, S. et al. High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology. Sensors 16, 1295 (2016). https://doi.org/10.3390/s16081295
  26. Wang, S., Feng, M., Wu, S., Wang, Q. & Zhang, L. Highly sensitive temperature sensor based on gain competition mechanism using graphene coated microfiber. IEEE Photon. J. 10, 6802008 (2018). https://doi.org/10.1109/JPHOT.2018.2827073
  27. Zubiate, P., Zamarreño, C. R., Del Villar, I., Matias, I. R. & Arregui, F. J. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Express 22, 28154–28162 (2014). https://doi.org/10.1364/OE.22.028154
  28. Korec, J., Stasiewicz, K. A., Strzeżysz, O., Kula, P. & Jaroszewicz, L. R. Electro-steering tapered fiber-optic device with liquid crystal cladding. Sensors 2019, 1–11 (2019). https://doi.org/10.1155/2019/1617685
  29. Moś, J. et al. Research on optical properties of tapered optical fibers with liquid crystal cladding doped with gold nanoparticles. Crystals 9, 306 (2019). https://doi.org/10.3390/cryst9060306
  30. Marć, P., Stasiewicz, K., Korec, K., Jaroszewicz, L. R & Kula, P. Polarization properties of nematic liquid crystal cell with tapered optical fiber Opto-Electron. Rev. 27, 321–328 (2019). https://doi.org/10.1016/j.opelre.2019.10.001
  31. Talataisong, W., Ismaeel, R. & Brambilla, G. A review of microfiber-based temperature sensors. Sensors 18, 461 (2018). https://doi.org/10.3390/s18020461
  32. Wu, X. & Tong, L. Optical microfibers and nanofibers. Nanophotonics 2, 407–428 (2018). https://doi.org/10.1515/nanoph-2013-0033
  33. Vishnoi, G., Goel, T. & Pillai, P. K. C. Spectrophotometric studies of chemical species using tapered core multimode optical fiber. Actuators B Chem. 45, 43–48 (1997). https://doi.org/10.1016/S0925-4005(97)00268-2
  34. Zhang, L., Lou, J. & Tong, L. Micro/nanofiber optical sensors. Sens. 1, 31–42 (2011). https://doi.org/10.1007/s13320-010-0022-z
  35. Wiejata, P., Shankar, P. & Mutharasan, R. Fluorescent sensing using biconical tapers. Sens. Actuators B Chem. 96, 315–320 (2003). https://doi.org/10.1016/S0925-4005(03)00548-3
  36. Moayyed, H., Teixeira Leite, I., Coelho, L., Santos, J. & Viegas, D. Analysis of phase interrogated SPR fiber optic sensors with biometallic layers. IEEE Sens. J. 14, 3662–3668 (2014). https://doi.org/1109/JSEN.2014.2329918
  37. Zubiate, P., Zamarreño, C. R., Del Villar, I., Matias, I  R. & Arregui, F. J. High sensitive refractometers based on lossy mode resonance supported by ITO coated D-shape optical fibers. Express 23, 8045–8050 (2015). https://doi.org/10.1364/OE.23.008045
  38. Budaszewki, D. et al. Nanoparticles-enhanced photonic liquid crystal fibers. Mol. Liq. 267, 271–278 (2018). https://doi.org/10.1016/j.molliq.2017.12.080
  39. Tian, Y., Wang, W., Wu, N., Zou, X. & Wang, X. Tapered optical fiber sensor for label-free detection of biomolecules. Sensors 11, 3780–3790 (2011). https://doi.org/10.3390/s110403780
  40. Brambilla, G. et al. Optical fiber nanowires and microwires: fabrication and applications. Opt. Photonics 1, 107–161 (2009). https://doi.org/10.1364/AOP.1.000107
  41. Prakash, J., Khan, S., Chauhan, S. & Biradar, A. M. Metal oxide-nanoparticles, and liquid crystal composites: A review of recent progress. Mol. Liq. 297, 112052 (2020). https://doi.org/10.1016/j.molliq.2019.112052
  42. Khatua, S. et al. Plasmonic nanoparticles−liquid crystal composites. Phys. Chem. C 114, 7251–7257 (2010). https://doi.org/10.1021/jp907923v
  43. Podoliak, N. et al. Elastic constants, viscosity and response time in nematic liquid crystals doped with ferroelectric nanoparticles. RSC Adv. 4, 46068–46074 (2014). https://doi.org/10.1039/C4RA06248E
  44. Choudhary, A., Singh, G. & Biradar, A. M. Advances in gold nanoparticle–liquid crystal composites. Nanoscale 6, 7743–7756 (2014). https://doi.org/10.1039/C4NR01325E
  45. Przybysz, N., Marć, P., Tomaszewska, E., Grobelny, J. & Jaroszewicz,R. Mixtures of selected n-alkanes and Au nanoparticels for optical fiber threshold temperature transducers. Opto-Electron. Rev. 28, 220–228 (2021). https://doi.org/10.24425/opelre.2020.136111
  46. Budaszewski, D. et al. Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles. Express 27, 14260–14269 (2018). https://doi.org/10.1364/OE.27.014260
  47. Qi, H. & Hegmann T. Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles. ACS Appl. Mater. Interfaces 1, 1731–1738 (2009). https://doi.org/10.1021/am9002815
  48. Stamatoiu, O., Mirzaei, J., Feng, X. & Hegmann, T. Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles. in Liquid Crystals. Topics in Current Chemistry (ed. Tschierske, C.) 318, 331–393 (Springer, Verlag Berlin Heidelberg 2012). https://doi.org/10.1007/128_2011_233
  49. Dąbrowski, R. et al. Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application. Cryst. 44, 1911–1928 (2017). https://doi.org/10.1080/02678292.2017.1360952
Go to article

Authors and Affiliations

Joanna E. Moś
1
ORCID: ORCID
Karol A. Stasiewicz
1
ORCID: ORCID
Leszek R. Jaroszewicz
1
ORCID: ORCID

  1. Faculty of New Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Photonic devices often use light delivered by a single-mode telecommunication fibre. However, as the diameter of the core of the optical fibre is of 10 microns, and the transverse dimensions of the photonic waveguides are usually micrometer or less, there is an issue of incompatibility. The problem may be solved by application of tapered optical fibres. For efficient light coupling, the taper should be prepared so as to create a beam of long focal length and small spot diameter in the focus. The article describes the design, fabrication and characterization of tapered optical fibres prepared with a fibre-optic fusion splicer. We modelled the tapers with FDTD method, for estimation of the influence of the tapered length and angle on the spot diameter and the focal length of an outgoing beam. We fabricated tapers from a standard single mode fibre by the Ericsson 995 PMfi- bre-optic fusion splicer. We planned the splicing technology so as to get the needed features of the beam. We planned a multistep fusion process, with optimized fusion current and fusion time. The experimental measurements of best tapered optical fibres were carried out by the knife-edge method.

Go to article

Authors and Affiliations

A. Zakrzewski
A. Pięta
S. Patela

This page uses 'cookies'. Learn more