Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this research was to model the performances of energy and exergy on a Trombe wall system to enable an adequate thermal comfort. The main equations for the heat transfer mechanisms were developed from energy balances on subcomponents of the Trombe wall with the specification of the applicable initial and boundary conditions. During the incorporation of the PCM on the Trombe wall, the micro-encapsulation approach was adopted for better energy conservation and elimination of leakage for several cycling of the PCM. The charging and discharging of the PCM were equally accommodated and incorporated in the simulation program. The results of the study show that an enhanced energy storage could be achieved from solar radiation using PCM-augmented system to achieve thermal comfort in building envelope. In addition, the results correspond with those obtained from comparative studies of concrete-based and fired-brick augmented PCM Trombe wall systems, even though a higher insolation was used in the previous study.
Go to article

Bibliography

[1] I. Blasco Lucas, L. Hoesé, and D. Pontoriero. Experimental study of passive systems thermal performance. Renewable Energy, 19(1-2):39–45, 2000. doi: 10.1016/S0960-1481(99)00013-0.
[2] A. Mastrucci. Experimental and Numerical Study on Solar Walls for Energy Saving, Thermal Comfort and Sustainability of Residential Buildings. Ph.D. Thesis, University Politecnica delle Marche, Italy, 2013.
[3] A. Chel, J.K. Nayak, and G. Kaushik. Energy conservation in honey storage building using Trombe wall. Energy and Building, 40(9):1643–1650, 2008. doi: 10.1016/j.enbuild.2008.02.019.
[4] L. Zalewski, A. Joulin, S. Lassue, Y. Dutil, and D. Rousse. Experimental study of small-scale solar wall integrating phase change material. Solar Energy, 86(1):208–219, 2012. doi: 10.1016/j.solener.2011.09.026.
[5] C.M. Lai and C.M. Chiang. How phase change materials affect thermal performance: hollow bricks. Building Research & Information, 34(2):118–130, 2011. doi: 10.1080/09613210500493197.
[6] K. Sankaranarayanan, H.J. van der Kooi, and J. de Swaan Arons. Efficiency and Sustainability in the Energy and Chemical Industries. Scientific Principles and Case Studies. CRC Press, Boca Raton, 2010. doi: 10.1201/EBK1439814703.
[7] F. Kuznik and J. Virgone. Experimental assessment of a phase change material for wall building use. Applied Energy, 86(10):2038–2046, 2009. doi: 10.1016/j.apenergy.2009.01.004.
[8] D. Feldman, M.M. Shapiro, D. Banu, and C.J. Fuks. Fatty acids and their mixtures as phase-change materials for thermal energy storage. Solar Energy Materials, 18(3-4):201–216, 1989. doi: 10.1016/0165-1633(89)90054-3.
[9] W.I. Okonkwo and C.O. Akubuo. Trombe wall system for poultry brooding. International Journal of Poultry Science, 6(2):125–130, 2007. doi: 10.3923/ijps.2007.125.130.
[10] L. Cao, F. Tang, and G. Fang. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy and Buildings, 72:31–37, 2014. doi: 10.1016/j.enbuild.2013.12.028.
[11] F. Abbassi and L. Dehmani. Experimental and numerical study on thermal performance of an unvented Trombe wall associated with internal thermal fins. Energy and Buildings, 105:119–128, 2015. doi: 10.1016/j.enbuild.2015.07.042.
[12] M.J. Huang, P.C. Eames, and N. J. Hewitt. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building. Solar Energy Materials and Solar Cells, 90(13):1951–1960, 2006. doi: 10.1016/j.solmat.2006.02.002.
[13] S.A. Ajah, B.O. Ezurike, and H.O. Njoku. A comparative study of energy and exergy performances of a PCM-augmented cement and fired-brick Trombe wall systems. International Journal of Ambient Energy, 1–18, 2020. doi: 10.1080/01430750.2020.1718753.
[14] H.O. Njoku, B.E. Agashi, and S.O. Onyegegbu. A numerical study to predict the energy and exergy performances of a salinity gradient solar pond with thermal extraction. Solar Energy, 157:744–761, 2017. doi: 10.1016/j.solener.2017.08.079.
[15] C. Ji, Z. Qin, S. Dubey, F.H. Choo, and F. Duan. Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow. Applied Energy, 205:1–12, 2017. doi: 10.1016/j.apenergy.2017.07.101.
Go to article

Authors and Affiliations

Benjamin O. Ezurike
1
ORCID: ORCID
Stephen A. Ajah
1
ORCID: ORCID
Uchenna Nwokenkwo
1
ORCID: ORCID
Chukwunenye A. Okoronkwo
1
ORCID: ORCID

  1. Department of Mechanical/Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of optimizing the coefficient of the share of cogeneration expressed by an empirical formula dedicated to designers, which will allow to determine the optimal value of the share of cogeneration in contemporary cogeneration systems with the thermal storages feeding the district heating systems. This formula bases on the algorithm of the choice of the optimal coefficient of the share of cogeneration in district heating systems with the thermal storage, taking into account additional benefits concerning the promotion of high-efficiency cogeneration and the decrease of the cost of CO2 emission thanks to cogeneration. The approach presented in this paper may be applicable both in combined heat and power (CHP) plants with back-pressure turbines and extraction-condensing turbines.
Go to article

Authors and Affiliations

Andrzej Ziębik
Paweł Gładysz
Download PDF Download RIS Download Bibtex

Abstract

Solar photovoltaic (PV) and concentrated solar power (CSP) systems are the present worldwide trends in utilizing solar energy for electricity generation. Solar energy produced from photovoltaic cells (PV) is considered the main common technology used due to its low capital cost; however, the relatively low efficiency of PV cells has spotlighted development and research on thermal engine applications using concentrated solar power. The efficiency of concentrated solar power is greater than that of PV and considering the solar potential for Sudan. Therefore, this study has been performed in an attempt to draw attention to the utilization of CSP in Sudan since the share of CSP is insignificant in comparison with PV, besides the suitability of CSP applications to Sudan’s hot climate and the high solar energy resource, the study presents a design model of 1 MW parabolic trough collectors (PTC) using the Rankine cycle with thermal energy storage (TES) in Sudan, by adopting reference values of the Gurgaon PTC power plant in India. The design of a 1 MW Concentrated Solar thermal power plant using parabolic trough collectors (PTC) and thermal energy storage is proposed. The simulation was performed for a site receiving an annual direct normal irradiance (DNI) of 1915 kWh/m2, near Khartoum. The results showed that the plant can produce between nearly 0.6 to 1 MWh during the year, and around 0.9 MWh when it encompasses thermal energy storage with an average thermal efficiency of 24%. These results of the PTC Power plant encourage further investigation and the development of CSP technologies for electricity generation in Sudan.
Go to article

Authors and Affiliations

Abdelkareem Abdallah Abdelkareem Jebreel
1
ORCID: ORCID
Hamad Mohamed Ali Hamad
2

  1. Sapienza Università di Roma, Italy
  2. University of Khartoum, Sudan

This page uses 'cookies'. Learn more