Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Titanium dioxide (TiO2) is a popular pigment known as titania white. However, it has many other properties that support various applications.

Go to article

Authors and Affiliations

Katarzyna Siuzdak
Download PDF Download RIS Download Bibtex

Abstract

Titanium dioxide with its ability to be a UV light blocker is commonly used as a physical sunscreen in the cosmetic industry. However, the safety issues of TiO 2 application should be considered more in-depth, e.g., UV light-induced generation of reactive oxygen species which can cause DNA damage within skin cells. The proper modification of titanium dioxide to significantly limit its photocatalytic properties can contribute to the safety enhancement. The modification strategies including the process conditions and intrinsic properties of titanium dioxide were discussed. The selected examples of commercially available TiO 2 materials as potential components of cosmetic emulsions dedicated for sunscreens were compared in this study. Only rutile samples modified with Al 2O 3 and/or SiO 2 showed inhibition of photocatalytic activity.
Go to article

Authors and Affiliations

Marcin Janczarek
1
ORCID: ORCID
Waldemar Szaferski
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The reaction of ilmenite raw materials with sulfuric acid has been investigated to find out the influence of diffusion processes on the course of this reaction. Three different laboratory methods were used to initiate the reaction: mixing ilmenite with 83–85% sulfuric acid at a temperature of 80 °C, mixing ilmenite with 90% sulfuric acid at temperatures of 20–40 °C and adding water, and mixing ilmenite with water and adding 95% sulfuric acid. Changes of thermal power during the process (thermokinetics) were studied with the use of calorimetry. It was found that diffusion processes play an important role when the reaction is initiated by mixing ilmenite with water followed by the addition of sulfuric acid and are less important when the reaction is initiated by mixing ilmenite with concentrated sulfuric acid followed by the addition of water. To explain the influence of diffusion processes on the reaction, the model calculations based on mass and heat balance equations were involved. Model calculations showed that the diffusion and mass transport processes are so fast that the reaction kinetics is mainly influenced by the reaction on the surface of ilmenite particles. The adopted model of calculations showed a very good agreement with experimental results.
Go to article

Authors and Affiliations

Maciej Jabłoński
1
Krzysztof Lubkowski
1
ORCID: ORCID
Elwira Wróblewska
1
ORCID: ORCID

  1. West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, solar cells based on copper oxide and titanium dioxide were successfully manufactured using the reactive direct-current magnetron sputtering (DC-MS) technique with similar process parameters. TiO2/CuO, TiO2/Cu2O/CuO/Cu2O, and TiO2/Cu2O solar cells were manufactured via this process. Values of efficiencies, short-circuit current, short-circuit current density, open-circuit voltage, and maximum power of PV devices were investigated in the range of 0.02÷0.9%, 75÷350 µA, 75÷350 µA/cm2, 16÷550 mV, and 0.6÷27 µW, respectively. The authors compare solar cells reaching the best and the worst conversion efficiency results. Thus, only the two selected solar cells were fully characterized using I-V characteristics, scanning electron microscopy, X-ray diffraction, ellipsometry, Hall effect measurements, and quantum efficiency. The best conversion efficiency of a solar cell presented in this work is about three times higher in comparison with the authors’ previous PV devices.
Go to article

Bibliography

  1. Olczak, P., Kryzia, D., Matuszewska, D. & Kuta, M. “My Electricity” program effectiveness supporting the development of PV installation in Poland. Energies 14, 231 (2021). https://doi.org/10.3390/en14010231
  2. Cader, J., Olczak, P. & Koneczna, R. Regional dependencies of interest in the ‘My Electricity’ photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24, 97–116 (2021). https://doi.org/10.33223/epj/133473
  3. Zhang, Y. & Park, N.-G. A thin film (<200 nm) perovskite solar cell with 18% efficiency. J. Mater. Chem. A 34 17420–17428 (2020). https://doi.org/10.1039/D0TA05799A
  4. Luo, Y. et al. Electrochemically deposited Cu2O on TiO2 nanorod arrays for photovoltaic application. Electrochem. Solid-State Lett. 15, H34–H36 (2012). https://doi.org/10.1149/2.016202esl
  5. Pavan, M. et al. TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Sol. Energy Mater. Sol. Cells 132, 549–556 (2015). https://doi.org/10.1016/j.solmat.2014.10.005
  6. Rokhmat, M., Wibowo, E., Sutisna, Khairurrijal & Abdullah, M. Performance improvement of TiO2/CuO solar cell by growing copper particle using fix current electroplating method. Procedia Eng. 170, 72–77 (2017). https://doi.org/10.1016/j.proeng.2017.03.014
  7. Sawicka-Chudy, P. et al. Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater. Res. Express 6, 085918 (2019). https://doi.org/10.1088/2053-1591/ab22aa
  8. Zhu, L. Development of Metal Oxide Solar Cells through Numerical Modelling. (University of Bolton, Bolton, 2012).
  9. Hussain, S. et al. Fabrication and photovoltaic characteristics of Cu2O/TiO2 thin film heterojunction solar cell. Thin Solid Films 522, 430–434 (2012). https://doi.org/10.1016/j.tsf.2012.08.013
  10. Hussain, S. et al. Cu2O/TiO2 nanoporous thin-film heterojunctions: Fabrication and electrical characterization. Mater. Sci. Semicond. Process. 25, 181–185 (2014). https://doi.org/10.1016/j.mssp.2013.11.018
  11. Sawicka-Chudy, P. et al. Review of the development of copper oxides with titanium dioxide thin film solar cells. AIP Adv. 10, 010701 (2020). https://doi.org/10.1063/1.5125433
  12. Yang, Y., Xu, D., Wu, Q. & Peng, D. Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectro-chemical hydrogen evolution reaction. Sci. Rep. 6, 35158 (2016). https://doi.org/10.1038/srep35158
  13. Ichimura, M. & Kato, Y. Fabrication of TiO2/Cu2O heterojunction solar cells by electrophoretic deposition and electrodeposition. Mater. Sci. Semicond. Process. 16, 1538–1541 (2013). https://doi.org/10.1016/j.mssp.2013.05.004
  14. Zhang, W., Li, Y., Zhu, S. & Wang, F. Influence of argon flow rate on TiO2 photocatalyst film deposited by dc reactive magnetron sputtering. Surf. Coat. Technol. 182, 192–198 (2004). https://doi.org/10.1016/j.surfcoat.2003.08.050
  15. Sawicka-Chudy, P. et al. Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices. AIP Adv. 9, 055206 (2019). https://doi.org/10.1063/1.5093037
  16. Sawicka-Chudy, P. et al. Performance improvement of TiO2/CuO by increasing oxygen flow rates and substrate temperature using DC reactive magnetron sputtering method. Optik 206, 164297 (2020). https://doi.org/10.1016/j.ijleo.2020.164297
  17. Li, D. et al. Prototype of a scalable core–shell Cu2O/TiO2 solar cell. Chem. Phys. Lett. 501, 446–450 (2011). http://doi.org/10.1016/j.cplett.2010.11.064
  18. van der Pauw, L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958). https://doi.org/10.1142/9789814503464_0017
  19. ASTM F76-08(2016)e1, Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in, Single-Crystal Semiconductors (ASTM International, West Conshohocken, USA, 2016). https://doi.org/10.1520/F0076-08R16E01
  20. Ziaja, J. Cienkowarstwowe Struktury Metaliczne i Tlenkowe. Właści-wości, Technologia, Zastosowanie w Elektrotechnice (Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2012). [in Polish]
  21. Łowkis, B., Ziaja, J., Klaus P. & Krawczyk D. Effect of magnetron sputtering parameters on dielectric properties of PTFE foil. IEEE Trans. Dielectr. Electr. Insul. 27, 837–841 (2020). https://doi.org/10.1109/TDEI.2020.008710
  22. Gulkowski, S. & Krawczak, E. RF/DC magnetron sputtering deposition of thin layers for solar cell fabrication. Coatings 10, 1–14 (2020). https://doi.org/10.3390/coatings10080791
  23. Zhang, D. K., Liu, Y. C., Liu, Y. L. & Yang, H. The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction. Physica B 351, 178–183 (2004). https://doi.org/10.1016/j.physb.2004.06.003
  24. Scherrer, P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. in Kolloidchemie Ein Lehrbuch 387–409 (Springer Berlin, Heidelberg, 1912). https://doi.org/10.1007/978-3-662-33915-2_7
  25. Forsyth J.B, Hull S. The effect of hydrostatic pressure on the ambient temperature structure of CuO. J. Phys.: Condens. Matter 35257-5261 (1991). https://doi.org/10.1088/0953-8984/3/28/001
  26. Hanke, L., Fröhlich, D., Ivanov, A., Littlewood, P. B. & Stolz, H. LA Phonoritons in Cu2O. Phys. Rev. Lett. 83, 4365–4368 (1999). https://doi.org/10.1103/PhysRevLett.83.4365
  27. Straumanis, M.  E. & Yu, L. S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and Cu-In alpha phase. Acta Cryst. A25, 676–682 (1969). https://doi.org/10.1107/S0567739469001549
  28. Chrzanowska-Giżyńska, J. Cienkie warstwy z borków wolframu osadzane impulsem laserowym i metodą rozpylania magnetronowego –wpływ parametrów procesu na osadzone warstwy. (Instytut Podstawowych Problemów Techniki, Polska Akademia Nauk, Warszawa, 2017). [in Polish]
  29. Wong, T. K., Zhuk, S., Masudy-Panah, S. & Dalapati, G. K. Current status and future prospects of copper oxide heterojunction solar cells. Materials 9, 271 (2016). https://doi.org/10.3390/ma9040271
  30. Gao, X., Du, Y. & Meng, X. Cupric oxide film with a record hole mobility of 48.44 cm2/Vs via direct–current reactive magnetron sputtering for perovskite solar cell application. Sol. Energy 191, 205–209 (2019). https://doi.org/10.1016/j.solener.2019.08.080
  31. Hu, X. et al. Influence of oxygen pressure on the structural and electrical properties of CuO thin films prepared by pulsed laser deposition. Mater. Lett. 176, 282–284 (2016). https://doi.org/10.1016/j.matlet.2016.04.055
Go to article

Authors and Affiliations

Grzegorz Wisz
1
ORCID: ORCID
Paulina Sawicka-Chudy
1
ORCID: ORCID
Maciej Sibiński
2
ORCID: ORCID
Zbigniew Starowicz
3
ORCID: ORCID
Dariusz Płoch
1
ORCID: ORCID
Anna Góral
3
Mariusz Bester
1
ORCID: ORCID
Marian Cholewa
1
Janusz Woźny
4
ORCID: ORCID
Aleksandra Sosna-Głębska
2

  1. Institute of Physics, College of Natural Science, University of Rzeszów, 1 Pigonia St., 35-317 Rzeszów, Poland
  2. Department of Semiconductor and Optoelectronic Devices, Łódź University of Technology, 211/215 Wólczańska St., 90-924 Łódź, Poland
  3. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków, Poland
  4. Department of Semiconductor and Optoelectronic Devices, Łódź University of Technology, 211/215Wólczańska St., 90-924 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Modelling of titanium dioxide deagglomeration in the mixing tank equipped with a high shear impeller is presented in this study. A combination of computational fluid dynamics with population balance was applied for prediction of the final particle size. Two approaches are presented to solve population balance equations. In the first one, a complete population balance breakage kinetics were implemented in the CFD code to simulate size changes in every numerical cell in the computational domain. The second approach uses flow field and properties of turbulence to construct a mechanistic model of suspension flow in the system. Such approach can be considered as an attractive alternative to CFD simulations, because it allows to greatly reduce time required to obtain the results, i.e., the final particle size distribution of the product. Based on experiments shattering breakage mechanism was identified. A comparison of the mechanistic model and full CFD does not deviate from each other. Therefore the application of a much faster mechanistic model has comparable accuracy with full CFD. The model of particle deagglomeration does not predict a very fast initial drop of particle size, observed in the experiment, but it can predict, with acceptable accuracy, the final particle size of the product.
Go to article

Bibliography

Atiemo-Obeng V.A., Calabrese R.V., 2004. Rotor–stator mixing devices, In: Paul E.L., Atiemo-Obeng V.A., Kresta S.M. (Eds.), Handbook of industrial mixing. DOI: 10.1002/0471451452.ch8.

Bałdyga J., Makowski Ł., OrciuchW., Sauter C., Schuchmann H.P., 2008a. Deagglomeration processes in high-shear devices. Chem. Eng. Res. Des., 86, 1369–1381. DOI: 10.1016/j.cherd.2008.08.016.

Bałdyga J., Orciuch W., Makowski Ł., Malik K., Özcan-Taskin G., Eagles W., Padron G., 2008b. Dispersion of nanoparticle clusters in a rotor-stator mixer. Ind. Eng. Chem. Res., 47, 3652–3663. DOI: 10.1021/ie070899u.

Bałdyga J., Orciuch W., Makowski Ł., Malski-Brodzicki M., Malik K., 2007. Break up of nano-particle clusters in high-shear devices. Chem. Eng. Process. Process Intensif., 46, 851–861. DOI: 10.1016/j.cep.2007.05.016.

Boverhof D.R., Bramante C.M., Butala J.H., Clancy S.F., LafranconiW.M.,West J., Gordon S.C., 2015. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharm., 73, 137–150. DOI: 10.1016/j.yrtph.2015.06.001.

Chung C.J., Lin H.I., Tsou H.K., Shi Z.Y., He J.L., 2008. An antimicrobial TiO2 coating for reducing hospitalacquired infection. J. Biomed. Mater. Res. Part B, 85b, 220–224. DOI: 10.1002/jbm.b.30939.

Fujishima A., Rao T.N., Tryk D.A., 2000. Titanium dioxide photocatalysis. J. Photochem. Photobiol., C, 1, 1–21. DOI: 10.1016/S1389-5567(00)00002-2.

Gajovic A., Stubicar M., Ivanda M., Furi K., 2001. Raman spectroscopy of ball-milled TiO2. J. Mol. Struct., 563–564, 315–320. DOI: 10.1016/S0022-2860(00)00790-0.

Gavi E., Kubicki D., Padron G.A., Özcan-Taskın N.G., 2018. Breakup of nanoparticle clusters using Microfluidizer M110-P. Chem. Eng. Res. Des., 132, 902–912. DOI: 10.1016/j.cherd.2018.01.011.

Gázquez M.J., Bolívar J.P., Garcia-Tenorio R., Vaca F., 2014. A review of the production cycle of titanium dioxide pigment. Mater. Sci. Appl., 5, 441–458. DOI: 10.4236/msa.2014.57048.

Hansen S., Khakhar D.V., Ottino J.M., 1998. Dispersion of solids in nonhomogeneous viscous flows. Chem. Eng. Sci., 53, 1803–1817. DOI: 10.1016/S0009-2509(98)00010-4.

Hass G., 1952. Preparation, properties and optical applications of thin films of titanium dioxide. Vacuum, 2, 331–345. DOI: 10.1016/0042-207X(52)93783-4.

Kamaly S.W., Tarleton A.C., Özcan-Taskın N.G., 2017. Dispersion of clusters of nanoscale silica particles using batch rotor-stators. Adv. Powder Technol., 28, 2357–2365. DOI: 10.1016/j.apt.2017.06.017.

Krzosa R., Makowski Ł., OrciuchW., Adamek R., 2021. Population balance application in TiO2 particle deagglomeration process modeling. Energies, 14, 3523. DOI: 10.3390/en14123523.

Mandzy N., Grulke E., Druffel T., 2005. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol., 160, 121–126. DOI: 10.1016/j.powtec.2005.08.020.

Marchisio D.L., Fox R.O., 2005. Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci., 36, 43–73. DOI: 10.1016/j.jaerosci.2004.07.009.

Marchisio D.L., Vigil R.D., Fox R.O., 2003. Quadrature method of moments for aggregation-breakage processes. J. Colloid Interface Sci., 258, 322–334. DOI: 10.1016/S0021-9797(02)00054-1.

Martínez-de Jesús G., Ramírez-Munoz J., García-Cortés D., Cota L.G., 2018. Computational fluid dynamics study of flow induced by a grooved high-shear impeller in an unbaffled tank. Chem. Eng. Technol., 41, 580–589. DOI: 10.1002/ceat.201700091.

McGraw R., 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol., 27, 255–265. DOI: 10.1080/02786829708965471.

Meacock G., Taylor K.D.A., Knowles M.J., Himonides A., 1997. The improved whitening of minced cod flesh using dispersed titanium dioxide. J. Sci. Food Agric., 73, 221–225. DOI: 10.1002/(SICI)1097-0010(199702)73:2221::AID-JSFA708>3.0.CO;2-U.

Middlemas S., Fang Z.Z., Fan P., 2015. Life cycle assessment comparison of emerging and traditional Titanium dioxide manufacturing processes. J. Clean. Prod., 89, 137–147. DOI: 10.1016/j.jclepro.2014.11.019.

Mikulášek P., Wakeman R.J., Marchant J.Q., 1997. The influence of pH and temperature on the rheology and stability of aqueous titanium dioxide dispersions. Chem. Eng. J., 67, 97–102. DOI: 10.1016/S1385-8947(97)00026-0.

Özcan-Taskin N.G., Padron G., Voelkel A., 2009. Effect of particle type on the mechanisms of break up of nanoscale particle clusters. Chem. Eng. Res. Des., 87, 468–473. DOI: 10.1016/j.cherd.2008.12.012.

Özcan-Taskın N.G., Padron G.A., Kubicki D., 2016. Comparative performance of in-line rotor-stators for deagglomeration processes. Chem. Eng. Sci., 156, 186–196. DOI: 10.1016/j.ces.2016.09.023.

Randolph A.D., Larson M.A., 1962. Transient and steady state size distributions in continuous mixed suspension crystallizers. AIChE J., 8, 639–645. DOI: 10.1002/aic.690080515.

Reck E., Richards M., 1999. TiO2 manufacture and life cycle analysis. Pigm. Resin Technol., 28, 149–157. DOI: 10.1108/03699429910271297.

Rodgers T.L., Cooke M., Siperstein F.R., Kowalski A., 2009. Mixing and dissolution times for a cowles disk agitator in large-scale emulsion preparation. Ind. Eng. Chem. Res., 48, 6859–6868. DOI: 10.1021/ie900286s.

Sen S., Ram M.L., Roy S., Sarkar B.K., 1999. The structural transformation of anatase TiO2 by high-energy vibrational ball milling. J. Mater. Res., 14, 841–848. DOI: 10.1557/JMR.1999.0112.

Shamlou P.A., Titchener-Hooker N., 1993. Turbulent aggregation and breakup of particles in liquids in stirred vessels, In: Shamlou P.A. (Ed.), Processing of Solid–Liquid Suspensions. Butterworth-Heinemann Ltd. 1–25. DOI: 10.1016/b978-0-7506-1134-3.50005-3.

Tang S., Ma Y., Shiu C., 2001. Modelling the mechanical strength of fractal aggregates. Colloids Surf., A, 180, 7–16. DOI: 10.1016/S0927-7757(00)00743-3.

Unadkat H., Rielly C.D., Nagy Z.K., 2011. PIV study of the flow field generated by a sawtooth impeller. Chem. Eng. Sci., 66, 5374–5387. DOI: 10.1016/j.ces.2011.07.046.

Weir A., Westerhoff P., Fabricius L., Hristovski K., Von Goetz N., 2012. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol., 46, 2242–2250. DOI: 10.1021/es204168d.

Xie L., Rielly C.D., Eagles W., Özcan-Taskin G., 2007. Dispersion of nano-particle clusters using mixed flow and high shear impellers in stirred tanks. Chem. Eng. Res. Des., 85, 676–684. DOI: 10.1205/cherd06195.

Xie L., Rielly C.D., Özcan-Taskin G., 2008. Break-Up of nanoparticle agglomerates by hydrodynamically limited processes. J. Dispers. Sci. Technol., 29, 573–579. DOI: 10.1080/01932690701729211.

Yang H.G., Li C.Z., Gu H.C., Fang T.N., 2001. Rheological behavior of titanium dioxide suspensions. J. Colloid Interface Sci., 236, 96–103. DOI: 10.1006/jcis.2000.7373.

Yu J., Zhao X., Zhao Q.,Wang G., 2001. Preparation and characterization of super-hydrophilic porous TiO2 coating films. Mater. Chem. Phys., 68, 253–259 DOI: 10.1016/S0254-0584(00)00364-3.

Zhang J., Xu S., Li W., 2012. High shear mixers: A review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties. Chem. Eng. Process., 57–58, 25–41. DOI: 10.1016/j.cep.2012.04.004.
Go to article

Authors and Affiliations

Radosław Krzosa
1
Krzysztof Wojtas
1
Jakub Golec
1
Łukasz Makowski
1
Wojciech Orciuch
1
Radosław Adamek
2

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul.Warynskiego 1, 00-645 Warsaw, Poland
  2. ICHEMAD–Profarb, ul. Chorzowska 117, 44–100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Environmental contamination is an urgent topic to be solved for sustainable society. Among various pollutants, microorganisms are believed to be the most dangerous and difficult to be completely inactivated. In this research, a new hybrid photoreactor assisted with rotating magnetic field (RMF) has been proposed for the efficient removal of two types of bacteria, i.e., gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis. Three selfsynthesized photocatalysts were used, based on commercial titanium(IV) oxide - P25, homogenized and then modified with copper by photodeposition, as follows: 0.5Cu@HomoP25, 2.0Cu@HomoP25 and 5.0Cu@HomoP25 containg 0.5, 2.0 and 5.0 wt% of deposited copper, respectively. The response surface methodology (RSM) was employed to design the experiments and to deteremine the optimal conditions. The effects of various parameters such as copper concentration [% w/w], time [h] and frequency of RMF [Hz] were studied. Results: Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model ((R2=0.86 for E. coli and R2=0.69 for S. epidermidis). Experimental results showed that with increasing copper concentration, time and decreasing of frequency of RMF removal efficiency was increased. Accordingly, the water disinfection efficiency of 100% in terms of the independent variables was optimized, including cooper concentration c =5 % and 2.5% w/w, time t = 3 h and 1.3 h and frequency of rotating magnetic field f = 50 Hz and 26.6 for E.coli and S. epidermidis, respectively. This study showed that response surface methodology is a useful tool for optimizing the operating parameters for photocatalytic disinfection process.
Go to article

Authors and Affiliations

Oliwia Paszkiewicz
1
ORCID: ORCID
Kunlei Wang
2
ORCID: ORCID
Marian Kordas
1
ORCID: ORCID
Rafał Rakoczy
1
ORCID: ORCID
Ewa Kowalska
2 3
ORCID: ORCID
Agata Markowska-Szczupak
1
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technologyand Engineering, Department of Chemical and Process Engineering, Piastow 42, 71-065Szczecin, Poland
  2. Hokkaido University, Institute for Catalysis (ICAT), N21, W9, 001-0021 Sapporo, Japan
  3. Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cold spraying as a low-temperature coating deposition method is intended for thermally sensitive materials. Due to its precise temperature control, it limits the formation of structural defects, and can therefore be easily applied to spray corrosion protective coatings made from metal or metal-ceramic powders. However, the formation of pure ceramic coatings with the use of cold spraying is still not so common. Titanium dioxide is one of the most interesting ceramics due to its photocatalytic properties. Nevertheless, these types of coating materials usually work in a corrosion favoring humid atmosphere. In the presented paper, amorphous TiO2 powder was deposited onto aluminum alloys and steel substrates and then submitted to potentiodynamic corrosion tests in a 3.5 wt.% NaCl solution. The as-sprayed coating showed phase transition from amorphous TiO2 to anatase, and also revealed porosity. As a result, electrolytes penetrated the coating and caused undercoating corrosion in the tested environment of an aqueous NaCl solution. The analysis of the potentiodynamic curves showed that the presence of the coating decreased corrosion potential on both substrates. It arose from the mixed phases of TiO2, which consisted of photocathode – amorphous material and photoanode – crystalline anatase. The phase mixture induced the galvanic corrosion of metallic substrates in the presence of electrolytes. Moreover, pitting-like corrosion and coating delamination were detected in aluminium alloy and steel samples, respectively. Finally, the corrosion mechanism of the titanium dioxide coatings was characterized and described.
Go to article

Authors and Affiliations

M.M. Lachowicz
1
M. Winnicki
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Department of Metal Forming, Welding and Metrology, 5 Lukasiewicza S tr., 50-371 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Magnesium aluminate spinel (MgAl2O4) is an important refractory material of magnesia origin. It is formed by the reaction of magnesium and aluminum oxides. In this study, TiO2 was added to magnesite waste and alumina (Al2O3) powders in different proportions and the mixtures were sintered at different temperatures after shaping. The aim of this study was to produce spinel economically by recycling waste materials. Therefore, titanium dioxide (TiO2) added magnesium aluminate spinel was produced and the products obtained were characterized by XRD and SEM-EDS analyses. In addition, bulk density, apparent porosity and microhardness values were measured and the effects of TiO2 additive on magnesium aluminate properties were examined. The better values were determined in samples doped 4 wt.% TiO2 at the sintering temperature of 1400°C.
Go to article

Authors and Affiliations

N. Canikoğlu
1
ORCID: ORCID

  1. Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Sakarya/Turkey

This page uses 'cookies'. Learn more