Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Recycling construction and demolition waste not only reduces project costs; and saves natural resources, but also solves the environmental threat caused by construction waste disposal. In this paper, C25 waste road concrete is used as an experimental material, the uniaxial compression strength and tensile splitting strength of C25 RAC whose coarse aggregate replacement rate is 0%, 25%, 50%, 75%, and 100% are tested under the condition that the water-to-cement ratio is 0.47, 0.55 and 0.61. The results show: (1) the uniaxial compression strength and tensile splitting strength decrease with the increase of RAC; (2) for concrete with the same water-to-cement ratio, when the coarse aggregate replacement rate changes from 0% to 50%, the uniaxial compression strength and tensile splitting strength of RAC changes slightly. When the coarse aggregate replacement rate changes from 50% to 100%, the uniaxial compression strength and tensile splitting strength of RAC decreases rapidly

Go to article

Authors and Affiliations

X.H. Deng
Z.L. Lu
P. Li
T. Xu
Download PDF Download RIS Download Bibtex

Abstract

The fracture and fragmentation of concrete under static and dynamic loads are studied. The uniaxial compressive strength test is employed to study the concrete behavior under static loads while the split Hopkinson pressure bar is used to study the dynamic behavior of the concrete under static loads. The theories for acquiring the stress, strain and strain rate of the concrete in the dynamic test by Hopkinson pressure bar has been introduced. The fracture patterns of the concrete in the uniaxial compressive test have been obtained and the static concrete compressive strengths have been calculated. The fracture patterns of the concrete in the uniaxial compressive test have been obtained and the static concrete compressive strengths have been calculated. The fracture and fragmentation of the specimen under dynamic loads have been acquired and the stress-strain curves of concrete under various impact loads are obtained. The stress-strain curve indicates a typical brittle material failure process which includes existing micro-fracture closure stage, linear-elastic stage, nonlinear-elastic stage, and post-failure stages. The influence of the loading rate for the compressive strength of the concrete has compared. Compared with the concrete under static loads, the dynamic loads can produce more fractures and fragments. The concrete strength is influenced by the strain rate and the strength increases almost linearly with the increase of the strain rate.

Go to article

Authors and Affiliations

Huaming An
ORCID: ORCID
Lei Liu

This page uses 'cookies'. Learn more