Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 30
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

During the last few years, the City of Bechar in Algeria has witnessed some extreme events, such as the great flood of the year 2008 in which an exceptional amount of rain was recorded with a flow rate of 830 m3∙s–1 (hwater = 4 m, b = 200 m); similar flooding also occurred in 2012 and 2014. The problem is that most of the City of Bechar has an urban sprawl that extends to the banks of Wadi Bechar, which represents a huge risk for the lives of the inhabitants of the region. The present work aims to assess the flood risk through flood hazard mapping. This method consists in determining the flow rates for the return periods of 25 years (Q25 = 388.6 m3∙s–1, hwater = 3.5 m, b = 200 m, Sspot = 55.35 ha), 50 years (Q50 = 478.3 m3∙s–1, hwater = 5 m, b = 200 m, Sspot = 66.48 ha) and 100 years (Q100 = 567.3 m3∙s–1, hwater = 7 m, b = 200 m, Sspot = 133 ha). For this, it is necessary to adjust the flow rates using Gumbel law along with some computer supports such as HEC-RAS, HEC- -GeoRAS and ArcGis for mapping the event. Finally, this work enables us to determine the zones exposed to risk of flooding and to classify them according to the flood water height.

Go to article

Authors and Affiliations

Abdelghani Bekhira
Mohammed Habi
Boutkhil Morsli
Download PDF Download RIS Download Bibtex

Abstract

Based on chemical analyses, the quality of ground waters for drinking, agricultural and industrial purposes was deter-mined in Rafsanjan Plain-Iran. Samples for analyses were taken from 22 wells in 2012. Because of high water hardness and total dissolved solids content, water was found to be unsuitable for drinking purposes. Water quality for agriculture was determined with the use of the Wilcox method. Among the analysed water, 10.33% were attributed to C3-S1 class (high electrolytic conductivity and low sodium adsorption ratio), 59.5% to class C4-S1 (very high EC and low SAR) and 30.17% to class C4-S2 (very high EC and medium SAR). 89.67% of studied wells were unsuitable for agriculture. Because of corro-sive water properties all but two wells on Rafsanjan Plain were undesirable for use in the industry. The results of qualitative analyses were presented in GIS and in databases to support making decision and management of groundwater on Rafsanjan Plain.

Go to article

Authors and Affiliations

Mohammad Hossein Jahangir
Keyvan Soltani
Download PDF Download RIS Download Bibtex

Abstract

A strategic vision to ensure an adequate, safe and secure drinking water supply presents a challenge, particularly for such a small country as Jordan, faced with a critical supply-demand imbalance and a high risk of water quality deterioration. In order to provide sustainable and equitable long-term water management plans for the future, current and future demands, along with available adaptation options should be assessed through community engagement. An analysis of available water resources, existing demands and use per sector served to assess the nation’s historic water status. Taking into account the effect of both population growth and rainfall reduction, future per sector demands were predicted by linear temporal trend analysis. Water sector vulnerability and adaptation options were assessed by engaging thirty five stakeholders. A set of weighed-criterions were selected, adopted, modified, and then framed into comprehensive guidelines. A quantitative ratio-level approach was used to quantify the magnitude and likelihood of risks and opportunities associated with each proposed adaptation measure using the level of effectiveness and severity status. Prioritization indicated that public awareness and training programs were the most feasible and effective adaptation measures, while building new infrastructure was of low priority. Associated barriers were related to a lack of financial resources, institutional arrangements, and data collection, sharing, availability, consistency and transparency, as well as willingness to adapt. Independent community-based watershed-vulnerability analyses to address water integrity at watershed scale are recommended.

Go to article

Authors and Affiliations

Nezar Hammouri
Mohammad Al-Qinna
Mohammad Salahat
Jan Adamowski
Shiv O. Prasher
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the problem of the growing water deficit and the possibility of sustainable development of water resources in rural areas of Central and Eastern Europe (using the example of Poland). It is estimated that the amount of resources in this region is reduced by about 70% compared to the average for Europe. In drought periods it comes to limitation of economic activity, including agriculture. Particular attention was paid to the necessity to extend landscape, underground, and snow retention, as an alternative to dams, which are currently the most popular in lower-order catchments. It has been shown that the construction of small agricultural reservoirs is not always preceded by adequate consultations and pre-design studies, which may result in financial losses and legal problems. Simultaneous use of many alternative forms of retention should be more effective than the implementation of reservoirs. In addition, increasing the hydraulic roughness of the catchments slows down the outflow of products of erosion and contributes to the protection of surface retention structures (maintaining natural and economic usefulness of reservoirs).

Go to article

Authors and Affiliations

Magdalena Patro
Tomasz Zubala
Download PDF Download RIS Download Bibtex

Abstract

Views on the objectives and role of water management have remarkably changed in the last years. The need of a complex water management that would consider all water users including agriculture and natural environment is often underlined. It is pointed out that agriculture and natural environment (including commercial forests) are basic consumers of precipitation water which is not considered in water and economic balances. More and more importance is attributed to the utilisation of waters from catchment basin and to application of non-technical measures of controlling water cycles. A large impact of agro-ecosystems and natural or semi-natural (forests, wetlands) ecosystems on water balance is underlined. This different approach to the problems of water management is expressed e.g. in Water Framework Directive of European Union devoted to surface and ground water protection. The directive attributes a great role to the protection of aquatic and water related ecosystems. More and more often it is realised that the total water resources are equal to the volume of atmospheric precipitation. Water management should involve not only the water in geological aquifers or river channels but also that which is retained in soil profile. Such elements of water balance as spatial distribution, interception, infiltration and recharge of ground water reservoirs, soil retention capacity, surface runoff and evapotranspiration depend largely on land use in a catchment. Through appropriate land use and catchment management, application of rational agro-technical methods, development of small retention, wetland restoration, and hampering water outflow from draining systems one may significantly affect water cycling in a catchment.

Small water resources of Poland, increasing water consumption, climate changes and requirements of environmental protection enforce the implementation of complex methods of water management and search for environmental-friendly methods of limiting economic losses caused by water deficit or excess. Saving water used for economic purposes and agriculture would permit better fulfilment of the needs of natural environment.

Go to article

Authors and Affiliations

Waldemar Mioduszewski
Download PDF Download RIS Download Bibtex

Abstract

BacBinh is a sand dune area located in the southern part of central Vietnam. This area is confronted with a lack of water supply. The project aims to investigate the site for artificial recharge (AR) and the management of aquifer recharge (MAR) in the sand dune area. The geological setting of the area is characterised by ryo-dacitic bedrock, which forms steep isolated hills (up to 300 m a.s.l.) overlain by a Pleistocene-Holocene marine sand dunes plateau (up to 200 m a. s. l.). This is represented by prevailing white fine sand (Pleistocene) and prevailing red sand (Holocene), which occurs extensively in the coastal area. The hydrological and geological conditions are investigated by collecting all existing data of aerial and satellite photos, rainfall statistics, morphological/geological/ and hydrogeological maps for acquisition and interpretation. The field geophysical surveys are carried out for the location of groundwater aquifers to site selection, monitoring and operation of groundwater recharge. Hydrochemical and isotopic characterisation of surface water and groundwater in different periods showed that the sand dunes aquifers, with electrical conductivity ranging from 100 to 400 μS/cm, are composed of different water types, characterised by complex mixing processes. The site chosen for the artificial recharge, where 162 days of pumping tests have been carried out, proved that the use of the bank filtration technique has considerably improved the quality of water, which was originally highly contaminated by E-coli bacteria. The well field developed within the present project is now capable of supplying 220 m3/day of good water quality to the HongPhong community, BacBinh district, which were recurrently affected by severe droughts.
Go to article

Bibliography

[1] P. Bono, R. Gonfiantini, M. Alessio, C. Fiori, L. D’Amelio, Stable isotope (δ18O, δ2H) and Tritium in precipitation: Results and comparison with groundwater perched aquifers in Central Italy. TEC-DOC (IAEA) (2004).
[2] P.J. Dillon, M. Miller, H. Fallowfield, J. Hutson, The potential of riverbank filtration for drinking water supplies in relation to microsystem removal in brackish aquifers. J. Hydrol. 266 (3-4), 209-221 (2002).
[3] P.J. Dillon (Ed.), Management of Aquifer Recharge for Sustainability, A.A. Balkema Publishers, Australia, (2002).
[4] P.J. Dillon, Future Management of Aquifer Recharge, UNESCO-VIETNAM Workshop on Augmenting groundwater resources by Artificial Recharge in South East Asia, HCM city, Dec. 15-17-2004 (2005).
[5] P.J. Dillon, S. Toze, D. Page, J. Vanderzalm, E. Bekele, J. Sidhu, S. Rinck-Pfeiffer, Managed aquifer recharge: rediscovering nature as a leading edge technology. Water Sci. Technol. 62 (10), 2338-2345 (2010). DOI: https://doi.org/10.2166/wst.2010.444
[6] I . Gale, I. Neumann, R. Calow, M. Moench, The effectiveness of Artificial Recharge of Groundwater: a review. Phase 1 Final report R/02/108N, British Geological Survey, (2002).
[7] I . Gale, D.M.J. Macdonald, I. Neumann, R. Calow, Augmenting Groundwater Resources by Artificial Recharge. AGRAR, Phase 2 Inception report, British Geological Survey, (2003).
[8] N.V. Giang, M. Bano, T.D. Nam, Groundwater investigation on sand dunes area in southern part of Vietnam by Magnetic Resonance Sounding. Acta Geophysica 60 (1), 157-172 (2012). DOI: https://doi.org/10.2478/s11600-010-0040-2
[9] N.V. Giang, The role of geophysical techniques for hydrogeological and environmental study in the sand-dunes area in Vietnam. Poster presentation at the IUGG XXIV General Assembly 2-13 July, Perugia, Italy (2007).
[10] N.V. Giang, N. Hida, Study of Hydrological Characteristics and Hydrogeological Conditions for Management of Aquifer Recharge in NW Hanoi Vietnam. Proc. of International Symposium on Efficient Groundwater resources Management, Feb.16-21, Bangkok, Thailand (2009).
[11] N.V. Giang, N.B. Duan, L.C. Khiem, L.N. Thanh, N.Q. Dung, The interpretation of geophysical data for studying hydrogeological characteristics of BacBinh, BinhThuan area. Vietnam J. Earth Sci. 68B (4), 410-422, (2016), (in Vietnamese-Abstract in English).
[12] N.V. Giang, N.B. Duan, L.N. Thanh, N. Hida, Geophysical techniques to aquifer locating and monitoring for industrial zones in North Hanoi, Vietnam. Acta Geophysica 61 (6), 1573-1597 (2013). DOI: https://doi.org/10.2478/s11600-013-0147-8.
[13] N.V. Giang, L.N. Thanh, V.Q. Hiep, N. Hida, Hydrological and hydrogeological characterization of groundwater and river water in the North Hanoi industrial area, Vietnam. Environmental Earth Sciences 71 (11), 4915-4924 (2014). DOI: https://doi.org/10.1007/s12665-014.3086-z.
[14] N.V. Giang, L.B. Luu, T.D. Nam, Determination of water bearing layers on dry sand dune of the Bac Binh-Binh Thuan area by electromagnetic data. Vietnam J. Earth Sci. 30 (4), 472-480 (2008), (in Vietnamese-Abstract in English).
[15] N. Hida, N.V. Giang, Artificial recharge of groundwater in the Rokugo alluvial fan: Experiment of April and September. Proceedings of Japanese Association of Hydrological Sciences (JAHS-21) at Matsumoto, Japan, Oct. 28-29, (2006).
[16] N. Hida, N.V. Giang, M. Kagabu, Experience of Managed Aquifer Recharge Using Basin Method in the Rokugo Alluvial Fan, Northern Japan. Proc. of International Symposium on Efficient Groundwater resources Management, Feb. 16-21, Bangkok, Thailand (2009).
Go to article

Authors and Affiliations

Nguyen Van Giang
1
ORCID: ORCID

  1. BinhDuong University, Faculty of Architecture and Construction, 504 Binhduong Ave., Thu-Dau Mot city, BinhDuong province
Download PDF Download RIS Download Bibtex

Abstract

Forecasts suggest that the freshwater resources available to our civilization will shrink by 30% in the coming two decades. How can we reverse the degradation of water resources and create a balance between the society’s demand for water and the capacity of the hydrosphere?

Go to article

Authors and Affiliations

Maciej Zalewski
Edyta Kiedrzyńska
Joanna Mankiewicz-Boczek
Katarzyna Izydorczyk
Tomasz Jurczak
Paweł Jarosiewicz
Download PDF Download RIS Download Bibtex

Abstract

According to the Water Framework Directive 2000/60 EC, the river basin is the basic unit for integrated water management at the basin level. In this sense, the knowledge of the morphometric parameters of the river takes on special importance. Morphometric analysis helps in understanding the geo-hydrological characteristics of a river basin. Various authors point out that the morphometric analyses of a drainage watershed demonstrate the dynamic equilibrium that has been achieved due to the interaction between matter and energy. The analysis of morphometric parameters also facilitates and helps to understand the hydrological relations of the basin. This paper deals with the morphometric analysis of sub-basins in the Klina River basin which is located in the northeastern part of the Dukagjini depression. To determine the morphometric parameters in the Klina River basin, the digital relief model from the Advanced Land Observation Satellite (ALOS) platform with a resolution of 20 × 20 m and the ArcMap 10.5 software were used. The results reveal that the total number of streams is 753 of which 602 are 1<sup>st</sup> order streams, 119 – 2<sup>nd</sup> order, 23 – 3<sup>rd</sup> order, 6 – 4<sup>th</sup> order, 2 – 5<sup>th</sup> order, and 1 – 6<sup>th</sup> order streams. The mean bifurcation ratio is 3.81, drainage density is 1.52 km∙km<sup>–2</sup>. The data and information presented in this study will be helpful and interesting in the plan of the management of Klina River basin which covers an area of 477 km<sup>2</sup> within which is estimated to live about 100,000 inhabitants.

Go to article

Authors and Affiliations

Hazir Çadraku
1
ORCID: ORCID
Xhesika Hasa
2

  1. University for Business and Technology, Faculty of Civil Engineering and Infrastructure, Lagjja Kalabria, 10000 Prishtine, Republic of Kosovo
  2. Kosovo Energy Corporation J.S.C., Department of Geodesy, Prishtine, Republic of Kosovo
Download PDF Download RIS Download Bibtex

Abstract

The Water Framework Directive (WFD), whose basic aim was to create a legal back-ground for water bodies’ protection, undoubtedly affects all economic sectors. Being a specific and distinctly different water user, agriculture will have the greatest share in the implementation of WFD out of all sectors of national economy. This results from its special character (60% of the country area used by agriculture), large volume of water consumed by evapotranspiration, diffuse pollution etc. Implementation of WFD will call for undertaking of many activities to restrict an unfavourable im-pact of agriculture on water resources and water related ecosystems. It is assumed that agriculture should also protect water resources. Accomplishment of this task imposes significant changes in the land use of river basins. Water management can be an essential factor deciding about the sustainable development of rural areas and biological diversity of agricultural landscape. Actions undertaken so far to implement the WFD are mainly limited to the protection of water quality from agricultural pol-lution. It is also necessary to undertake implementation of other aims of WFD. This refers especially to the provision of good hydromorphological status of water bodies, protection of water related eco-systems and effective water use.

Go to article

Authors and Affiliations

Waldemar Mioduszewski
Download PDF Download RIS Download Bibtex

Abstract

Polish water resources depend on precipitations, which are variable in time and space. In dry years the water balance is negative in central parts of Poland but sudden thaws and downfalls may result in periodical water excess and dangerous floods almost in the entire country. The retention capacity of artificial reservoirs in Poland permits to store only 6% of the average annual runoff, which is commonly considered insufficient. Another method to increase retention is soil water con-trol. About fifty percent of soils in Poland consist of light and very light sandy soils with low water capacity. Loams and organogenic soils cover approximately 25% and 8.5% area of the country, re-spectively. Almost half of agricultural lands (48%) have relatively good water conditions, but the rest requires soil water control measures. An increase of the soil water content could be achieved by changes of soil properties, water table control and soil water management. Modernization and recon-struction of drainage and irrigation systems, which were built mainly in the period 1960–1980, is needed.

Go to article

Authors and Affiliations

Edward Pierzgalski
Jerzy Jeznach
Download PDF Download RIS Download Bibtex

Abstract

Irrigation in Croatia was until recently a neglected measure in food production, especially in continental part of the country. Development of drainage system in the last fifty years was more important due to the problems caused by floods and excess water in the fields. In the last decade the hydrological regime has been changed and drought events became as frequent as flood events, causing even more damage. Future development of agriculture in the northern counties of Croatia depends on the introduction of new, profitable crops which imply irrigation as an essential factor of future social and economic growth.

The first step in the implementation of irrigation was the development of National Irrigation Master

Plan as a framework for future activities.

According to the recommendations of the National Master Plan all counties have created County Irrigation Plans considering local natural conditions, social and economic background.

This paper is going to present how is that process of integrated water resources management developing in the continental part of Croatia on the example of Osijek County Irrigation Plan located in the Danube river basin.

Go to article

Authors and Affiliations

Lidija Tadić
Download PDF Download RIS Download Bibtex

Abstract

The proper management of water resources is currently an important issue, not only in Poland, but also worldwide. Water resource management involves various activities including monitoring, modelling, assessment and designing the condition and extent of waters sources. The efficient management of water resources is essential, especially in rural areas where it ensures greater stability and efficiency of production in all sectors of the economy and leads to the well-being of the ecosystem.
The performed analyses have demonstrated that the time of origin of the cadastral data defining the course of water boundaries has a significant effect on their quality. Having analysed the factors (timeliness, completeness, redundancy) used to assess the quality of cadastral data, their clear trend of changes in time was noticed. Thus, it is possible to specify the estimated degree of quality of cadastral data defining the course of watercourse boundaries only based on the information about the method, time and area of data origin in the context of the former partition sector.
This research paper presents an original method of assessing the quality of spatial data that is used to determine the course of the shoreline of natural watercourses with unregulated channels flowing through agricultural land.
The research has also demonstrated that in order to increase the efficiency of work, the smallest number of principal factors should be selected for the final analysis. Limiting the analyses to a smaller number of factors does not affect the final result, yet it definitely reduces the amount of work.
Go to article

Authors and Affiliations

Anita Kwartnik-Pruc
1
ORCID: ORCID
Aneta Mączyńska
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, al. Adama Mickiewicza 30, 30-059 Kraków
  2. Geodetic and Construction Company “Geo-bud”, 26-220 Stąporków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In Vietnam, drought has been occurring persistently and in very complicated patterns, with a great impact on the water, energy, and food security nexus and regional development sustainability. The uncertainty surrounding annual water resources in combination with the low reliability of interbasin water transfer (IBWT) operations is the key driver of water deficits in several affected regions. This study aims to assess the impacts of four big IBWT projects in the Central Highlands of Vietnam, based on a proposed matrix of five evaluation criteria to quantify related impacts and to draw out lessons learned for future development of IBWT. The proposed criteria matrix was formulated on the basis of intensive reviews of IBWT assessments worldwide and relevant Vietnamese laws in force. The impacts were analysed and quantified mainly based on assessment of their operational database and water balance simulations for donor and recipient river basins in current and future states. The results show that the studied IBWT projects did not fully satisfy the proposed criteria set, all project did not meet the criteria of benefit sharing and information transparency; noticeably the Don Duong project fulfilled only one from five. Four lessons were determined for proper planning in river basins, flexibility in system design for unknown future, inadequate environmental impact assessment and delay in enactment of policies for IBWT project management. The results provide sound knowledge to revise the existing projects in the Central Highlands and procedures for impact assessment and approval of new IBWT systems.
Go to article

Authors and Affiliations

Dang Thi Kim Nhung
1
ORCID: ORCID
Nguyen Van Manh
1
ORCID: ORCID
Nguyen Quang Kim
2

  1. Institute of Water Resources Planning, Division for Water Resources Planning for South Central and Central Highland Region, 162A Tran Quang Khai, Hoan Kiem, 100000, Hanoi, Vietnam
  2. Thuy Loi University (TLU), Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of this study is to determine the optimum water consumption for achieving water savings and obtaining good yields in cotton production, which has been expanding in Central Asia and Turkmenistan since the 1960s. In the last few decades, water resources in the region have been difficult to access, due to the expansion of agricultural activity and population growth. The oscillation of the amount of water released from dams of the Amudarya River to obtain energy for the upper countries in the winter season has been causing crises in countries of Central Asia.
An experiment was carried out in an agricultural field at a cotton research centre in the Yolöten district of Turkmenistan. The experiment led to the observation that it is possible to achieve higher efficiency and lower water consumption in cotton production. At the same time, the water savings that can be achieved as a result of using the drip irrigation method in cotton production throughout the country have been calculated. The calculations have provided the basis for recommending irrigation as a solution to the problems in question.
Go to article

Bibliography

ALIMOVA M. 2021. Agropromyshlennyy kompleks [Agro-industrial complex]. Neytral’nyy Turkmenistan. Gosudarstvennaya gazeta Turkmenistana. No. 49 (29742) 25.02.2021 p. 4.
BERDIMYRADOV D. 2014. Ýyllyk hasabat [Annual report]. Mary welaýatynyň Ýolöten şäherindäki ylmy-tohumçylyk merkezi. Yoloten pp. 6.
IBRAGIMOV N., EVETT S.R., ESANBEKOV Y., KAMILOV B.S., MIRZAEV L., LAMERS J.P. 2007. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agricultural Water Management. Vol. 90(1–2) p. 112–120. DOI 10.1016/j.agwat.2007.01.016
KULMEDOV B., SHCHERBAKOV V.I. 2014. Ispol’zovaniye kapel’nogo orosheniya sel’skokhozyaystvennykh zemel’ v basseyne reki Amudar’ya. V: Tekhnologii ochistki vody «TEKHNOVOD- 2014». Materialy VIII mezhdunarodnoy nauchno-prakticheskoy konferentsii «TEKHNOVOD» [Use of drip irrigation of agri-cultural lands in the Amu Darya river basin. In: Water purification technologies “TECHNOVOD-2014”. Materials of the VIII International Scientific and Practical Conference “TECHNOVOD”]. 23–24.10.2014 Sochi. Novocherkatstsk. Lik p. 29–33.
KURTOVEZOV G.D., TAGANOV CH.K., KURTOVEZOV B. 2019. Rekomendatsii po proyektirovaniyu sistem kapel’nogo orosheniya sel’skokho-zyaystvennykh kul’tur, vinogradnikov, sadov i lesnykh nasazhde-niy dlya usloviy Turkmenistana [Recommendations for the design of a drip irrigation system for crops, vineyards, orchards and forest plantations for the conditions of Turkmenistan]. Ashgabat pp. 242.
LIU S., LUO G., WANG H. 2020. Temporal and spatial changes in crop water use efficiency in Central Asia from 1960 to 2016. Sustainability. Vol. 12(2), 572 pp. 18. DOI 10.3390/su12020572.
NARBAYEV M., ISMAILOVA G.K., NARBAYEVA K.T. 2014. Ekologicheskiye voprosy oroshayemogo zemledeliya v Tsentral’noy Azii. Mezh-dunarodnyy forum «Inzhenernoye obrazovaniye i nauka v XXI veke: Problemy i perspektivy» posvyashchennoy [Environmental issues of irrigated land in Central Asia. International Forum “Engineering Education and Science in the XXI Century: Problems and Prospects”]. 22–24.10.2014. Almaty. Kazakhskiy natsional’nyy tekhnicheskiy universitet p. 627–633.
REDDY J.M., MUHAMMEDJANOV S., JUMABOEV K., ESHMURATOV D. 2012. Analysis of cotton water productivity in Fergana Valley of Central Asia. Agricultural Sciences. Vol. 3(6) p. 822–834. DOI 10.4236/as.2012.36100.
SHCHERBAKOV V.I., KULMEDOV B. 2017. Ratsional’noye ispol’zovaniye i okhrana vodnykh resursov basseyna reki Amudar’ya. V: Yakovlevskiye chteniya: sbornik dokladov XII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, posvyashchennoy pamyati akademika
RAN S.V. Yakovleva [Rational use and protection of water resources of the Amu Darya river basin. In: Yakovlev Readings: A collection of reports of the XII International Scientific and Technical Conference dedicated to the memory of Academician of the Russian Academy of Sciences S.V. Yakovlev]. Moscow. NIU MGTSU p. 241–247. STANCHIN I., LERMAN Z. 2017. Wheat production in Turkmenistan: Reality and expectations. In: The Eurasian wheat belt and food security: Global and regional aspects. Eds. S.G. Paloma, S. Mary, S. Langrell, P. Ciaian. Cham. Springer p. 215–228. Turkmen Stat 2020. Türkmenistanyň ýyllyk statistik neşiri 2019 [Statistical yearbook of Turkmenistan 2019]. Ashgabat. Türkme-nistanyň Statistika baradaky döwlet komiteti pp. 182.
UNDP, WHO 2009. The Energy Access Situation In Developing Countries. A Review Focusing on the Least Developed Countries and Sub-Saharan Africa [online]. New York, NY. United Nations Development Programme, World Health Organization. [Access 28.10.2019] Available at: http://www.undp.org/content/dam/ undp/library/Environment%20and%20Energy/Sustainable%20Energy/energy-access-situation-in-developing-countries.pdf
ZHUPANKHAN A., TUSSUPOVA K., BERNDTSSON R. 2017. Could changing power relationships lead to better water sharing in Central Asia? Water. Vol. 9(2), 139. DOI 10.3390/w9020139.
ZONN I.S., KOSTIANOY A.G. 2013. The Turkmen Lake Altyn Asyr and water resources in Turkmenistan. Ser. The Handbook of Environmental Chemistry. Vol. 28. Berlin, Heidelberg Springer. ISBN 978-3-642-38607-7 pp. XII+123.
Go to article

Authors and Affiliations

Begmyrat Kulmedov
1
ORCID: ORCID
Vladimir I. Shcherbakov
2
ORCID: ORCID

  1. Nile University of Nigeria, Department of Civil Engineering, Plot 681, Cadastral Zone C-OO, Research & Institution Area, Jabi Airport Bypass, Abuja FCT, 900001, Nigeria
  2. Voronezh State Technical University, Department of Hydraulics, Water Supply and Water Disposal, Voronezh, Russia
Download PDF Download RIS Download Bibtex

Abstract

The study covered water resources of two mountain streams in the Polish Carpathians. These were the Biała Woda and Czarna Woda streams, the catchments of which are adjacent to each other. Water flows in both streams were measured during the hydrological years from 2006 to 2020. Next, water outflows from the catchments were calculated. The study aimed to determine differences in the water resources of those catchments in a very small mountainous area. The study showed quantitative similarity in water resources in the entire multi-annual period but at the same time large differences in shorter periods. Instantaneous and daily outflows showed the largest differences, but differences in annual outflows of up to 20% were also recorded. Therefore, hydrological data from operational cross-sections to assess water resources of neighbouring uncontrolled watercourses should cover multi-annual mean values. It was found that during periods of increased runoff (from melting snow or precipitation), the outflow from the Biała Woda catchment was much larger, while during rain-free periods, the outflow from the Czarna Woda catchment prevailed. All short- term flood like outflows were at least several tens of per cent higher in the Biała Woda catchment. The higher retention capacity of the Czarna Woda catchment can be attributed to the land use (mainly forest areas). The results can be used for modelling catchments of similar parameters and determining their retention capacity.
Go to article

Authors and Affiliations

Agnieszka W. Kowalczyk
1
ORCID: ORCID
Andrzej Jaguś
2

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  2. University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, Poland
Download PDF Download RIS Download Bibtex

Abstract

The exceptionally high spatial-temporal variability of the river runoff and the significance of its transboundary component considerably worsen the problem of the water supply of the republic. Due to the disadvantageous geographical location in the lower reaches of transboundary river basins, the Republic of Kazakhstan is largely dependent on water economy activities taking place in neighbouring countries. In the article the modern change of the resources of river runoff in Kazakhstan, taking into account climatic and anthropogenic influences is considered. For the assessment of the impact of economic activities on the river runoff and changes in climatic-related runoff, the complex of integral methods was used, and appropriate methodologies were developed. The obtained results of the modern influence of a complex of factors, as well as their significance for the future (till 2030), can be used for the development of scientifically based solutions for sustainable management and protection of water resources. An assessment of the anthropogenic activity of this study shows that the water resources of the river runoff of the Republic of Kazakhstan have decreased by 16.0 km 3∙y –1. According to our forecasts, there will be a further decrease in the water resources of the republic due to the expected decrease in transboundary flow to 87.1 km 3∙y –1 by 2030, in dry years less than 50.0 km 3∙y –1. We propose a set of measures to prevent the negative impact of possible reduction of river runoff resources in the future in the water basins of Kazakhstan.
Go to article

Authors and Affiliations

Aisulu Tursunova
1
ORCID: ORCID
Akhmetkal Medeu
1
ORCID: ORCID
Sayat Alimkulov
1
ORCID: ORCID
Assel Saparova
2
ORCID: ORCID
Gaukhar Baspakova
1 3
ORCID: ORCID

  1. Institute of Geography and Water Security of the Ministry of Education of the Republic of Kazakhstan, Kabanbai batyr/Pushkin St, 67/99, Almaty, 050010, Republic of Kazakhstan
  2. Satbayev University, Satpaev St, 22a, Almaty, 050013, Republic of Kazakhstan
  3. Kazakh National Agrarian Research University, Faculty of Water, Land and Forest Resources, Abai Ave, 8, Almaty, 050010, Republic of Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the design and construction of the Włocławek water barrage operating on Vistula River for more than 50 years. The construction of the barrage and the damming up of the Vistula River caused changes in the hydraulic and thermal regime of a fifty-kilometre long stretch of the Vistula River, resulting in some ecological changes as well. Some ecologists consider these changes as eminently unfavourable and call for the dismantling of the barrage, but not all experts are of the same opinion as the construction may be regarded as a important technical, economic and social achievement, primarily because of the electricity produced, which is renewable and ecologically clean.
Go to article

Authors and Affiliations

Wojciech Majewski
1

  1. Instytut Budownictwa Wodnego PAN w Gdańsku
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the paper is to analyze the spatial variability of precipitation in Poland in the years 1981–2010. The av-erage annual rainfall was 607 mm. Precipitation in Poland is characterized by high spatial and temporal variability. The lowest annual precipitation was recorded in the central part of the country, where they equaled 500 mm. The highest annual precipitation totals were determined in the south, equaling 970 mm. The average precipitation in the summer half-year is 382 mm (63% of the annual total). On the basis of data from 53 climate stations, maps were made of the spatial distribution of precipitation for the period of the year and winter and summer half-year. The kriging method was used to map rainfall distribution in Poland. In the case study, cross-validation was used to compare the prediction performances of three periods. Kriging, with exponential type of semivariogram, gave the best performance in the statistical sense. Their application is justices especially in areas where landform is very complex. In accordance with the assumptions, the mean prediction error (ME), mean standardized prediction error (MSE), and root mean-square standardized prediction error (RMSSE) values are approximately zero, and root-mean-square prediction error (RMSE) and average standard error (ASE) reach values well below 100.

Go to article

Authors and Affiliations

Antoni Grzywna
ORCID: ORCID
Andrzej Bochniak
Agnieszka Ziernicka-Wojtaszek
ORCID: ORCID
Joanna Krużel
Krzysztof Jóźwiakowski
Andrzej Wałęga
Agnieszka Cupak
ORCID: ORCID
Agnieszka Mazur
Radomir Obroślak
Artur Serafin
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This research addresses the growing complexity and urgency of climate change’s impact on water resources in arid regions. It combines advanced climate modelling, machine learning, and hydrological modelling to gain profound insights into temperature variations and precipitation patterns and their impacts on the runoff. Notably, it predicts a continuous rise in both maximum and minimum air temperatures until 2050, with minimum temperatures increasing more rapidly. It highlights a concerning trend of decreasing basin precipitation. Sophisticated hydrological models factor in land use, vegetation, and groundwater, offering nuanced insights into water availability, which signifies a detailed and comprehensive understanding of factors impacting water availability. This includes considerations of spatial variability, temporal dynamics, land use effects, vegetation dynamics, groundwater interactions, and the influence of climate change. The research integrates data from advanced climate models, machine learning, and real-time observations, and refers to continuously updated data from various sources, including weather stations, satellites, ground-based sensors, climate monitoring networks, and stream gauges, for accurate basin discharge simulations (Nash–Sutcliffe efficiency – NSE RCP2.6 = 0.99, root mean square error – RMSE RCP2.6 = 1.1, and coefficient of determination R 2 RCP2:6= 0.95 of representative concentration pathways 2.6 (RCP)). By uniting these approaches, the study offers valuable insights for policymakers, water resource managers, and local communities to adapt to and manage water resources in arid regions.
Go to article

Authors and Affiliations

Barno S. Abdullaeva
1
ORCID: ORCID

  1. Tashkent State Pedagogical University, Vice-Rector for Scientific Affairs, 27 Bunyodkor Ave, 100070, Tashkent, Uzbekistan
Download PDF Download RIS Download Bibtex

Abstract

Rainfall in the Lake Tana basin is highly seasonal and the base flow contribution is also low resulting in the need for reservoirs to meet the agricultural demand during the dry season. Water demand competition is increasing because of in-tense agricultural production. The objective of this study is to develop water balance models. The Mike Basin model has been selected for water allocation modelling and identifying potential changes needed to the existing water allocation scheme to reduce the stress due to increased water demand. The study considers baseline and future development scenarios. The construction of new dams results in two competing effects with respect to evaporation loss. The first effect is increased evaporation from new reservoirs, while the other is reduced evaporation from the Lake Tana as a result of a decreased sur-face area of the lake and reduced inflow of water to the lake. Once a dam is built, there will be an additional free water sur-face area and more evaporation loss. In dry months from January to May, the irrigation water demand deficit is up to 16 Mm3. It is caused by reservoirs built in the basin, which reduce the inflow to the Lake Tana. The inflow varies between wet and dry months, and there is more water flow in wet months (July, August and September) and reduced flow in dry months because of the regulatory effects produced by the reservoirs.
Go to article

Bibliography

ADSWE, LUPESP 2015. Hydrology and water resource assessment in Tana sub basin [online]. Vol. 3. Bahir Dar, Ethiopia. Amhara National Regional State, BoEFPLAU. [Access 23.11.2015]. Available at: https://mahiderzewdie.files.wordpress.com/2015/08/livestock-final-draft.pdf
ASCE 1993. Criteria for evaluation of watershed models. American Society of Civil Engineering. Journal of Irrigation and Drainage Engineering. Vol. 119(3) p. 429–442. DOI 10.1061/(ASCE)0733-9437(1993)119:3(429).
EL-RAEY M., EL-QUOSY D.H., EL-SHAER M., EL-KHOLY O.A., SOLIMAN A. 1995. Egypt: Inventory and mitigation options, and vulnerability and adaptation assessment. CSP Interim Report – Egypt, U.S. Country Studies Program.
HASHIMOTO T., STENDINGER J.R., LOUCKS D.P. 1982. Reliability, resiliency, and vulnerability criteria for water resources system performance evaluation. Water Resources Research. Vol. 18. No. 1 p. 14–20.
JHA M.K., GUPTA A.D. 2003. Application of Mike Basin for water management strategies in a watershed. Water International. Vol. 28. No. 1 p. 27–35. DOI 10.1080/02508060308691662.
KEBEDE S., TRAVI Y., ALEMAYEHU T., MARC V. 2006. Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. Journal of Hydrology. Vol. 316 p. 233–247.
LEGATES D.R., MCCABE G.J. Jr. 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Resources. Vol. 35(1) p. 233–241. DOI 10.1029/1998WR900018.
MACDONALD M. 2004. Koga irrigation project interim report. Addis Ababa, Ethiopia. Ministry of Water Resource.
MORIASI D.N., ARNOD J.G., VAN LIEW M.W., BINGNER R.L., HARME R.D., VEITH T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50(3) p. 885−900.
MoWR 2009. Growth corridor for Tana and Beles Sub-Basin: Endowment, potential and constraints. Vol. I. Main Text. Addis Ababa. Ministry of Water Resource.
NASH J.E., SUTCLIFFE J.V. 1970. River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology. Vol. 10(3) p. 282–290.
PASTOR A.V., LUDWIG F., BIEMANS H., HOFF H, KABAT P. 2014. Accounting for environmental flow requirements in global water assessments. Hydrology and Earth System Sciences. Vol. 18 p. 5041–5059. DOI 10.5194/hess-18-5041-2014.
SETEGN S.G., SRINVASAN R., DARGAHI B. 2008. Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. The Open Hydrology Journal. Vol. 2 p. 49–62.
SMEC 2008. Hydrological study of the Tana-Beles Sub-Basin main Report. Addis Ababa, Ethiopia. Ministry of Water Resources. Melbourne, Australia. SMEC (Snowy Mountains Engineering Corporation) pp. 110.
Studio Pietrangli 1990. Tana Beles project. Part 2. Chara Chara Weir General Report. Addis Ababa, Ethiopia.
WALE A. 2008. Hydrological Balance of Lake Tana, Upper Blue Nile basin, Ethiopia [online]. MSc thesis. Enschede. ITC, Netherlands. [Access 23.11.2015]. Available at: https://webapps.itc.utwente.nl/librarywww/papers_2008/msc/wrem/wale.pdf
WALKER G.R., ZHANG L. 2001. Plot-scale models and their application to recharge studies. In: Studies in catchment hydrology: The basics of recharge and discharge. Eds. L. Zhang, G.R. Walker. Melbourne. CSIRO Publishing. DOI 10.1071/ 9780643105423.
YOHANNES D. 2007. Remote sensing based assessment of water resource potential for Lake Tana [online]. MSc Thesis. Addis Ababa University Civil Engineering. [Access 23.11.2015]. Available at: http://etd.aau.edu.et/handle/123456789/2719

Go to article

Authors and Affiliations

Asegdew G. Mulat
1

  1. Bahir Dar University, Bahir Dar Institute of Technology, Faculty of Civil and Water Resource Engineering, P.O. Box. 26, Bahir Dar, Ethiopia

This page uses 'cookies'. Learn more