Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 285
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The seawater desalination process is emerging as a substantial source of fresh water by removing salt and minerals from an infinite supply of seawater effectively. The first stage in a desalination plant is the use of chlorine gas to sterilize the microorganisms in the water. During excess chlorine leakage, an alert is activated, employees are relocated away from the site for a specific period, and dampers will be manually opened. This will cause unsafe working conditions and a waste of time. To overcome this problem, this paper proposes a coefficient diagram method based proportional integral derivative (CDM-PID) control strategy for the tune the control parameter with the distributed control system (DCS) interfaced conical tank. During operation, a 10% NaOH solution is injected into the top of the scrubber column using an ethylene-ter-polymer (ETA) designed distributor to ensure that the solution is evenly distributed across the packing surface. The three control strategies are compared to tune the control parameter with the DCS interfaced conical tank. Instead of the sodium hydroxide tank in the chlorine scrubber system, this work presents the pilot plant of DCS interfaced with two conical tank interacting systems with different liquid level heights. Here, the proposed CDM-PID controller is compared with the standard Ziegler-Nichols (ZN)-ultimate cycling method, and the internal model control (IMC) method. The results demonstrated that the proposed CDM-PID approach is superior to existing approaches in terms of low oscillation, settling period, and high robustness.
Go to article

Authors and Affiliations

T. Maris Murugan
1
ORCID: ORCID
T.R. Kiruba Shankar
2

  1. Erode Sengunthar Engineering College, Department of Electronics and Instrumentation Engineering, Perundurai, Erode, Tamil Nadu, 638 057, India
  2. KPR Institute of Engineering and Technology, Department of Electronics and Communication Engineering, Coimbatore, Tamil Nadu, 641 407, India
Download PDF Download RIS Download Bibtex

Abstract

A steady global decline in the grade of chromite ores is causing an increase in the mining of low grade and complex ores. The processing of such low grade and finely disseminated ores results in the increased production of primary and secondary slimes. Slimes have very poor recovery performance in most conventional technology and are usually disposed of into tailings storage facilities (TSF). The historic slimes in the TSFs and those arising from most chrome production processes constitute potential recoverable chrome resources. In this study, the selective flocculation of slimes from a chrome processing plant in the north west province of South Africa was conducted using raw corn starch and sodium oleate as flocculants and sodium silicate a dispersant was applied on. Limited work has been reported on the flocculation of non-synthetic chrome slimes. The results showed that a slime sample with a chrome (Cr2O3) head grade of 22.92% was upgraded to a maximum concentrate grade of 42.55% at a sodium oleate dosage of 88 g/tonslurry, a sodium silicate dosage of 44 g/tonslurry, 39.61% at a starch dosage of 106 g/tonslurry and sodium silicate dosage of 62 g/tonslurry. The corresponding recoveries using sodium oleate as a flocculent were between 80–89% and 73–79% for starch. Sodium oleate showed a better performance than starch in terms of both grade and recovery. Decantation washing tests showed that the chrome (Cr2O3) grade of the concentrate can be further increased to above 44%. These results are very encouraging as they indicate that selective flocculation can achieve satisfactory upgrade ratios and recovery when processing chrome ultrafine or slime material.
Go to article

Authors and Affiliations

Vusumuzi Sibanda
1
Lehana Makara
1
Lerato Sebose
1
Thulaganyo Setimo
1
Tirivaviri Auguatine Mamvura
2
ORCID: ORCID
Gwiranai Danha
2

  1. University of the Witwatersrand; South Africa
  2. Botswana International University of Science and Technology; Botswana
Download PDF Download RIS Download Bibtex

Abstract

Based on the theory of computer vision, a new method for extracting ore from underground mines is proposed. This is based on a combination of RGB images collected by a color industrial camera and a point cloud generated by a 3D ToF camera. Firstly, the mean-shift algorithm combined with the embedded confidence edge detection algorithm is used to segment the RGB ore image into different regions. Secondly, the effective ore regions are classified into large pieces of ore and ore piles consisting of a number of small pieces of ore. The method applied in the classification process is to embed the confidence into the edge detection algorithm which calculates edge distribution around ore regions. Finally, the RGB camera and the 3D ToF camera are calibrated and the camera matrix transformation of the two cameras is obtained. Point cloud fragments are then extracted according to the cross-calibration result. The geometric properties of the ore point cloud are then analysed in the subsequent procedure.
Go to article

Authors and Affiliations

Feng Jin
1
ORCID: ORCID
Kai Zhan
2
Shengjie Chen
2
Shuwei Huang
2
ORCID: ORCID
Yuansheng Zhang
2

  1. BGRIMM Technology Group University of Science and Technology Beijing, China
  2. BGRIMM Technology Group, China
Download PDF Download RIS Download Bibtex

Abstract

The ecological environment is significantly vulnerable to coal-mining activities in western China due to the cold and arid climate. The evaluation of land reclamation is therefore a key process that has to be known for the sustainable use of coal resources. A Bayes discriminant analysis method to evaluate the suitability level of land reclamation for coal mine lands in cold and arid regions of western China is presented. Ten factors influencing the suitability of land reclamation were selected as discriminant indexes in the suitability analysis. The data of eighty-four land reclamation units from sixteen coal-mining areas was used as training samples to develop a discriminant analysis model to evaluate the suitability level of land reclamation. The results show that the discriminant analysis model has high precision and the misdiscriminant ratio is 0.02 in the resubstitution process.The suitability levels of land reclamation for eleven sites in two coal mine lands were evaluated by using the model and the evaluation results are identical with that of the practical situation. Our method and findings are significant for decision makers in similar regions who want to prepare for possible strategies for land reclamation in the future.
Go to article

Authors and Affiliations

Ruihua Hao
1
ORCID: ORCID
Zizhao Zhang
1 2
Xiaoli Guo
3
Xuebang Huang
1
Zezhou Guo
1
Tianchao Liu
4

  1. School of Geological and Mining Engineering, Xinjiang University, Urumqi, Xinjiang, China
  2. State Key Laboratory for Geomechanics and Deep Underground Engineering, Xinjiang University, Urumqi, Xinjiang, China
  3. Xinjiang Intelligent Check for Security Environmental Protection Technology Co., Ltd, Urumqi, Xinjiang, China
  4. The First Regional Geological Survey Brigade, Xinjiang Bureau of Geo-Exploration & Mineral Development, 466 North Tianjin road, Urumqi, Xinjiang, China
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the effects of modifications to clay-siliceous raw material from Dylągówka (Dynów foothills, SE Poland), which alter the rheological properties of its water suspensions. The investigations were carried out on three samples collected from various depths of the deposit as they considerably differ in their contents of smectite and other minerals. The samples were either modified with soda or activated with sulphuric (VI) acid and used to prepare their water suspensions with various contents of solids. The suspensions were subject to determinations of viscosity and flow curves. Dependencies of three variables of the suspensions (rheological properties, mineral composition of the solid phase, and the modifications introduced) were assessed on the basis of: the contents of the solid phase in the suspensions required to obtain a viscosity of 1000 mPas; hypothetical, calculated thixotropic energy. These show that the amount of solids in the water suspension required to obtain the required viscosity is considerably lower in samples with higher contents of smectite and in those activated with sodium. In turn, the acid activation that partially alters smectite towards a protonated silica gel decreases the viscosity and thixotropy of the suspensions, which was confirmed in the studies of mid-infrared spectroscopy. The conducted studies provide important information needed in designing the mineral composition of drilling fluids and others applications.
Go to article

Authors and Affiliations

Wojciech Panna
1
ORCID: ORCID
Joanna Mastalska
2
ORCID: ORCID
Sebastian Prewendowski
1
ORCID: ORCID
Łukasz Wójcik
2
ORCID: ORCID

  1. University of Applied Sciences in Tarnów, Poland
  2. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an experimental study on the leaching of heavy metals, toxic chemicals and persistent organic pollutants (POPs) – PAH, PCB and HCB – from soil dredged from the coastal area of Västernorrland in northern Sweden. The soil was stabilized with cement/slag. Samples were subjected to modified surface leaching and shake tests using technical standards of the Swedish Geotechnical Institute (SGI). The experiments were performed using different blends of binding agents (30/70, 50/50, 70/30) and binder quantities (120 and 150 kg/m3) to analyze their effects on leaching. Soil properties, tools, and workflow are described. Binders included Portland cement and ground granulated blast furnace slag (GGBFS). Samples were tested to evaluate the min/max contents of pollutants (μg/l) for heavy metals (As, Ba, Pb, Cd, Co, Cu, Cr, Hg, Mn, Mo, Ni, S, V, Zn) and the hydrocarbon fraction index in the excess water. The leaching of heavy metals and POPs was assessed in sediments after the addition of the binder. The comparison was made against the two mixes (cement/slag in 30/70% and high/low binder with low/high water ratio). The results showed that 70% slag decreases the leaching of heavy metals and POPs. The equilibrium concentrations of DOC and heavy metals at L/S 10 (μg/l) were measured during the shake experiments to compare their levels in the groundwater that was used as a leachate. The leached content was assessed at L/S 10 in the upscaling experiments using four samples for PAH, PCB and various fractions of hydrocarbons: C10–C40, C10–C12, C12–C16 and C35–C40. The shake test showed a decrease in the leaching of heavy metals and POP substances from the soil subjected to stabilization by a higher amount of slag added as a binder. A binder blend with 30% cement and 70% of GGBFS showed the best performance.
Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Swedish Transport Administration, Malmö, Sweden
  2. Lund University, Lund, Sweden
  3. Université Libre de Bruxelles, Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

Skilful preservation of the cultural landscape on the basis of post-industrial facilities, including post-mining facilities and geoheritage objects, may contribute to a positive change in the functionality of abandoned or degraded sites. The article presents selected geological, geomorphological and anthropogenic objects in the vicinity of Mikołów (central part of the US CB, southern Poland). Their evaluation in the context of being the part of unique cultural landscape created by historical mining activities was carried out. The detailed geotourist valorisation of 4 selected geoheritage and mining heritage objects/sites was carried out in the scope of their current state, potential and the level of preparation for possible fulfilling the educational functions. The research outputs and valorization results presented in the article allowed to draw conclusions and formulate recommendations for the development of the analyzed geotourist objects and sites in terms of the implementation of the didactic process, characterised by specific requirements. A s a result of the performed valorization of the analyzed objects, from the point of view of the recipient (academic teacher), the best result was obtained by the Triassic limestone quarry in Mikołów Mokre, and the lowest moraine ridge in the Promna Valley. The obtained results also showed high visual and cognitive values of the objects, especially in terms of geodiversity, the dominant element and cultural connections, where the Mikołów quarry also showed the highest value. Low ratings of the utility and investment values of these objects result mainly from the state of preservation, the lack of tourist infrastructure and the lack of their promotion as an important part of the industrial and cultural heritage of the region.
Go to article

Bibliography


Buszman, B. and Buszman, J. 2006. Mikołów poviat: a sightseeing guide (Powiat mikołowski: przewodnik krajoznawczy). Eco Consensus Agencja Analiz i Strategii Systemowych (in Polish).
Cabała et al. 2004 – Cabała, J., Ćmiel, S . and I dziak, A . 2004. The management of former mining areas in the north-eastern part of the Upper Silesian Coal Basin (Poland). [In:] Mine Planning and Equipment Selection. Balkema Publ. pp. 749–754.
Doktor et al. 2015 – Doktor, M., Miśkiewicz, K ., Welc, E.M. and Mayer, W. 2015. Criteria of geotourism valorization specified for various recipients. Geotourism 3–4(42–43), pp. 25–38, DOI : 10.7494/geotour.2015.42-43.25.
Duda et al. 1998 – Duda, J., S zendera, W., Włoch, W. and Gądek, B . 1998. Landscape and natural values of the area of the Silesian Botanical Garden (Walory krajobrazowe i przyrodnicze terenu Śląskiego Ogrodu Botanicznego). Biuletyn Ogrodów Botanicznych, Muzeów i Zbiorów 7, pp. 61–65 (in Polish).
Dulias, R. and Hibszer, A . 2004. Śląskie Voivodeship: nature, economy, cultural heritage (Województwo Śląskie: przyroda, gospodarka, dziedzictwo kulturowe). K rzeszowice: „Kubajak” (in Polish).
Dulias, R. 2016. The Impact of Mining on the Landscape: A Study of the Upper Silesian Coal Basin. Springer, Switzerland.
Gabzdyl, W. and Gorol, M. 2008. Geologia i bogactwa mineralne Górnego Śląska i obszarów przyległych. Gliwice: Silesian University of Technology.
Gawor, Ł. 2004. Chosen problems of mining sozology in Ruhr Basin and Upper Silesian Coal Basin exemplified on mining waste dumps – comparison study (Wybrane zagadnienia sozologii górniczej w Zagłębiu Ruhry i Górnośląskim Zagłębiu Węglowym (GZW) na przykładzie zwałowisk pogórniczych – studium porównawcze). Zeszyty Naukowe Politechniki Śląskiej, Górnictwo 260, pp. 97–108 (in Polish).
Grzesiak, D. and Trzepierczyński, J. 2015. Landscape of the silesian botanical garden in the city Mikołów (Budowa geologiczna w architekturze krajobrazu śląskiego ogrodu botanicznego w Mikołowie). Zeszyty Naukowe Wyższej Szkoły Technicznej w Katowicach 7, pp. 47–62 (in Polish).
Hibszer, A . 2021. Lime kilns as an element of the post-industrial cultural landscape of the Silesian Upland, Poland. Environmental & Socio-economic Studies 9(3), pp. 70–77, DOI : 10.2478/environ-2021-0018.
Kobylańska, M. and Gawor, Ł. 2017. A spects of S patial Transformations in the Processes of Revitalization of Brownfields (Problematyka przeobrażeń przestrzennych w procesach rewitalizacji terenów poprzemysłowych). Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego 31(1), pp. 68–80, DOI : 10.24917/20801653.311.5 (in Polish).
Kojs et al. 2009 – Kojs, P., Ogrodnik, B ., Krzyżowski, M. and Jańczak, M. 2009. Zielona Arka Śląska, Śląski Ogród Botaniczny. Mikołów: Związek Stowarzyszeń (in Polish).
Kondracki, J. 1998. Regional geography of Poland (Geografia regionalna Polski). Warszawa: Wydawnictwo Naukowe PWN (in Polish).
Migoń, P. 2012. Geotourism (Geoturystyka). Warszawa: Wydawnictwo Naukowe PWN (in Polish). [Online] www.codgik.gov.pl [Accessed: 2022-01-01].
Probierz et al. 2012 – Probierz, K ., Marcisz, M. and Sobolewski, A . 2012. From peat to coking coals of the Zofiówka monocline in the Jastrzębie area (south-western part of the Upper Silesian Coal Basin) (Od torfu do węgli koksowych monokliny Zofiówki w obszarze Jastrzębia (południowo-zachodnia część Górnośląskiego Zagłębia Węglowego)). Zabrze: Wydawnictwo Instytutu Chemicznej Przeróbki Węgla (in Polish).
Sikorska-Maykowska, M. 2001. Valorization of the natural environment and identification of its threats in the Silesian Voivodeship (Waloryzacja środowiska przyrodniczego i identyfikacja jego zagrożeń na terenie województwa śląskiego). Warszawa: PIG i UMWŚ (in Polish).
Słomka, T. and Mayer, W. 2010. Chapter 11. Geotourism and geotourist education in Poland. [In:] Newsome, D. and Dowling, R.K. (ed). Oxford: Goodfellow Publishers Ltd, pp. 142–157.
Szczepańska, J. and Twardowska, I . 1999. Distribution and environmental impact of coal mining wastes in Upper Silesia, Poland. Environmental Geology 38, pp. 249–258.
Go to article

Authors and Affiliations

Marek Marcisz
1
ORCID: ORCID
Łukasz Gawor
1
ORCID: ORCID
Malwina Kobylańska
2

  1. Silesian University of Technology, Gliwice, Poland
  2. Cuprum Ltd. Research & Development Centre, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate foundry waste used for various applications in terms of heavy metals quantity of fractions of their binding. The novelty of these studies is the use of speciation procedures to assess the fraction of heavy metals in foundry waste. The two most popular speciation procedures, the Tessier method and the SM&T, and also the TCLP single extraction procedure were used to evaluate the use of foundry waste in agritechnique, road engineering and construction in this research. Additionally, local soils were analyzed and compared to landfill foundry waste (LFW). It was found that LFW may have a negative impact on the natural environment when used for agrotechnological applications due to the increased concentration of mobile and bioavailable fractions (mean 9–18%) of metals. Foundry dusts were characterized by a low percentage of mobile and bioavailable (mean 2–6%) forms, although this does not include electric arc fournance dust (EAFD) (mean 17%). The metal content in TCLP extracts was low in all foundry waste samples and allowed the use of the analyzed wastes in construction and road construction. The usefulness of both speciation procedures for the assessment of the leaching of heavy metal forms from foundry waste was confirmed. However, the SM&T procedure was more effective in leaching mobile and bioavailable forms of heavy metals in foundry waste and soil samples.
Go to article

Authors and Affiliations

Marta Bożym
1
ORCID: ORCID

  1. Opole University of Technology, Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

The subject of this article is the problem of payment gridlocks and their significance for the enterprise sector and the risks they cause. The authors’ attention is focused here on presenting the essence of payment gridlocks, their consequences, as well as the causes on the sides of both the debtor and the creditor. In the empirical part of the article, the authors focused on assessing the problem of payment backlogs in selected mining and energy-production companies in Poland. A study on selected companies from this industry was conducted, the purpose of which was to show the scale of delayed payments with the particular identification of those that are payment backlogs (i.e. a delay of at least 60 days). Five major companies from the energy industry in Poland were selected for the study, representing both the mining and energy production sectors. These companies are Polska Grupa Górnicza SA, Jastrzębska Spółka Węglowa SA, ENEA SA, Energa SA and TAURON Polska Energia SA According to the available data, payment terms in this sector are the longest in the European Union compared to other sectors of the economy. In Poland, the situation is no different in this respect. This is especially visible in the mining industry, which is perceived as very risky when it comes to timely payments. Undoubtedly, reducing payment gridlocks in this industry is a difficult task, which results from its specificity and the number of problems it is struggling with, which have been additionally reinforced by the Covid-19 pandemic.
Go to article

Authors and Affiliations

Łukasz Szewczyk
1
ORCID: ORCID
Grażyna Szustak
1
ORCID: ORCID

  1. University of Economics in Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The environmental problems caused by the development and utilization of mineral resources have become important factors affecting ecological security. Guizhou is a Chinese province with relatively developed paleoweathered sedimentary bauxite deposits, abundant resource reserves, and a long history of mining. And, the demand for bauxite in Guizhou is expected to continue to grow. However, long-term or unreasonable resource development has produced a series of prominent environmental problems, such as the occupation and destruction of land resources and heavy metal pollution in soil and water bodies. Based on the existing research results in China and abroad, this paper analyzes the current situation, distribution characteristics, and development and utilization of bauxite resources in Guizhou to explain the corresponding environmental impacts. The results show that because of the many types and high concentrations of associated elements in bauxite and the high alkalinity, heavy metal components, and radioactive elements in red mud, the development and utilization of bauxite resources are associated with higher environmental risk. And more impact of bauxite mining on regional biodiversity, soil, air, surface water, and groundwater need to be evaluated. This paper also proposes coping strategies or countermeasures of environmental governance and control to achieve the green, sustainable and high-quality development of bauxite-related industries for meeting future environmental requirements.
Go to article

Authors and Affiliations

Xiaofu Chen
1 2
Xuexian Li
3
Pan Wu
1 3
ORCID: ORCID
Xuefang Zha
3
Yabin Liu
2
Tao Wei
2
ORCID: ORCID
Wenrui Ran
2

  1. College of Resources and Environmental Engineering, Guizhou University, China
  2. Natural Resources Survey and Planning Institute, Guiyang, China
  3. Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of analyses of structure, volume and trends of demand for selected major critical raw materials (CRMs) suitable for the EU’s photovoltaic industry (PV). In order to achieve the EU’s goals in terms of the reduction of greenhouse gas emission and climate neutrality by 2050, the deployment of energy from renewable sources is of key importance. As a result, a substantial development of wind and solar technologies is expected. It is forecasted that increasing the production of PV panels will cause a significant growth in the demand for raw materials, including CRMs. Among these, silicon metal, gallium, germanium and indium were selected for detailed analyses while boron and phosphorus were excluded owing to small quantities being utilized in the PV sector. The estimated volume of the apparent consumption in the EU does not usually exceed 0.1 million tonnes for high purity silicon metal, a hundred tonnes for gallium and indium and several dozen tonnes for germanium. The major net-importers of analyzed CRMs were Germany, France, Spain, Czech Republic, the Netherlands, Slovakia and Italy. The largest quantities of these metals have been utilized by Germany, France, Belgium, Slovakia and Italy. The PV applications constitute a marginal share in the total volume of analyzed metal total end-uses in the EU (10% for silicon metal, 5% for gallium, 13% for germanium and 9% for indium). As a result, there is a number of applications that compete for the same raw materials, particularly including the production of electronic equipment. The volume of the future demand for individual CRMs in PV sector will be strictly related to trends in the development of PV-panel production with crystalline silicon technology currently strongly dominating the global market.
Go to article

Authors and Affiliations

Katarzyna Guzik
1
ORCID: ORCID
Anna Burkowicz
1
ORCID: ORCID
Jarosław Szlugaj
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The mean-reversion model is introduced into the study of mineral product price prediction. The gold price data from January 2018 to December 2021 are selected, and a mean-reverting stochastic process simulation of the gold price was carried out using Monte Carlo simulation (MCS) method. By comparing the statistical results and trend curves of the mean-reversion (MR) model, geometric Brownian motion (GBM) model, time series model and actual price, it is proved that the mean-reversion process is valid in describing the price fluctuation of mineral product. At the same time, by comparing with the traditional prediction methods, the mean-reversion model can quantitatively assess the uncertainty of the predicted price through a set of equal probability stochastic simulation results, so as to provide data support and decision-making basis for the risk analysis of future economy.
Go to article

Authors and Affiliations

Shuwei Huang
1 2 3
ORCID: ORCID
Zhaoyang Ma
1
Feng Jin
1
ORCID: ORCID
Yuansheng Zhang
1

  1. BGRIMM Technology Group, China
  2. Beijing Key Laboratory of Nonferrous Intelligent Mining Technology, China
  3. BGRIMM Intelligent Technology Co. Ltd, China
Download PDF Download RIS Download Bibtex

Abstract

The Sin Quyen deposit is characterized by a high accumulation of rare earth elements (REE). This deposit belongs to the IOCG type copper deposits (Iron Oxide Copper-Gold Deposits). In the deposit, the REE carrier minerals have been identified as follow: allanite, titanite, uraninite, monazite, apatite, chevkinite, aeschynite, bastnäsite, and epidote. In the skarn zone, contents of allanite range from single percentages to 10% in hand-size specimens. Locally, minerals of epidote subgroup which occur in large amounts in the host rocks are important. The studied allanites have concentrations of: REE (14–27 wt%), Ca (9–16 wt%), Al (8–19 wt%), Si (26–34 wt%) and Fe (12–21 wt%). Two populations of allanite are documented, the first is texturally older and probably related to the Ca-K alteration (second stage of crystallization). This population has higher REE concentration ranging from 20 to 27 wt%. The second population is texturally younger and has a lower total REE concentration ranging from 14 to 19.9 wt%, which occur mostly as a rim surrounding the older and likely arose during the K alteration with Cu-Au mineralization (third crystallization). The chemical composition indicates that the studied allanites belong to the Ce-La-ferriallanite family, with low ΣHREE and an average of 0.21 wt.%. A temperature of 355°C which was calculated using a value of δ34S isotopes is interpreted as a temperature of the second crystallization stage of allanite. In the studied deposit, excluding allanite and titanite, the other bearing REE minerals have an insignificant role in the REE balance, since they either have the total content of REE, which is often close to the WDS detection limit (rf. the epidote subgroup), or their only occur at the single points. The content of total REE in accessory uraninites is high and range from 1.311% up to 7.959% with an average value of 4.852%.
Go to article

Authors and Affiliations

Nguyen Dinh Chau
1
ORCID: ORCID
Jadwiga Pieczonka
1
ORCID: ORCID
Adam Piestrzyński
1
ORCID: ORCID
Le Khanh Phon
2
Duong Van Hao
2

  1. AGH Unversity of Science and Technology, Kraków, Poland
  2. Hanoi University of Mining and Geology, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The demand for energy on a global scale increases day by day. Unlike renewable energy sources, fossil fuels have limited reserves and meet most of the world’s energy needs despite their adverse environmental effects. This study presents a new forecast strategy, including an optimization-based S-curve approach for coal consumption in Turkey. For this approach, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), and Whale Optimization Algorithm (WOA) are among the meta-heuristic optimization techniques used to determine the optimum parameters of the S-curve. In addition, these algorithms and Artificial Neural Network (ANN) have also been used to estimate coal consumption. In evaluating coal consumption with ANN, energy and economic parameters such as installed capacity, gross generation, net electric consumption, import, export, and population energy are used for input parameters. In ANN modeling, the Feed Forward Multilayer Perceptron Network structure was used, and Levenberg-Marquardt Back Propagation has used to perform network training. S-curves have been calculated using optimization, and their performance in predicting coal consumption has been evaluated statistically. The findings reveal that the optimization-based S-curve approach gives higher accuracy than ANN in solving the presented problem. The statistical results calculated by the GWO have higher accuracy than the PSO, WOA, and GA with R 2 = 0.9881, RE = 0.011, RMSE = 1.079, MAE = 1.3584, and STD = 1.5187. The novelty of this study, the presented methodology does not need more input parameters for analysis. Therefore, it can be easily used with high accuracy to estimate coal consumption within other countries with an increasing trend in coal consumption, such as Turkey.
Go to article

Authors and Affiliations

Mustafa Seker
1
ORCID: ORCID
Neslihan Unal Kartal
2
Selin Karadirek
3
Cevdet Bertan Gulludag
3

  1. Sivas Cumhuriyet University, Turkey
  2. Burdur Mehmet Akif Ersoy University, Turkey
  3. Akdeniz University, Antalya, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The lithium market has experienced an unprecedented boom in recent years like a “golden age” and is one of the fastest growing raw material markets in the world. The fast growing demand for lithium is mainly related to the increase in the production of lithium-ion batteries used in electric or hybrid vehicles and portable electronic equipment, and to a lesser extent, in other strategic fields (military, nuclear technologies). This was reflected in a significant change in the structure of consumption, an increase in international trade and in the price of lithium raw materials. Moreover, in 2018 lithium was listed as a critical element for the national security and economy of the United States, and in 2020 it was also listed as a critical raw material for the European Union economy. It is also a time of increased exploration for new deposits, as well as mining processing and recycling. As a result, global lithium reserves have doubled in the last six years. All this prompted the authors to prepare an article in which the sources of lithium minerals and their resources, the basic factors determining the economic situation on the market, their prices and the possibilities of recycling and substitution are presented and assessed. Attention is also paid to the role of companies operating in Poland as significant partners on the European market of lithium-ion batteries. Lithium oxide and hydroxide and lithium carbonate are the main lithium raw materials used in Poland. In the absence of the country having its own deposits, they are imported, and the main suppliers are Chile, Western European countries and Russia.
Go to article

Authors and Affiliations

Jarosław Szlugaj
1
ORCID: ORCID
Barbara Radwanek-Bąk
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In order to improve the utilization rate of coal resources, it is necessary to classify coal and gangue, but the classification of coal is particularly important. Nevertheless, the current coal and gangue sorting technology mainly focus on the identification of coal and gangue, and no in-depth research has been carried out on the identification of coal species. Accordingly, in order to preliminary screen coal types, this paper proposed a method to predict the coal metamorphic degree while identifying coal and gangue based on Energy Dispersive X-Ray Diffraction (EDXRD) principle with 1/3 coking coal, gas coal, and gangue from Huainan mine, China as the research object. Differences in the phase composition of 1/3 coking coal, gas coal, and gangue were analyzed by combining the EDXRD patterns with the Angle Dispersive X-Ray Diffraction (ADXRD) patterns. The calculation method for characterizing the metamorphism degree of coal by EDXRD patterns was investigated, and then a PSO-SVM model for the classification of coal and gangue and the prediction of coal metamorphism degree was developed. Based on the results, it is shown that by embedding the calculation method of coal metamorphism degree into the coal and gangue identification model, the PSO-SVM model can identify coal and gangue and also output the metamorphism degree of coal, which in turn achieves the purpose of preliminary screening of coal types. As such, the method provides a new way of thinking and theoretical reference for coal and gangue identification.
Go to article

Authors and Affiliations

Yanqiu Zhao
1
ORCID: ORCID
Shuang Wang
1
Yongcun Guo
1
Gang Cheng
1
Lei He
1
Wenshan Wang
1

  1. School of Mechanical Engineering, Anhui University of Science and Technology, China
Download PDF Download RIS Download Bibtex

Abstract

This work is an attempt to determine the scale of threats to the mineral security of Poland in the area of non-energy raw materials resulting from Russia’s invasion of Ukraine. In particular, it aims to identify those industries whose proper functioning may be threatened in the face of the limited supply of raw materials from three directions – Russia, Belarus and Ukraine. An element of the analysis was also the indication of possible alternative sources of the supply of these raw materials. For this purpose, the directions of imports to Poland of about 140 non-energy raw materials in 2011–2020 were analyzed. As a result, about thirty raw materials were selected, the supplies of which came from, among others, at least one of the three mentioned countries. To determine the raw materials for which the disruption of supplies may have the most serious impact on the functioning of the Polish economy, the following criteria were adopted: a minimum 20% share of these countries in covering the domestic demand in 2020, and a minimum value of these imports in 2020 of 20 million PLN. These threshold conditions were met by eight raw materials: iron ores and concentrates, carbon black, potash, aluminum, ferroalloys, nickel, ball clays and refractory clays, and synthetic corundum. Among these, the need to change the directions of supplies applies to the greatest extent to iron ores and concentrates, aluminum and nickel, while in the case of non-metallic raw materials, it applies most to ball clays and refractory clays and potassium salts. These are among the most important raw materials necessary for the proper functioning of the national economy, but their shortage or disruptions in the continuity of their supplies pose a real threat to the mineral security of Poland.
Go to article

Authors and Affiliations

Ewa Danuta Lewicka
1
ORCID: ORCID
Anna Burkowicz
1
ORCID: ORCID
Hubert Czerw
1
ORCID: ORCID
Beata Figarska-Warchoł
1
ORCID: ORCID
Krzysztof Galos
1
ORCID: ORCID
Andrzej Gałaś
1
Katarzyna Guzik
1
ORCID: ORCID
Jarosław Kamyk
1
ORCID: ORCID
Alicja Kot-Niewiadomska
1
ORCID: ORCID
Jarosław Szlugaj
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The leachability of pollutants from asbestos-containing waste, previously used for roofing was investigated. Laboratory tests were performed under static conditions (tests 1–20) in accordance with the TCLP methodology (with the use of acetic acid as the leaching medium, initial pH = 3.15). The maintaining of constant leaching conditions proved to be impossible at the experimental stage. Following the stabilization of conditions, the pH range for the obtained solutions increased to an average value of 8.3. Aluminum, boron, barium, cadmium, chromium, copper, iron, nickel, lead, strontium, zinc, and mercury were identified in the eluate. The low leachability of individual metals under the planned conditions was observed. In general, no leaching of such metals as cadmium, nickel, and lead was observed. The mercury content in the eluates is below the quantification limit, but the obtained values fall to around the limit of detection for the element. As compared with leaching with the use of distilled water (Klojzy-Karczmarczyk et al. 2021), zinc and boron additionally appear in eluates. The determined value of leachability for the individual analyzed elements increases from double to a few times with the use of the TCLP method. The value of leaching for barium is on average 5.56 mg/kg, for chromium it is 1.10 mg/kg, for copper 0.26 mg/kg, and for iron 0.80 mg/kg. In addition, the leaching of boron of around 3.00 mg/kg and of zinc 1.84 mg/kg was found. Higher leachability values were found only for strontium and aluminum. The leaching of strontium is on average around 62 mg/kg. While the leaching of aluminum is lower than values identified in the previous tests with the use of distilled water and is around 2.76 mg/kg. Products of leaching contain mainly pollutants characteristic of cement (aluminum, strontium, and iron).
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Janusz Mazurek
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In Poland, there is a growing awareness of the need to change the sources of electricity and heat. An expression of this is the adoption of the document entitled Poland’s Energy Policy until 2040 (PEP 2040) in February 2020 by the Council of Ministers. The goal of the Polish Energy Policy until 2040 is “energy security – ensuring the competitiveness of the economy, energy efficiency and reducing the environmental impact of the energy sector – taking into account the optimal use of own energy resources”. In PEP 2040, the previous assumptions of the state’s long-term energy policy were amended and an increase in the use of low- or non-emission sources was declared. In addition, the energy policy guidelines contain forecasts for the production of steam coal and the demand for this raw material. Based on the provisions of the document, as well as forecasts of the coal-production volume prepared by the authors and the assessments of experts in the fields related to energy and mining, the article contains considerations on the validity of the developed forecasts together with the determination of the production capacity of domestic mining enterprises in terms of covering the demand for steam coal used for the production of electricity and heat. It is planned, inter alia, that blocks of coal-fired power plants will be decommissioned and, in their place, there is to be the expansion of solar and wind energy and the commissioning of the first blocks of a nuclear power plant. Such activities, which cause a decrease in the demand for coal, are also related to the plans of changes in the functioning of mining enterprises – there will be successive closures of individual mines and mining plants.
Go to article

Authors and Affiliations

Marian Czesław Turek
1
Patrycja Bąk
2
ORCID: ORCID

  1. Central Mining Institute, Katowice, Poland
  2. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The cement industry has been using waste as a raw material for many years. Waste is also used as alternative fuel. Cement plants are an important element of the waste management system and fit the idea of a circular economy. When waste is recovered in the cement production process, direct and indirect CO 2 emissions are partially avoided. This article discusses the cement industry in Poland. The current situation in terms of the use of alternative fuels and raw materials in Poland, the different types of waste and the amount of waste used is discussed. The article discusses changes in the amount of waste (the increase in the amount of waste used as raw materials from the year 2006 to the year 2019) and the types of waste recovered in the cement production process and the possibility of closing material cycles on the plant scale (recycling to the primary process – cement kiln dust) and industry (using waste from other industries: metallurgy – granulated blast furnace slag, iron bearings; energy production – fly ash, reagypsum/phosphogypsum, fluidized bed combustion fly ash, and fluidized bed combustion bottom ash; wastewater treatment plants – sewage sludge, etc.). The analysis shows that the role of cement plants in waste management and the circular economy in Poland is important. Industrial waste from metallurgy, power plants, heat and power plants, wastewater treatment plants, and municipal waste is used as the raw material for the cement industry, leading to an industrial symbiosis.
Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
1
ORCID: ORCID
Eugeniusz Mokrzycki
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Kraków, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Bioleaching research considers both the bio- and anthroposphere in the search for novel ways to recover resources and elements, which is important to the concept of sustainable development. Since the efficient, cost-effective and simple recovery of resources is of increasing importance in the circular economy model, the bioleaching of metals is a method currently gaining interest. The process is also of importance considering the need for the neutralization of waste materials/resources that allow for their safe storage and use. In this study, Acidithiobacillus thiooxidans bacteria, which is commonly found and widely utilized in the bioleaching process due to its high tolerance to heavy metals, was used in a twenty-eight-day experiment. The manner in which bacteria inhabit incineration residues was observed using fluorescence optical microscopy and scanning electron microscopy. The concentration of elements in incineration residues and in the post-reaction solutions was measured using inductively coupled plasma mass spectrometry and the efficiency of element recovery was calculated based on the results. Municipal waste incineration bottom ash and sewage sludge incineration fly ash were considered in the experiment. The extraction rates were far from satisfactory, with the average 20 and 50% for bottom ash and sewage sludge ash, respectively. The obtained results were consistent with microscopic observations where the relative number of bacteria increased only slightly over time in the sewage-sludge fly ash and was barely observed in the bottom ash of municipal- -waste incineration.
Go to article

Authors and Affiliations

Monika Kasina
1
ORCID: ORCID
Kinga Jarosz
1
ORCID: ORCID
Klaudiusz Salamon
1
ORCID: ORCID
Adam Wierzbicki
1
ORCID: ORCID
Bartosz Mikoda
1
ORCID: ORCID
Marek Michalik
1
ORCID: ORCID

  1. Jagiellonian University, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents new data on the Miocene development within the Upper Silesian Coal Basin. The Miocene succession of the study area is characterized by high thickness and highly variable lithology. In the Miocene sediments of the studied area, the presence of organic matter in the form of a coal layer, coal crumbs, and dispersed organic matter has been found. The research focused mainly on the analysis of organic matter in terms of its origin, degree of coalification, and depositional environment. The degree of coalification of organic matter was determined by the huminite/vitrinite reflectance. The hard brown coal layer with a thickness of about eight meters was identified within the Kłodnica Formation. Based on the textural properties and degree of coalification, brown coal was classified as dull brown coal and bright brown coal. Organic matter in the form of coal crumbs and dispersed organic matter were found within a package clastic sedimentary. On the basis of petrographic analysis, two types of allochthonous organic matter with different degrees of coalification were identified. The coal clasts are mainly of Carboniferous origin, while the Miocene redeposited brown coal grains dominate within the dispersed organic matter. Coal fragments and dispersed organic matter derived from the Miocene brown coal were also found within the black claystones. The study of organic matter of the Miocene sediments in the Upper Silesian Coal Basin showed both its autochthonous and allochthonous origins.
Go to article

Authors and Affiliations

Ewa Krzeszowska
1
ORCID: ORCID
Małgorzata Gonera
2

  1. Silesian University of Technology, Gliwice, Poland
  2. Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland

This page uses 'cookies'. Learn more