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Abstract In this work, steady flow-field and heat transfer through a cop-
per-water nanofluid around a rotating circular cylinder with a constant
nondimensional rotation rate α varying from 0 to 5 was investigated for
Reynolds numbers of 5–40. Furthermore, the range of nanoparticle volume
fractions considered is 0–5%. The effect of volume fraction of nanoparticles
on the fluid flow and heat transfer characteristics are carried out by us-
ing a finite-volume method based commercial computational fluid dynamics
solver. The variation of the local and the average Nusselt numbers with
Reynolds number, volume fractions, and rotation rate are presented for the
range of conditions. The average Nusselt number is found to decrease with
increasing value of the rotation rate for the fixed value of the Reynolds num-
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ber and volume fraction of nanoparticles. In addition, rotation can be used
as a drag reduction technique.

Keywords: Nanofluid; Rotating circular cylinder; Forced convection; Steady regime

Nomenclature

CD – drag coefficient
CL – lift coefficient
Cp – pressure coefficient
D – drag force, N
Dt – diameter of the cylinder, m
H – the location of the outer boundary of the domain
hDt – the radial step size of the first layer of cells
k – thermal conductivity
L – lift force, N
Nu – average Nusselt number
Nu0 – average Nusselt number for the stationary cylinder
NuL – local Nusselt number
Nt – number of points
p – local pressure, Nm−2

Pr – Prandl number
Re – Reynolds number, (= U∞Dt/ν)
T∞ – free-surface temperature, K
u – streamwise velocity, m s−1

U∞ – free-stream velocity, m s−1

U – non-dimensional streamwise velocity (= u/U∞)
V – non-dimensional cross-stream velocity (= v/U∞)
x – streamwise dimension of coordinates, m
X – non-dimensional streamwise dimension of coordinates (= x/D)
y – cross-stream dimension of cordinates, m
Y – non-dimensional cross-stream dimension of cordinates (= y/Dt)

Greek symbols

α – non-dimensional rotation rate (ΩDt/2U∞)
β – fluid thermal expansion coefficient
θ – non-dimensional temperature
µ – dynamic viscocity, N s/m2

ν – kinematic viscosity, m2s−1

ρ – density, kg/m3

ϕ – angular displacement from the front stagnation point
φ – nanoparticle volume fractions
τ – non-dimensional time
ω – vorticity on the surface of the cylinder, s−1

̟ – dimensionless vorticity on the surface of the cylinder (= 2ωDt/U∞)
Ω – constant angular velocity of the cylinder rotation, rad s−1

Subscripts

nf – nanofluid
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bf – base fluid
s – solid nanoparticles

1 Introduction

The fluid flow and heat transfer around a rotating circular cylinder are
considered to be fundamental fluid mechanics problems with a huge num-
ber of practical applications such as cooling devices in plastics and glass
industries, chemical processing industries and food processing. In these
flows, the results depend not only on the Reynolds number, Re, but also on
rotation rate, α, defined as the ratio of rotational velocity of the cylinder
wall to the incoming free stream flow velocity, expressed as: Re = U∞Dt/υ
and α = ΩDt/2U

∞
.

In recent years, many researches have been performed to study the ef-
fects of rotation rate on the flow and convective heat transfer. The authors
of the paper [1] investigated numerically the effect of rotation rate on the
flow and heat transfer across a rotating cylinder in the range 0 ≤ α ≤ 6
with Re number varying in the range 20–160. They concluded that the
rotation can be used as a drag reduction and heat transfer suppression
technique. Subsequently, [2] studied numerically the free stream flow and
forced convection heat transfer across a rotating cylinder, dissipating heat
flux for Reynolds numbers of 20–160 and a Prandtl number of 0.7. Their
results show that, at higher rotational velocity, the Nusselt number is al-
most independent of Reynolds number and thermal boundary conditions.
The suppression of von Karman Street was also reported numerically in [3]
for Reynolds numbers of 80–160 and rotation rate was examined up to a
maximum value of 5.3 in the range of 0–6 at Pr equal 7. For steady regime,
a well-organized numerical study was published in [4]. In that paper, the
numerical calculations were solved via the finite volume method in order to
examine the characteristics of flow and heat transfer for varying rotation
rate (α = 0–5) in the Reynolds number range 1–35 and Prandtl numbers
range 0.7–100. They found that the average Nusselt number increases with
increasing Prandtl number for the fixed value of the Reynolds number for
the particular value of rotation rate.

In past studies, the fluids used have a low value of thermal conductivity,
which limits the heat transfer. For this reason, there are several methods
to improve the heat transfer characteristics, which consist in adding high
conducting solid particles to the base fluid. The resulting fluid is called the
‘nanofluid’ [5–8].
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The steady flow-field and heat transfer through a copper-water nanofluid
around circular cylinder was numerically simulated by Valipour and Ghadi
[9]. The values of vorticity, pressure coefficient, recirculation length are in-
creased by the addition of nanoparticles into the base fluid. Subsequently,
El-Bashbeshy et al. examined the effect of heat treatment process with
a new cooling medium (nanofluid), which contains water with Cu, Ag, or
Al2O3 particles, on heat transfer characteristics and mechanical properties
of an unsteady continuous moving cylinder in the action of thermal forces
[10]. They reported that the Al2O3 nanofluid is the best type of nanofluid
for improving the mechanical properties of the surface (increase the heat
flux). This nanofluid is also the best type for decreasing the surface shear
stress.

Recently, numerical study has been focused on heat transfer phenom-
ena over an isothermal cylinder, for low Reynolds number flow of nanofluid
[11]. Heat transfer characteristic and flow over the stationary cylinder has
been studied for water based copper nanofluid with different solid fraction
values. It has been shown that the presence of nanoparticle has no effect
on the point of flow separation for a fixed Reynolds number, howener, the
effect of buoyancy force has not been taken into consideration. On the
other hand, the momentum and forced convection heat transfer for a lam-
inar and steady free stream flow of nanofluids past a square cylinder have
been studied [12]. Different nanofluids consisting of Al2O3 and CuO with
base fluids of water and a 60:40 (by mass) ethylene glycol and water mix-
ture were selected to evaluate their superiority over conventional fluids. It
has been showed that for any given particle diameter there is an optimum
value of particle concentration that results in the highest heat transfer co-
efficient. The fluid flow and heat transfer around a square cylinder utilizing
Al2O3−H2O nanofluid over low Reynolds numbers varied within the range
from 1 to 40 and the volume fraction of nanoparticles is varied within the
range of 0 < φ < 0.05 was investigated [13]. They found that increase of
the nanoparticles volume fractions augments the drag coefficient. More-
over, pressure coefficient increases by increasing the solid volume fraction
for sides where pressure gradient is inverse but for sides where the pressure
gradient is favourable the pressure coefficient decreases.

The present investigation had been motivated by increased interest and
research in potential improvements in heat transfer characteristics using
nanofluids. Effort has been made to investigate numerically the steady flow
of nanofluid and heat transfer characteristics of a rotating circular cylinder
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for a range of Reynolds numbers (5 ≤ Re ≤ 40) and particle volumetric
concentrations ranging from 0% to 5% for rotation parameters (0 ≤ α ≤ 5)
in the two-dimensional laminar flow regime.

2 Problem statement, governing equations, and
boundary conditions

The system here consists of a 2D infinitely long circular cylinder having
a diameter Dt which is maintained at a constant temperature Tw and is
rotating in a counter clockwise direction with a constant angular velocity
of Ω. It is exposed to a constant free stream velocity of U∞ at a uniform
temperature of T∞ at the inlet. The nanoparticles are assumed to be of the
uniform shape and size. In addition, we have assumed that nanoparticles
are in thermal equilibrium state and flowing at the same velocity. Flow
configuration is shown in Fig. 1.

Figure 1: Schematic of the unconfined flow and heat transfer around a rotating circular
cylinder (a), grid structure (b), close up view in the vicinity of the cylinder (c).

2.1 Governing equations and boundary conditions

The governing partial differential equations here are the Navier-Stokes and
energy equations in two dimensions and steady state nanofluid flow around
a rotating circular cylinder in dimensionless form are given form:

∂U

∂X
+

∂V

∂Y
= 0 , (1)

U
∂U

∂X
+ V

∂U

∂Y
=

1

ρnf

[

− ∂P

∂X
+ µnf

(

∂2U

∂X2
+

∂2U

∂Y 2

)]

, (2)
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U
∂V

∂X
+ V

∂V

∂Y
=

1

ρnf

[

−∂P

∂Y
+ µnf

(

∂2V

∂X2
+

∂2V

∂Y 2

)]

, (3)

U
∂T

∂x
+ V

∂T

∂y
= αnf

(

∂2T

∂x2
+

∂2T

∂y2

)

, (4)

where: U = u
U∞

, V = v
U∞

, τ = tU∞

Dt
, X = x

Dt
,Y = y

Dt
, P = p

ρU2
∞

, θ = T −T∞

TW −T∞

.
Here U and V are the velocity components along X and Y axes, T denotes
the temperature, P is the pressure, ρ is the density, µ – the dynamic vis-
cosity. The subscript nf stands for the nanofluid.

The thermophysical properties taken from [9], for the base fluid and
copper oxide (at 300 K) are shown in Tab. 1.

Table 1: Thermophysical properties of the base fluid and cooper nanoparticles.

Property Unit Water Copper

Cp (J kg−1K−1) 4179 385

ρ (kg m−3) 997.1 8.933

k Wm−1K−1) 0.613 401

α × 107 (m2s−1) 1.47 1.163

The effective density, thermal diffusivity, heat capacitance, and thermal
expansion coefficient of the nanofluid are calculated using the following
expressions:

ρnf = (1 − φ) ρbf + φρs (5)

(ρCp)nf = (1 − φ) (ρCp)bf + φ (ρCp)s , (6)

αnf =
knf

(ρCp)nf

, (7)

βnf = (1 − φ) (ρβ)bf + φ(ρβ)s , (8)

where φ is the solid volume fraction, α is the non-dimensional rotation
rate, β is the fluid thermal expansion coefficient, and Cp is the pressure
coefficient. Subscript bf stands for base fluid and the subscript s stands
for solid nanoparticles. The effective dynamic viscosity of the nanofluid is
calculated using the formula suggested in [6]

µnf =
µbf

(1 − φ)2.5 . (9)
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The effective thermal conductivity of the nanofluid is approximated by the
Maxwell-Garnett model, for a suspension of spherical nanoparticles in the
base fluid, the formula suggested by [14] is applied:

knf = kbf

[

(ks + 2kbf ) − 2φ (kbf − ks)

(ks + 2kbf ) + φ (kbf − ks)

]

. (10)

2.2 Boundary conditions

The dimensionless boundary conditions for the flow across a rotating cir-
cular cylinder can be written as (Fig. 1). The left-hand arc (Fig. 1a) is the
inflow section or upstream section, where there is a Dirichlet-type boundary
condition for the Cartesian velocity components

V = 0 and θ = 0 , (11)

where θ is the non-dimensional temperature. The right-hand arc represents
the outflow boundary, where it is considered that the diffusion flux in the
direction normal to the exit surface is zero for all variables

∂U

∂X
=

∂V

∂X
=

∂θ

∂X
= 0 . (12)

Finally, the dimensionless peripheral or tangential velocity is prescribed on
the surface of the rotating cylinder, along with a no-slip boundary condition

U = −α sin(ϕ); V = −α cos(ϕ), θ = 1 , (13)

where ϕ is the angular displacement from the front stagnation point.

2.3 Force coefficients

Two relevant parameters computed from the velocity and pressure fields
are the drag and lift coefficients, which represent dimensionless expressions
of the forces that the fluid produces on the circular cylinder. These are
defined, respectively, as follows:

CD =
D

ρU2
∞Dt

, CL =
L

ρU2
∞Dt

, (14)

where D is the drag force and L is the lift force with respect to the centre
of the cylinder.
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3 Numerical details

The computational grid for the problem under consideration was generated
by using a commercial grid generator Gambit [19] and the numerical calcu-
lations were performed in the full computational domain using Fluent [20]
for varying conditions of Re number and rotation rate. This computer pro-
gram applies a control-volume method to integrate the equations of motion,
constructing a set of discrete algebraic equations with conservative prop-
erties. In particular, the O-type grid structure similar to that adopted in
[15] was created here. The steady, laminar, segregated solver was employed
here to solve the incompressible flow on the collocated grid arrangement.
Semi implicit method for the pressure linked equations (SIMPLE) [4] was
used to solve Navier-Stokes and energy equations for above noted boundary
conditions. Second order upwind scheme is used to discretize the convective
terms of momentum equations, whereas the diffusive terms are discretized
by the central difference method. A convergence criterion of 10−8 is used
for continuity, and Cartesian components components of momentum equa-
tions, while for energy equation the criterion of convergence was 10−10.

3.1 Domain independence study

The mesh used for all the two-dimensional computations consisted of 40 000
quadrilateral cells and 40 200 nodes. The cylinder (of diameter Dt) resides
in a computational domain whose outer edges located at a distance of H
from the centre of the cylinder (see Fig. 1). There are Nt points in the
circumferential direction on the cylinder surface and the radial thickness of
the first layer of cells (i.e., cells attached to the wall) is hDt. A close-up
view of a typical mesh is shown in Fig. 1c. It can be observed that the mesh
is very fine close to the cylinder and the cells become larger with increasing
distance from the cylinder. The location of the outer boundary of the
domain is expected to become more crucial for larger values of α [16,17].
In this study, following [4], the computational domain covers 150 times the
diameter of the cylinder in all directions. The grid sensitivity analysis was
performed for Re = 40 and φ = 0.05. Table 2 lists the details for the meshes
that were employed. Bearing in mind the influence of the number of grid
points on the average Nusselt number on the cylinder wall, it was decided
to carry out computations with mesh M2.
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Table 2: Effect of grid number on averaged Nusselt number (Nu) at Re = 40, Pr = 6.264
(φ = 0.05) for α = 0 and α = 5.

Mesh Cells Nt hDt

Nu

α = 0 α = 5

M1 32000 160 0.0015 7.5880 4.6222

M2 40000 200 0.0010 7.6139 4.6464

M3 50000 250 0.0010 7.6.76 4.6495

4 Results and discussion

4.1 Comparison with other results

The first step was to validate the problem set-up, the choice of numerical
methods and mesh attributes by comparing results from our numerical sim-
ulations with results obtained from the literature. The outcomes included
in the comparison were the mean Nusselt number, as well as lift and drag
coefficients.

The average Nusselt number for stationary cylinder at Re = 40 (base
fluid) and φ = 0.05 (Pr = 6.26), is found to be in good agreement with the
correlation [18].

Nu = 0.593Re1/2Pr1/3 . (15)

Using this relation for same parameters, the value of the average Nusselt
number Nu = 7.66 is obtained, which is in excellent agreement with present
calculations, Nu = 7.61.

It is interesting to remind that the Reynolds and Prandtl number of
nanofluids can be expressed as

Renf =
ρnf

ρbf

µbf

µnf
Rebf , Prnf =

µnf

µbf

CP,nf

CP,bf

kbf

knf
Prbf . (16)

Comparison of the average Nusselt number results for a rotating circular
cylinder under different Reynolds numbers with data from [1] is given in
Tab. 3. The present results of the average Nu number are in excellent
agreement with the literature ones.

Table 4 compares the lift and drag coefficients computed here with re-
sults cited in scientific publications. We have noted that the lift coefficient
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values are in superb agreement with numerical data reported by other re-
searchers, but discrepancies in the values of the drag coefficient are larger;
the drag coefficients are so small that the relative errors are magnified.

Table 3: Comparison of Nusselt number computed in the present study with literature
data (Pr = 0.7).

Re α
Nu Relative

error (%)Present study Paper[1]

20 0 2.4092 2.4189 0.40

20 2 2.2785 2.2861 0.33

20 4 2.2511 2.2554 0.19

40 0 3.2496 3.2465 0.10

40 2 3.0402 3.0115 0.95

40 4 3.0614 3.0422 0.63

Table 4: Comparison between the lift and drag coefficients computed in the present study
with values given by literature data.

Re CD CL

Re α
Present Paper Relative Present Paper Relative

study [1] error (%) study [1] error (%)

40 0 1.503 1.504 0.066 0 0 0

40 1 1.3132 1.315 0.15 -2.5817 -2.6013 0.75

40 4 -0.038 -0.052 26.92 -16.083 -16.033 0.31

4.2 Mean lift and drag coefficients

Figure 2 shows that the negative/downward lift coefficient, CL, increases
monotonically with increasing α and with increasing Re. However, the
increase is marginal with increasing Re. Thus, the lift coefficient is strongly
dependent on the rotation rate and weakly dependent on Re. Very high lift
coefficients are observed for high rotation rates of the cylinder.
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Figure 2: Variation of mean lift coefficient, CL, with rotation rate, α, for various Reynolds
number; Re= 5 (1), 10 (2), 15 (3), 20 (4), 25 (5), 30(6), 35 (7), 40 (8).

Figure 3 shows the variation of the drag coefficient, CD, with rotation rate
0 ≤ α ≤ 5 for Re = 5, 10, 15, 20, 25, 30, 35, and 40. It can be noted
that with the increase in rotation rate, drag coefficient values for all the
Reynolds number converge at approximately the same value for α of 5 with
the exception of Re equal to 5 and 10.

4.3 Isotherm patterns

The isotherms profiles around the rotating cylinder for Reynolds number
of 20 and 40 for α of 0 and 5 are compared between the base fluid and
nanofluid (φ = 0.05) in Fig. 4a. Clearly, the temperature distribution
contours for base fluid are overlaid with that for nanofluid. This can be
explained by the fact that the addition of solid particles to the base-fluid
increases the Reynolds number of nanofluid. Hence results the higher ca-
pacity of transferring the heat from the cylinder. For a stationary cylinder,
it is obvious from Fig. 4a that the isotherms have maximum density close
to the front surface of the cylinder; this indicates high values of the lo-
cal Nusselt number near the front stagnation point on the front surface as
compared to other points on the cylinder surface. On other hand, as the
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Figure 3: Variation of mean drag coefficient, CD, with rotation rate, α, for various
Reynolds number. For legend see page 13.

Re increase, the recirculation region behind the cylinder grows yields to
increase in the density of isotherms close to the rear surface as shown in
Fig. 4b. On increasing the value of the rotation rate, the maximum density
of the isotherm shifts from the front surface towards the bottom surface of
the rotating cylinder (rotating counter clockwise), Fig. 4c. In addition, as
the solid concentration, φ, increases, the thermal boundary layer becomes
thinner which leads to the increase in the Nusselt number, Fig. 4d.

4.4 Local Nusselt number

Figure 5 shows the variation of local Nusselt number, NuL, on the surface
of the cylinder with increase in Reynolds number, Re, for various rotation
rates, α, and volume fraction, φ. When the solid concentration increases the
thermal conductivity improves and consequently the local Nusselt number
increase. Additionally, the thermal boundary layer is decreased by any
increase in the solid volume fraction (Fig. 4). Therefore, the local Nusselt
number is enhanced by any increase in solid volume fraction. On the other
hand, for a stationary cylinder and for all Re, the variation of NuL is found
to be symmetrical at ϕ = 180◦. The value of the local Nu number is
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Figure 4: Temperature contours for the flow around the cylinder (solid line refers to base
fluid and dashed line refers to nanofluid with solid volume fraction 0.05) at:
(a) Re = 20, α = 0, φ = 0; (b) Re = 20 α = 0, φ = 0.05; (c) Re = 20, α = 5,
φ = 0; (d) Re = 40, α = 5, φ = 0.05.

maximum on the front (ϕ = 0) and minimum on the rear (ϕ = 180◦) side
of the cylinder. Also, at this former angle, a kink is observed in the values
of local Nusselt number and the size of this kink increases as the value
of the Re number increases for the fixed value of φ. It can be explained
on the basis that higher Reynolds number results in larger recirculation
region. Also, the symmetrical variation of NuL seen in the figures for α = 0
is lost under the effect of rotation. On increasing the value of the rotation
rate, the local Nu number curve becomes smooth and the kink disappears.
Finally, the rotation causes overall reduction in heat transfer across the
cylinder, thus lowering the local Nusselt number at higher rotations.
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φ = 0 φ = 0.03 φ = 0.05

Figure 5: Local Nusselt number variation at various solid volume fractions for varying
values of Reynolds number and rotation rate: Re = 10 (1), 20 (2), 30 (3),
40 (4).

4.5 Averaged Nusselt number

Figure 6 indicates that the averaged Nusselt number increases monoton-
ically with increasing Re at constant α for a fixed volume fraction of
nanoparticles, φ. This can be explained as when Reynolds number in-
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φ = 0 φ = 0.01

φ = 0.03 φ = 0.05

Figure 6: Variation of local Nusselt number with increasing Reynolds number for various
rotation rates at various solid volume fractions: Re = 40 (1), 30 (2), 20 (3),
10 (4).

creases the inertia of flow increases thus increasing the heat transfer. The
effect of Reynolds number also increases with increase in volume fraction
number. Considering the case of the static cylinder, the change in average
Nusselt number at volume fraction of 0 when Reynolds number increases
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from 5 to 40 is 4.409. While the corresponding change in average Nusselt
number due to increase in Reynolds number for volume fraction of 0.05 is
4.220. Further increase in rotation rate, for the fixed value of volume frac-
tion, the value of the average Nusselt number decreases for all Reynolds
numbers. The decrease in the Nusselt number with increasing rotational
velocity can be explained on the basis that the fluid entrapped inside the
enveloping vortex acts as a buffer zone for heat transfer between the cylin-
der and free stream and restrict the heat transfer to conduction only as
detailed in [1].

φ = 0 φ = 0.05

Figure 7: Percentage heat transfer suppression with increasing Reynolds number for var-
ious rotation rates. Nu0 is the Nusselt number of the stationary cylinder:
Re = 5 (1), 10 (2), 20 (3), 30 (4), 40 (5).

Figure 7 shows the normalized Nusselt number obtained as the ratio
of average Nusselt number of the rotating cylinder, Nu, to that of the
stationary cylinder, Nu0, for base fluid and nanofluid (φ = 0.05) at various
rotation rates, α, to understand the suppression of heat transfer. For φ
of 0, it can be seen from this figure that the suppression increases with
increasing Re and increasing α, with a minimum value of 4.30% for Re =5
and a maximum value of 38.17% for Re = 40 at α = 5. Thus, cylinder
rotation can be used not only for controlling flow, but also as an efficient
heat transfer suppression technique. Moreover, for the case φ = 0.05, the
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suppression curves remain practically similar. This can be explained that
the Prandlt number is nearly the same: the change in the value of the
Prandtl for the case φ = 0 is in the range from 7.066 to 6.264 for the case
φ = 0.05. Hence, the suppression of heat transfer is not enhanced due to
adding nanoparticles into the base fluid.

5 Conclusions

The present study focuses on the unconfined laminar flow of nanofluid and
heat transfer characteristics around a rotating circular cylinder subjected
to constant wall temperature. Heat transfer suppression due to rotation
increases with increasing Reynolds number and increasing rotation rate.
Moreover, the heat transfer suppression is not enhanced due to adding
nanoparticles into the base fluid. Also, a downward drag coefficient is found
due to rotation, which decreases monotonically with increasing rotation
rate. Thus, rotation can be used as a drag reduction technique.

Further, the average Nusselt number is found to decrease with increasing
rotation rate and increase with increasing Reynolds number . Suppression
due to rotation increases with increasing Reynolds number and increasing
rotation rate for all Reynolds number .
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Abstract This paper endeavours to study aspects of wave propagation
in a random generalized-thermal micropolar elastic medium. The smooth
perturbation technique conformable to stochastic differential equations has
been employed. Six different types of waves propagate in the random
medium. The dispersion equations have been derived. The effects due to
random variations of micropolar elastic and generalized thermal parameters
have been computed. Randomness causes change of phase speed and at-
tenuation of waves. Attenuation coefficients for high frequency waves have
been computed. Second moment properties have been briefly discussed with
application to wave propagation in the random micropolar elastic medium.
Integrals involving correlation functions have been transformed to radial
forms. A special type of generalized thermo-mechanical auto-correlation
functions has been used to approximately compute effects of random varia-
tions of parameters. Uncoupled problem has been briefly outlined.

Keywords: Waves; Random; Micropolar; Thermoelastic; Propagation

1 Introduction

A large number of research papers covering various branches of theoretical
and computational micropolar elasticity are being reported in the literature
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every year in recent time. Eringen has published many pioneering papers
and treatises on various aspects of micropolar elasticity. The coupled stress
theory developed by Eringen comprises granular materials as also composite
fibrous materials [1]. For this reason authors from different research fields
have been taking interest in micropolar elasticity. The associated microro-
tational motions, spin, couple stress inertia, couple stress and distributed
body couples were defined. Micropolar thermoelasticity also has become
an important field of research these days. Eringen derived equations of
motion, constitutive equations and boundary conditions for a class of mi-
cromorphic elastic solids whose microelements can undergo expansions or
contractions defined as stretch [2]. He also defined and proposed a theory
of thermomicrostretch fluids and bubbly liquids [3]. Microstretch and mi-
cropolar continua and all other aspects of micropolar studies can be found
in Eringen’s foundational treatise entitled Microcontinuum Field Theories

[4]. Micropolar thermoelastcity and stretch have attracted the attention
of many authors. Marin formulated some theorems on elastostatics of mi-
cropolar material with voids [5]. He investigated the behaviour of porous
solids in which the matrix material is elastic and the interstices are voids
of materials. In a more recent paper Marin [6] considered the concept of
domain of influence in the context of displacement and microrotation fields
along with the microstretch function. Marin and Lupu [7] on the other
hand discussed the problem of harmonic vibrations of micropolar elastic
materials under thermoelasticity. Marin and Marinescu [8] studied ther-
moelasticity of initially stressed bodies. Kumar [9] examined the problem
of wave propagation in a micropolar viscoelastic medium under generalized
thermoelasticity. Singh [10] studied plane wave propagation in a homo-
geneous transversely isotropic thermally conducting elastic solid with two
relaxation times. Singh and Kumar [11] investigated the problem of reflec-
tion and refraction of plane waves at an interface between micropolar elastic
solid and viscoelastic solid. Kumar and Deswal [12] discussed the problem
of surface wave propagation in a micropolar thermoelastic medium. Kumar
and Singh [13] studied effects of stretch in wave propagation in a micropolar
material again under generalized thermoelasticity. Kumar and Tomar [14]
studied aspects of reflected and refracted micropolar waves. Aouadi [15]
considered a medium with a microstructure and derived general equations
of motion and constitutive equations. On the other hand, Suiker, Borst
and Chang [16] derived a second-gradient micro-polar constitutive theory
on micro-mechanical modelling of granular medium. Majewski [17] dealt
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with seismic rotation waves in a micropolar elastic earth. In fact varieties
of papers on wave propagation in micropolar elastic, micropolar thermoe-
lastic and coupled micropolar elastic media are being frequently reported
in the literature. It is not found necessary to cite more of these recent pub-
lications simply because they fall exclusively to the non-random domain.

The present paper instead proposes to focus on the procedure to eval-
uate effects of random variation of parameters of the inhomogeneous mi-
cropolar medium on propagation of waves and associated phenomena. To
date none other than a single paper by Mitra and Bhattacharyya [18] has
appeared in the literature dwelling on randomness in relation to waves in
micropolar medium.

The present paper therefore aims at investigating wave propagation phe-
nomenon in a random generalized thermal micropolar elastic medium, and
associated statistical properties such as second moment and its application.
The parameters representing inhomogeneities of the coupled medium are
assumed to vary slightly from their mean values. The originality of the pa-
per lies in attempting to measure effects of random variations of parameters
on wave propagation in the micropolar generalized thermoelastic medium
following procedures of the authors’ earlier paper [18].

The heat conduction equation and the coupling model have been chosen
under the generalized thermoelasticity proposed by Lord and Shulman [19]
and Green-Lindsay [20]. The details of L-S and G-L theories of generalized
thermoelasticity can be found in Ignaczak and Starzewski [21] and need
not to be repeated here. Generalized thermoelasticity attempts at nulli-
fying the physical anomaly of classical thermoelasticity which insists that
thermal speed assumes infinite speed at infinity ([21], p. xii). Consequently
two relaxation parameters t0, t1, appear in the generalized model heat con-
duction equation.

The methodology adopted is the smooth perturbation technique enun-
ciated by Keller [22]. Karal and Keller [23], Keller and Karal [24], Chow
[25], Chen and Tien [26] and many others used it in studying elastic, elec-
tromagnetic, thermal and other waves. Bhattacharyya [27,28] and Bera
[29] pursued the method in the study of wave propagation phenomena in
the coupled media.

In fact the study of problems of wave propagation in random media
flourished since the time of Chernov [30]. He first suggested adoption of an
exponentially decaying form for a two-point dielectric correlation function.
Beran and McCoy [31] proposed the technique of iterative perturbation in
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studying mean field variations in the dielectric and other media. Beran,
Frankenthal, Deshmukh and Whitman studied propagation of radiation
in time-dependent three-dimensional random media [32]. Sobczyk studied
elastic wave propagation in a discrete random medium [33]. He developed
a general formalism of the analysis of coherent elastic waves in terms of
scatters. In fact, Wenzel [34], Sobczyk, Wedrychowicz and Spencer [35],
Frankenthal and Beran [36], Uscinski [37] and Frisch [38] have made ex-
tensive studies on various aspects of randomness in physical sciences, wave
propagation phenomena and random characteristics of media. In particular,
Chen and Soong [39] worked on covariance properties of waves propagat-
ing in a medium. A detailed discussion on properties and applications of
random differential equations can be found, among others, in the treatise
of Soong [40]. Akira Ishimaru discussed the development of the theory of
wave propagation and scattering in random media in his landmark treatise
on the subject [41]. Choudhury, Basu and Bhattacharyya discussed the
phenomenon of wave propagation in a rotating random granular medium
under generalized thermoelasticity [42]. On the basis of these citations one
cannot but admit the importance of the study of randomness in applied
mathematics and physical sciences. The present paper however proposes to
discuss randomness in respect of waves in a micropolar medium impressed
by a generalized thermoelastic field.

2 The problem

Using the smooth perturbation technique [22] the field equations have been
put in the form

L(~x, t)V (~x, t) = F (~x, t) , (1)

L = L0 + εL1 + ε2L2 , (2)

where: L – random linear operator, V – field vector, F – non-random
source, L0 – unperturbed part of L, L1, L2 – first and second order pertur-
bation of L respectively, and ε – small parameter measuring the scale of ran-
dom fluctuation of generalized thermo-micropolar elastic inhomogeneities
of the medium.

Then employing iterative operations [23] it can be shown that the mean
field 〈V 〉 satisfies the equation

[L0 + ε〈L1〉 + ε2{〈L2〉 + 〈L1〉L−1
0 〈L′

1〉 − 〈L1L−1
0 L′

1〉}]〈V 〉 = F (3)
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with
L0Gij(~x, ~x′, t, t′) = δ(~x, ~x′)δ(t, t′)δij . (4)

Here〈V (~x, t)〉 is defined as the mean field quantity being the statistical
average of the field vectors, an ensemble average. Also Gij is the appro-

priate Green’s matrix (computed in the infinite domain) for L0, δ(~x, ~x′) is
the Dirac delta function and δij is the Kronecker delta. Equation (3) is
evidently an integro-differential equation, as in terms of G0, L−1

0 becomes

L−1
0 f =

∫

G(~x, ~x′)f(~x′)d~x′.

The present analysis aims at investigating the effects of random inhomo-
geneities on the propagation of waves in an interacting generalized thermo-
micropolar elastic medium. The equations of motion, constitutive equa-
tions and boundary conditions for the micropolar elastic field have been
derived by Eringen [2]. The generalized thermal coupling is assumed to
vary randomly only in the perturbed field. It may be recorded here that
this assumption was necessitated to facilitate computation of the associated
Green’s matrix [18,25,42]. Therefore L0 effectively represents the linear
partial differential operator involving parameters of the unperturbed mi-
cropolar elastic medium only. Operator L acts on the displacement vector
~u, the microrotation vector ~φ and θ, the temperature. Six different types
of body waves, which propagate in the non-random medium, depend upon
the random inhomogeneities of the medium. The dispersion equations for
these six longitudinal and transverse types of waves have been obtained.
They involve terms up to the order of ε2, since 〈L1〉 6= 0 in this case. How-
ever, finally the effect of randomness comes to alter the wave number to the
order of ε2 only. Theoretically therefore the effect of randomness comes to
be small to the order of ε2. Deviations in the propagation constants from
their unperturbed values have been calculated in terms of δl, δn, δc, δs. for
different types of waves defined in the text in Sec. 4. These quantities in-
volve auto- and cross-correlation functions between micropolar elastic and
generalized thermal field parameters. Assuming simple auto-correlation
functions only for density and two thermo-mechanical coupling parameters
in the forms [25,29]

Rρρ(r) = 〈ρ2
1〉e−

r
a and Rmm(r) = 〈ρ2

1〉e−
r
b , Rmm∗(r)e

−
r

b1 ,

where 〈ρ2
1〉 is the mean square value of the perturbation density ρ1, and

a, b, b1 are correlation lengths of inhomogeneities, and all other parameters
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viz., λ, µ, α, etc., to be nonrandom, it has been shown that body waves
for which the deviations are measured in terms of δc, δs, attenuate for high
frequencies. It has been proved earlier [18] that second moments of the
form 〈¯̄vT v̄〉−〈¯̄vT 〉〈v̄〉 is a small quantity of the order of ε only but certainly
larger than the order of ε2, (v being the solution of the equation Lv(~x) = 0
referred to in Sec. 9). The same result applies in this case too. Components
of associated Green’s matrix which were computed earlier have been quoted
in Appendix I as a ready reference. The various integrals viz., a11, b63, etc.
involving correlation functions between different micropolar, elastic and
generalized thermal parameters have been reduced to radial forms; these
are presented in Sec. 6. In all these cases, lengthy and cumbersome com-
putations become unavoidable. Radial transformations ensure symmetrical
propagation of radiations in all directions in the infinite medium.

Field equations for a micropolar elastic medium under the influence of
a generalized thermal field are written explicitly. The displacement equa-
tion of motion in the randomly varying inhomogeneous micropolar elastic
medium is written following Eringen [1] and Chow [25] as

(λ + µ)~∇(~∇ · ~u) + (µ + κ)∇2~u + ~∇λ(~∇ · ~u) + ~∇µ × (~∇ × ~u)

+ (~∇(2µ + κ) · ~∇)~u + ~∇ × (κ~φ) − ~∇[m{θ + t1θ̇}] + ~f = ρ~̈u .
(5)

The microrotation equation of motion is represented by [1]

κ(~∇ × ~u) + (α + β)~∇(~∇ · ~φ) + (~∇α(~∇ · ~φ)) + γ∇2~φ

+ ~∇β × (~∇ × ~φ) + {~∇(β + γ) · ~∇}~φ − 2κ~φ + ~l = ρj ~̈φ .
(6)

Finally the generalized thermal equation is written following Ignaczak and
Ostoja-Starzewski [21], Bera [29], and Singh [10] as

η[θ̇ + t0θ̈] = ~∇ · [ν ~∇θ] − θ0m~∇ · [~̇u + δlkt0~̈u] + q , (7)

where θ̇ = θ(−→x ,t)
∂t , θ̈ = ∂2θ(−→x ,t)

∂t2 , etc. Here
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~u(~x, t) – displacement vector,
~φ(~x, t) – microrotation vector,
θ(~x, t) – temperature,
m(~x) – thermomechanical coupling parameter,
= (λ + µ)ᾱ, ᾱ – thermal expansion coefficient,
(α, β, γ, κ)(~x) – micropolar elastic moduli,
(λ, µ)(~x) = Lame′ – elastic parameters,
ρ(~x) – mass density,
j – a nonrandom micropolar constant such that

j ≥ 0,
~f(~x, t), .~l(~x, t), q(~x, t) – body force, body couple per unit mass and heat

source respectively,
η(~x) = ρc, c – specific heat,
ν(~x) – thermal diffusivity,
v = – solution of the differential equation Lv(~x) = 0,
v0 – solution of the differential equation Lv0(~x) = 0,
θ0 – constant reference temperature,
t0 – initial thermal relaxation time,
t1(~x) – thermal relaxation time, t1 ≥ t0 ≥ 0,
δlk = 1, t1 = 0, k = 1 – for Lindsay-Shulman (L-S) model of general-

ized thermoelasticity,
δlk = 0, t1 > 0, k = 2 – for Green-Lindsay (G-L) model of generalized

thermoelasticity.
Let the differential operators (M, N, R), (P, Q), (K, S) act respectively on
~u, ~φ, and θ. Then field Eqs. (5)–(7) can be put in matrix form:

LV (~x, t) =







M P K
N Q 0
R 0 S






(~x, t)







~u(~x, t)
~φ(~x, t)
T (~x, t)






= F (~x, t) =







~f(~x, t)
~l(~x, t)
q(~x, t)






. (8)

Differential operators (M, P, K, N, Q, R, S)(~x, t) are explicitly defined as

M~u = ρ∂2~u
∂t2 − (λ + µ)~∇(~∇ · ~u) − (µ + κ)∇2~u − ~∇λ(~∇ · ~u)

−~∇µ × (~∇ × ~u) − (~∇(2µ + κ) · ~∇)~u,

P ~φ = −~∇ × (κ~φ),

Kθ = ~∇
[

m(θ + t1
∂θ
∂t )

]

= ~∇(mθ) + ~∇(mt1
∂θ
∂t ) =

[

~∇(m×) + ~∇(mt1
∂
∂t)

]

θ,

N~u = −κ(~∇ × ~u),
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Q~φ = ρj ∂2 ~φ
∂t2 − (α + β)~∇(~∇ · ~φ) − ~∇α(~∇ · ~φ) − γ∇2~φ − ~∇β × (~∇ × ~φ)

−(~∇(β + γ) · ~∇)~φ + 2κ~φ ,

R~u = θ0m~∇ ·
[

∂~u
∂t + δlkt0

∂2~u
∂t2

]

=

[

θ0m~∇ ·
(

∂
∂t + δlkt0

∂2

∂t2

)]

~u ,

Sθ = η

(

∂θ

∂t
+ t0

∂2θ

∂t2

)

− ~∇ · (ν∇θ) =

[

η

(

∂

∂t
+ t0

∂2

∂t2

)

− ~∇ · (ν ~∇)

]

θ .

(9)
Next let us assume

V (~x, t) =







~u(~x)
~φ(~x)
θ(~x)






e−iωt = V0(~x)e−iωt, (say) (10)

and

F (~x, t) =







~f0(~x)
~l0(~x)
q0(~x)






e−iωt = F0(~x)e−iωt . (11)

Here ω is the frequency of propagating wave and i =
√

−1. The mean field
Eq. (3), involving the Green’s matrix, can be put in the form

[

L0(~x) + ε〈L1(~x)〉 + ε2

{

〈L2(~x)〉 + 〈L1(~x)〉L−1
0 (|~x − ~x′|)〈L1(~x′)〉

−〈L1(~x)L−1
0 (|~x − ~x′|)L1(~x′)〉

}]

〈V0(~x′)〉 = F0 ,
(12)

where the associated Green’s tensor is the kernel of the nonrandom operator
equation represented by

L0Gij(~x, ~x′) = δ(~x, ~x′)δij . (13)

Then Eqs. (10) and (11) redefine operators (M, P, K, N, Q, R, S)(~x, t) as

M = −ρω2 − (λ + µ)~∇(~∇·) − (µ + κ)∇2 − ~∇λ(~∇·) − ~∇µ × (~∇×) −
(

~∇(2µ +

κ) · ~∇
)

,

P = −~∇ × (κ),

K = ~∇(m×) − iω~∇(mt1) = ~∇(m×) − iω~∇(m•), m• = mt1(say),

N = −κ(~∇×)
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Q = −ρjω2−(α+β)~∇(~∇·)−~∇α(~∇·)−γ∇2−~∇β×(~∇×)−{~∇(β+γ)·~∇}+2κ

R = −ωθ0m~∇ ·
[

i + δlkt0ω)

]

= −iωθ0

[

1 − iδlkt0ω)

]

m(~∇·),

S = −iω(1−it0ω)η−(~∇·
(

ν∇)

)

.

(14)

3 Solution

Let us assume plane wave propagation in the medium and set






~u(~x)
~φ(~x)
θ(~x)






=







~A
~B
C






ei~k·~x (15)

Here ~k indicates direction of the propagating wave and
∣

∣

∣

~k
∣

∣

∣ = k is the

wave number. Then the physical parameters λ, µ, ρ, α, β, γ, κ, η, ν, m, and
m• = t1m, are random functions of ~x(x, y, z), and since random deviations
are small, we write, following, Karal and Keller [22] and Chow [25]:

(λ, µ, ρ, α, β, γ, κ, η, ν, m, m•) = (λ0, µ0, ρ0, α0, β0, γ0, κ0, η0, ν0,

m0 = 0, m•

0 = 0)+ε(λ1, µ1, ρ1, α1, β1, γ1, κ1, η1, ν1, m1, m•

1)(~x) , (16)

where (λ0, ...., ν0) are constants and (λ1, ....., ν1, m1, m•
1) are functions of ~x

representing random fluctuations of the corresponding quantities such that

〈λ1, ......, ν1〉 = 0 . (17)

Conditions (16) and (17) ensure that fluctuations from nonrandom values
of parameters remain small. It is further assumed that

m = εm1(~x), such that 〈m1(~x)〉 = m2, (say), m2 6= 0 ,

and m• = εm•

1(~x), such that 〈m•

1(~x)〉 = m3, (say), m3 6= 0 . (18)

The last two assumptions confirm that the generalized thermal field is taken
to be weakly random. A new parameter m•(~x) = (t1m)(~x), is introduced
characterizing the random thermal coupling with the micropolar elastic
medium. By the help of Eqs. (16)–(18) one gets

L0 =







M0 P0 0
N0 Q0 0
0 0 S0






, (19)
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L1(~x) =







M1 P1 K1

N1 Q1 0
R1 0 S1






(~x) (20)

and
M0 = −ρ0ω2 − (λ0 + µ0)~∇(~∇·) − (µ0 + κ0)∇2 ,

P0 = −κ0(~∇×) = N0 ,

Q0 = (2κ0 − ρ0jω2) − (α0 + β0)~∇(~∇·) − γ0∇2 ,

S0 = −iω(1 − it0ω)η0 − ν0∇2 . (21)

The deterministic operators save S0 are independent of generalized ther-
mal relaxation parameters and the thermo-mechanical parameters. How-
ever the perturbed operators K1, R1, S1, are characterized by m1, m•

1, t0, t1,
such that
M1 = −ρ1ω2 − (λ1 + µ1)~∇(~∇·) − (µ1 + κ1)∇2 − ~∇λ1(~∇·) − ~∇µ1 × (~∇×) −
{~∇(2µ1 + κ1) · ~∇}
P1 = −~∇ × (κ1),

K1 = ~∇(m1) − iω~∇m•
1 ,

N1 = −κ1(~∇×) ,

Q1 = −ρ1jω2 − (α1 +β1)~∇(~∇·)− ~∇α1(~∇·)−γ1∇2 − ~∇β1 × (~∇×)− (~∇(β1 +
γ1) · ~∇) + 2κ1 ,

R1 = −iωθ0(1 − iδlkt0ω)m1( ~∇·) ,

S1 = −iω(1 − it0ω)η1 − {~∇ · (ν1∇)} .
(22)

A computational note is given below:

S = −iω(1 − it0ω)η − (~∇ · (ν∇)

= −iω(1 − it0ω)(η0 + εη1) − ~∇ · [(ν0 + εν1)~∇]

= −iω(1 − it0ω)η0 − ~∇ · (ν0
~∇) − εiω(1 − it0ω)η1 − ε~∇ · (ν1

~∇)

= {−iω(1 − it0ω)η0 − ν0∇2] + {−εiω(1 − it0ω)η1ε~∇ · (ν1
~∇)}

= S0 + εS1] .

By virtue of Eqs. (17)–(18) one obtains

〈L1〉 =







0 0 (m2 − iωm3)~∇
0 0 0

−iωθ0(1 − iδlkt0ω)m2(~∇·) 0 0






6= 0, (23)
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where

m2 = 〈m1(~x)〉 = const. 6= 0, m3 = 〈m•

1(~x)〉 = const. 6= 0 and 〈L2〉 = 0 .
(24)

Thus Eq. (3) involves first and second perturbation terms; with vanishing
body force, body couple and the heat source, Eq. (12) reduces to

[

L0(~x) + ε〈L1(~x)〉 + ε2

{

〈L1(~x)〉L−1
0 (|~x − ~x′|)〈L1(~x′)〉

−〈L1(~x)L−1
0 (|~x − ~x′|)L1(~x′)〉

}]

〈V0(~x′)〉 = 0 .

(25)

The components of Green’s tensor corresponding to L−1
0 are given by (say),

Gij =







G0 G1 0
G2 G3 0
0 0 G4






. (26)

The components G0(r), G1(r), G2(r), and G3(r) have already been evalu-
ated [18] and have been given in the Appendix I. The component G4(r) is
defined by

∇2G4(r) +
iω(1 − iωt0)η0

ν0
G4(r) = δ(~x − ~x′)δij .

Hence

G4(r) = −eiβr

4πr
I3 , (27)

where

β =

[

iω(1 − iωt0)η0

ν0

]

1
2

,

and I3 is the identity matrix.
Hence

β =
√

ωη0

2ν0

{[

√

ω2t2
0 − 1 + ωt0

]

1
2

+ i

[

√

ω2t2
0 − 1 − ωt0

]

1
2
}

= β1 + iβ2(say).

(28)

It is observed that Gi(r), i = 0, 1, 2, 3 are independent of thermo-mechanical
coupling parameter m(~x) and generalized thermoelastic relaxation times
t0, t1, and m•(~x). On the other hand G4(r) is independent of m(~x) but
depends upon the generalized thermoelastic relaxation time t0. Substituting
(15) in the mean field Eq. (25) one gets the following three vector equations:
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[ρ0ω2 ~A − (λ0 + µ0)(~k · ~A)~k − (µ0 + κ0)k2 ~A] + iκ0(~k × ~B) − ε(im2 + ωm3)C~k

+ε2
[

ωθ0(1 − ωt0δlk)m2(m2 − iωm3)(~k · ~A)
]

∫

[

(~∇G4)
]

e−i~k·~rd~r

−ε2
∫







〈[M1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+P1{G2(M ′
1

~A + P ′
1

~B + K ′
1C) + G3(N ′

1
~A + Q′

1
~B)}

+K1G4(R′
1

~A + S′
1C)]〉






e−i~k·~rd~r = 0,

(29)

iκ0(~k × ~A) − [(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k · ~B)~k]

−ε2
∫

[

〈[N1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+Q1{G2(M ′
1

~A + P ′
1

~B + K ′
1C) + G3(N ′

1
~A + Q′

1
~B)}]〉

]

e−i~k·~rd~r = 0,

(30)
and
[iω(1 − it0ω)η0 − ν0k2]C − εωθ0(1 − iωt0δlk)m2(~k · ~A)

+ε2[ωθ0(1 − iωt0δlk)m2(m2 − iωm3)]C
∫

[(~∇ · G0
~k)]e−i~k·~rd~r

−ε2
∫

[

〈[R1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+S1G4(R′
1

~A + S′
1C)]〉

]

e−i~k·~rd~r = 0.

(31)
Eliminating C from (29) and (30) with the help of (31) one gets the fol-
lowing two equations:

[ρ0ω2 ~A − (λ0 + µ0)(~k · ~A)~k − (µ0 + κ0)k2 ~A] + iκ0(~k × ~B)

−ε2 ωθ0(1 − iωt0δlk)m2(im2 + ωm3)(~k · ~A)
iω(1 − it0ω)η0 − ν0k2

~k

+ε2
[

ωθ0(1 − ωt0δlk)m2(m2 − iωm3)(~k · ~A)
]

∫

[

(~∇G4)
]

e−i~k·~rd~r

−ε2
∫







[〈M1G0M ′
1〉 ~A + 〈M1G0P ′

1〉 ~B + 〈M1G1N ′
1〉 ~A

+〈M1G1Q′
1〉 ~B + 〈P1G2M ′

1〉 ~A + 〈P1G2P ′
1〉 ~B

+〈P1G3N ′
1〉 ~A + 〈P1G3Q′

1〉 ~B + 〈K1G4R′
1〉 ~A]






e−i~k·~rd~r = 0, (32)

and
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iκ0(~k × ~A) − [(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k · ~B)~k]

−ε2
∫







〈N1G0M ′
1〉 ~A + 〈N1G0P ′

1〉 ~B + 〈N1G1N ′
1〉 ~A

+〈N1G1Q′
1〉 ~B + 〈Q1G2M ′

1〉 ~A + 〈Q1G2P ′
1〉 ~B

+〈Q1G3N ′
1〉 ~A + 〈Q1G3Q′

1〉 ~B






e−i~k·~rd~r = 0 .

(33)
Some computations of the form

〈M1GoM ′

1〉 ~A = e−i~k·~x′〈M1GoM ′

1〉( ~Aei~k·~x′

) ,

are shown in the Appendix II. The integral in the third term of (32)

=

∫

[~∇(G4(r)]e−i~k·~rd~r

= −ik̂

∫

∝

0
eiβr sin krdr, β = β1 + iβ2, β1 = Reβ, β2 = Imβ. (34)

=
−ik̂

2

[

β1 + k

β2
2 + (β1 + k)2

− β1 − k

β2
2 + (β1 − k)2

+iβ2

(

1

β2
2 + (β1 − k)2

− 1

β2
2 + (β1 + k)2

)]

. (35)

Hence (32) can be rewritten as

[ρ0ω2 ~A − (λ0 + µ0)(~k · ~A)~k − (µ0 + κ0)k2 ~A] + iκ0(~k × ~B)

−ε2 ωθ0(1 − iωt0δlk)m2(im2 + ωm3)(~k · ~A)
iω(1 − it0ω)η0 − ν0k2

~k

−ε2
[

ωθ0(1 − ωt0δlk)m2(im2 + ωm3)(~k · ~A)
⌢
k
]

∫

∝

0
eiβr sin krdr

−ε2
∫







[〈M1G0M ′
1〉 ~A + 〈M1G0P ′

1〉 ~B + 〈M1G1N ′
1〉 ~A

+〈M1G1Q′
1〉 ~B + 〈P1G2M ′

1〉 ~A + 〈P1G2P ′
1〉 ~B

+〈P1G3N ′
1〉 ~A + 〈P1G3Q′

1〉 ~B + 〈K1G4R′
1〉 ~A]






e−i~k·~rd~r = 0. (36)

Thus we are left with two vector Eqs. (36) and (33), determining the prop-
agation of waves in the interacting random medium. It is to be noted that
none of these equations include any term of the order of ε even though
〈L1〉〈V0(~x)〉 6= 0. Effects of randomness therefore is small to the order of ε2.
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4 Analysis of first perturbation dispersion
equations

We get back to considering Eqs. (29)–(31) to ε-order terms only, assuming
without loss of generality:

~k = (k, 0, 0), ~A = (A1, A2, 0), ~B = (B1, B2, B3) . (37)

Hence (29)–(31) reduce to

[ρ0ω2 ~A−(λ0+µ0)(~k · ~A)~k−(µ0+κ0)k2 ~A]+iκ0(~k× ~B)−ε(im2+ωm3)C~k = 0,
(38)

iκ0(~k × ~A) − [(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k · ~B)~k] = 0, (39)
and
[iω(1 − it0ω)η0 − ν0k2]C − εωθ0(1 − iωt0δlk)m2(~k ~A) = 0. (40)

Eliminating C as before from Eq. (38) one gets

[ρ0ω2 ~A − (λ0 + µ0)(~k · ~A)~k − (µ0 + κ0)k2 ~A] + iκ0(~k × ~B)

−ε2(im2 + ωm3)
ωθ0(1 − iωt0δlk)m2(~k · ~A)

iω(1 − it0ω)η0 − ν0k2
~k = 0 .

(41)

Thus (39) and (41) represent two dispersion equations. Terms to the order
ε however disappears from these equations. The equations almost reduce to
two deterministic equations except for the presence of a second perturbation
term in (41) inducing a weak thermoelastic influence on propagation of
waves. These equations lead to the following six equations:

[ρ0ω2 −(λ0 +2µ0 +κ0)k2]A1 −ε2(im2 +ωm3)
ωθ0(1 − iωt0δlk)m2k2

iω(1 − it0ω)η0 − ν0k2
A1 = 0 ,

(42)
[ρ0ω2 − (µ0 + κ0)k2]A2 + iκ0kB3 = 0 , (43)

iκ0kB2 = 0 .

This last equation indicates
B2 = 0 . (44)

This indicates that microrotation waves do not propagate along the direc-
tion of B2. Also Eq. (39) gives three Eqs. (45), (46), and (47):

(2κ0 − ρ0jω2 + γ0k2) + (α0 + β0)k2]B1 = 0 (45)

and
(2κ0 − ρ0jω2 + γ0k2)B2 = 0 .
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This indicates that B2 = 0, but

2κ0 − ρ0jω2 + γ0k2 6= 0 . (46)

This confirms that there is no propagation along the direction of B2. The
third equation is

iκ0kA2 − (2κ0 − ρ0jω2 + γ0k2)B3 = 0 . (47)

The dispersion equation for longitudinal waves propagating along the di-
rection of ~k is represented by (42), that is, by

[

ρ0ω2−(λ0+2µ0+κ0)k2
]

−ε2(im2+ωm3)
ωθ0(1 − iωt0δlk)m2k2

iω(1 − it0ω)η0 − ν0k2
= 0 . (48)

This is a fourth degree equation in the wave number k. From Eq. (48) effects
of randomness of the generalized thermal field determined by the presence
of m2, and m3 is discernible to terms to the order of ε2.

Equation (45) determines the propagation of microrotation waves along
the direction of B1; the wave number is determined by

k2 =
ρ0jω2 − 2κ0

α0 + β0 + γ0
. (49)

Waves having amplitudes A2 and B3 are coupled by Eqs. (43) and (47).
Eliminating A2 and B3 one gets the dispersion equation for the propagation
of coupled waves in the form

A2

B3
= − iκ0k

ρ0ω2 − (µ0 + κ0)k2
=

2κ0 − ρ0jω2 + γ0k2

iκ0k
,

or
[

ρ0ω2 − (µ0 + κ0)k2
][

2κ0 − ρ0jω2 + γ0k2
]

= κ2
0k2 . (50)

This equation which is again a fourth degree equation in the wave number
k however determines the dispersion equation of waves propagating in the
non-thermal micropolar elastic medium. Equation (48) only includes one
ε2-order term which represents small generalized thermal effects. Equations
(48), (49), and (50) can easily be solved numerically.
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5 Analysis of dispersion equations

We proceed to analyze dispersion Eqs. (33) and (36). Each term of the

form
∫

〈M1G0M ′
1〉 ~Aei~k·~x′

contains linear functions of the displacement am-
plitudes, A1, A2, A3, and the microrotation amplitudes B1, B2, B3. Each
of the integrals involves correlation functions between different micropolar
elastic and generalized thermal parameters including the generalized ther-
momechanical coupling parameters m and m•. It is observed that none

of the integrands of the forms 〈M1G0M ′
1〉 ~Aei~k·~x′

contains the perturbed
operator S1. Thus wave propagation in the coupled random medium is in-
dependent of the perturbation in the classical thermal parameters η(~x) and
ν(~x). Moreover the only integrand representing effects of random variation

of generalized thermal field is 〈K1G4R′
1〉 ~Aei~k·~x′

. The integrand involves the
random coupling variable m•. In a latter section we will analyze (33) and

(36) retaining the integral
∫

〈K1G4R′
1〉 ~Aei~k·~x′

d~x′ and making all other cor-
relation functions vanish.

Now equations (36) and (33) give rise to six equations. Then terms of
the order ε2 in each of these equations are arranged as linear combinations
of five amplitudes A1, A2, B1, B2, B3, the coefficients of each of which being
integrals involving different correlation functions. Rewriting one gets:

[

ρ0ω2 − (λ0 + 2µ0 + κ0)k2

]

A1 − ε2 ωθ0(1−iωt0δlk)m2(im2+ωm3)k2

iω(1−it0ω)η0−ν0k2 A1

−ε2ωθ0(1 − iωt0δlk)m2(im2 + ωm3)kA1
∫

∝

0 eiβr sin krdr
−ε2[a11A1 + a12A2 + b11B1 + b12B2 + b13B3] = 0 ,

(51)

[ρ0ω2 − (µ0 + κ0)k2]A2 − iκ0kB3

−ε2[a21A1 + a22A2 + b21B1 + b22B2 + b23B3] = 0 , (52)

iκ0kB2 − ε2[a31A1 + a32A2 + b31B1 + b32B2 + b33B3] = 0 , (53)

[ρ0jω2 − 2κ0 − (α0 + β0 + γ0)k2]B1

−ε2[a41A1 + a42A2 + b41B1 + b42B2 + b43B3] = 0 , (54)

(ρ0jω2−2κ0−γ0k2)B2−ε2[a51A1+a52A2+b51B1+b52B2+b53B3] = 0 , (55)

iκ0kA2 + (ρ0jω2 − 2κ0 − γ0k2)B3

−ε2[a61A1 + a62A2 + b61B1 + b62B2 + b63B3] = 0 . (56)
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The integrands in the coefficients, alj and blk(l = 1, 2, ..., 6; j = 1, 2; k =
1, 2, 3), are long expressions involving: (i) components of Green’s tensor
and their first and second order derivatives with respect to Cartesian co-
ordinates, and (ii) various correlation functions (there are 49+2 in all, the
last two being the auto-correlation function of the non-generalized thermo-
mechanical coupling parameter and the cross-correlation function between
the two thermo-mechanical coupling parameters) and their first and second
order derivatives with respect to Cartesian coordinates.

6 Transformation to radial forms

The transformation of these integrals from Cartesian to radial forms are
therefore carried out under the substitutions

~r = ~x − ~x′ = (ξ, η, ζ) = (r cos θ, r sin θ cos φ, r sin θ sin φ)

so that
∂

∂x
=

∂

∂ξ
= − ∂

∂x′
, etc. (57)

The Green’s tensor and the correlation functions are all functions of r =
|~r| alone. Thus 30 coefficients alj and blk are all functions of the wave
number k alone. The expressions for a11, a22, a62, b23, b51, b63, which enter
into the dispersion relations governing wave propagation in the medium are
transformed into radial forms; the other coefficients which involve similar
lengthy and cumbersome expressions are omitted. The expression for a11

dependent on thermal parameters is computed as
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(58)

where

R1(r) = 〈(λ1 + µ1)(λ′
1 + 2µ′

1 + κ′
1)〉 ,

R2(r) = 〈(µ1 + κ1)(λ′
1 + 2µ′

1 + κ′
1)〉 ,

Rλρ(r) = 〈λ1ρ′

1〉, Rmm(r) = 〈mm′〉, Rmm•(r) = 〈mm•′〉, etc.

λ1 = λ1 (~x), λ′
1 = λ′

1 (~x′),
m1 = m1(~x), m•

1 = m1t = m•
1(~x),

m′
1 = m1(~x′), m•

1
′ = m1t = m•

1(~x′), etc.
(59)

and

f =
sin kr

kr
, f ′ =

df

d(kr)

(G1)′

11 =
d(G1)11

dr
, R′

1 =
dR1

dr
, etc. (60)

R7(r) =
〈

(α1 + β1) (2κ′

1 − jω2ρ′

1)
〉

.

The radial expressions for coefficients a22, a62, b23, b51, b63, which are inde-
pendent of thermal field can be found in [18]. However the expression for
b63 is reproduced illustratively as also as a ready reference for the analysis
given below.
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(61)

where
R7(r) =

〈

(α1 + β1) (2κ′
1 − jω2ρ′

1)
〉

,
R8(r) = 〈(α1 + β1 + γ1)γ′

1〉,
R9(r) =

〈

(β1 + 4γ1) (2κ′
1 − jω2ρ′

1)
〉

,
R10(r) =

〈

(β1 + 2γ1) (2κ′
1 − jω2ρ′

1)
〉

,

R11(r) = 〈(2κ1 − jω2ρ1)(2κ′

1 − jω2ρ′

1)〉 =

= 4〈κ1κ′

1〉 − 2jω2[〈ρ1κ′

1〉 + 〈ρ′

1κ′

1〉
]

+ j2ω4〈ρ1ρ′

1〉. (62)

7 Analysis of equations (51)–(56)

(i) Let
k2 = k2

l + ε2δl , (63)

where

k2
l =

ρ0ω2

α0 + β0 + γ0
(64)

be taken as a solution of Eqs. (51)–(56). Substituting in (54) one gets the
equation

{−
[

2κ0 − ρ0jω2 + (α0 + β0 + γ0)
]

k2
l }B1

−ε2{
[

a41A1 + a42A2 +
[

b41 + (α0 + β0 + γ0)δl

]

B1 +

b42B2 + b43B3

]

k=kl
} = 0.
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Hence

B1 ≈ O(ε2) . (65)

Similarly it can be shown from Eq. (57) that

B2 ≈ O(ε2) . (66)

From (52) one gets

[

ρ0ω2 − (µ0 + κ0)k2
l

]

A2 − iκ0klB3

−ε2
[

a21A1 +
{

a22 + (µ0 + κ0)δl

}

A2 + b21B1 + b22B2+

{b23 − iκ0
2kl

}B3
]

k=kl
= 0 .

Similarly from (56) one gets

iκ0klA2 + (ρ0jω2 − 2κ0 − γ0k2
l )B3

−ε2
[

a61A1 + (a62 + iκ0
2kl

)A2 + b61B1 + b62B2 + (γ0δl + b63)B3
]

k=kl
= 0.

Thus from these two equations it can be concluded that for finite A1

A2 ≈ O(ε2) and B3 ≈ O(ε2) . (67)

Lastly the first Eq. (51) becomes, on neglecting A2, B1, B2, and B3, as these
amplitudes are small to the order ε2 only:

[

ρ0ω2 − (λ0 + 2µ0 + κ0)(k2
l + ε2δl)

]

A1

−ε2 ωθ0(1−iωt0δlk)m2(im2+ωm3)k2
l

iω(1−it0ω)η0−ν0k2
l

A1

−ε2ωθ0(1 − iωt0δlk)m2(im2 + ωm3)klA1
∫

∝

0 eiβr sin klrdr

−ε2[a11]k=kl
A1 = 0.

Rewriting, one obtains, assuming A1 to be finite,

−(λ0 + 2µ0 + κ0)ε2δlA1 + ε2D3A1 + ε2D4A1 − ε2a11(kl)A1 = 0 ,

where

D3(kl) = −ωθ0(1 − iωt0δlk)m2(im2 + ωm3)k2

iω(1 − it0ω)η0 − ν0k2 ,

D4(kl) = −ωθ0(1 − iωt0δlk)m2(im2 + ωm3)kl
∫

∝

0 eiβr sin klrdr .
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Hence

δl =
D3(kl) + D4(kl) − a11(kl)

λ0 + 2µ0 + κ0
. (68)

where

D3(kl) = −ωθ0(1 − iωt0δlk)m2(im2 + ωm3)k2

iω(1 − it0ω)η0 − ν0k2

=
−ωθ0m2

2k2(1 − it0ω)
[

(ωη0 − ν0k2) + it0ωη0
]

(ωη0 − ν0k2)2 + (t0ωη0)2 , t1 = 0, δlk = 1, (L − S),

=
−ωθ0m2k2[(m2 − iωm3)(ωη0 − ν0k2) + it0ωη0

]

(ωη0 − ν0k2)2 + (t0ωη0)2 , δlk = 0, t1 > 1, (G − L).

(69)
and

D4(kl) = −ωθ0(1 − iωt0δlk)m2(im2 + ωm3)kl

∫

∝

0 eiβr sin klrdr
= −ωθ0m2

2kl[t0ω + i]
∫

∝

0 eiβr sin klrdr, t1 = 0, δlk = 1, (L − S),
= −ωθ0m2kl[ωm3 + im2]

∫

∝

0 eiβr sin klrdr, t1 > 0, δlk = 0, (G − L).
(70)

Thus Eq. (68) determines δl given by (63). The integral in D4 can be easily
evaluated. The change in wave number δl which is small therefore depends
upon the random variation of the generalized thermal field and measured
in terms of statistical means, m2, m3, for both L-S and G-L theories. For
L-S, the change depends upon m2 only, and for G-L upon m2, m3, (for,
L-S, t1 = 0, δlk = 1, k = 1, and for G-L, t1 > 0, δlk = 0, k = 2. Generalized
thermal relaxation times t0 and t1 satisfy ([10,21,29,42]) the inequalities
t1 ≥ t0 ≥ 0).

Thus it is observed that for waves for which the wave number k satis-
fies Eqs. (63)–(64), the amplitude A1 is important in comparison to other
amplitudes A2, B1, B2, and B3. Therefore Eq. (63), which represents longi-
tudinal type of displacement waves, is modified due to random fluctuation
of inhomogeneities of the medium such that the wave number is increased
by ε2 δl

2kl
.

(ii) Next let us consider waves for which

k2 = k2
n + ε2δn, where k2

n =
ρ0jω2 − 2κ0

α0 + β0 + γ0
. (71)
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From (51) one gets

[ρ0ω2 − (λ0 + 2µ0 + κ0)k2
n]A1 − ε2(λ0 + 2µ0 + κ0)δnA1

−ε2 ωθ0(1 − iωt0δlk)m2(im2 + ωm3)k2
n

iω(1 − it0ω)η0 − ν0k2 A1

−ε2ωθ0(1 − iωt0δlk)m2(im2 + ωm3)knA1
∫

∝

0 eiβr sin knrdr

−ε2[a11A1 + a12A2 + b11B1 + b12B2 + b13B3]k=kn = 0 .

This shows that
A1 ≈ O(ε2) . (72)

From (53) it follows that

[

iκ0 +
ε2δn

2k2
n

iκ0

]

knB2 − ε2[a31A1 + a32A2 + b31B1 + b32B2 + b33B3
]

= 0.

This shows that
B2 ≈ O(ε2) . (73)

Also from (52) and (56) it can be shown that for finite B1,

[

ρ0ω2 − (µ0 + κ0)k2
n

]

A2 − iκ0knB3 − ε2δn(µ0 + κ0)A2 − ε2δn

2k2
n

iκ0knB3

−ε2
[

a21A1 + a22A2 + b21B1 + b22B2 + b23B3

]

= 0
(73a)

and

iκ0knA2 + (ρ0jω2 − 2κ0 − γ0k2
n)B3 + ε2δn

2k2
n

iκ0knA2 − ε2δnγ0B3

−ε2
∫ [

a61A1 + a62A2 + b61B1 + b62B2 + b63B3
]

= 0 ,
(73b)

respectively. From these two Eqs. (73a) and (73b) it is clear that

A2 ≈ O(ε2) and B3 ≈ O(ε2) . (74)

Equation (54) however, determines δn, since

−ε2δn(α0 + β0 + γ0)B1

−ε2
∫ [

a41A1 + a42A2 + b41B1 + b42B2 + b43B3
]

= 0

and (A1, A2, B2, B3) ≈ O(ε2). Hence, if B1 is finite, then

δn =
−b41

α0 + β0 + γ0
. (75)
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Therefore, δn = 0 if b41 = 0 and amplitude B1 is finite.
It is observed that for the waves represented by (71), the amplitude B1

is important in comparison to the amplitudes A1, A2, B2, and B3. These
are amplitudes of longitudinal type microrotation waves propagating in the
random generalized thermoelastic micropolar field but are scarcely affected
by the random inhomogeneities of the medium.

(iii) Next let us examine the propagation of elastic waves for which

k2 = k2
c + ε2δc, k2

c =
ρ0ω2

λ0 + 2µ0
, (76)

and

k2 = k2
s + ε2δs, k2

s =
ρ0ω2

µ0
. (77)

Substituting (76) in (51) one observes

[−κ0ρ0ω2 − ε2(λ0 + 2µ0 + κ0)(λ0 + 2µ0)δc]A1

−ε2 ωθ0(1 − iωt0δlk)m2(im2 + ωm3)k2
c

iω(1 − it0ω)η0 − νok2
c

(λ0 + 2µ0)A1

−ε2ωθ0(1 − iωt0δlk)m2(im2 + ωm3)(λ0 + 2µ0)kcA1
∫

∝

0 eiβr sin krdr

−ε2(a11A1 + a12A2 + b11B1 + b12B2 + b13B3)(λ0 + 2µ0) = 0 .

Hence
A1 ≈ O(ε2) . (78a)

Substituting (76) in (55) it can be similarly shown that

B2 ≈ O(ε2) . (78b)

From (54) one can similarly conclude that

B1 ≈ O(ε2) . (79)

Two equations (52) and (56) are coupled with the transverse amplitudes
A2 and B3 such that

[ρ0ω2 − (µ0 + κ0)k2]A2 − iκ0kB3 − ε2(b22B2 + b23B3) = 0

and

iκ0kA2 + (ρ0jω2 − 2κ0 − γ0k2)B3 − ε2(b62B2 + b63B3) = 0 .
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Eliminating A2 and B3 one obtains the dispersion equation for two sets
of transverse type of displacement and microrotation waves propagating in
the uncoupled micropolar elastic medium and independent of thermal field,
as no thermal parameter is involved in any of the integrals b22, b23, b62, and
b63, given by

[

ρ0ω2 − (µ0 + κ0)k2
](

ρ0jω2 − 2κ0 − γ0k2
)

− κ2
0k2

−ε2

[

a22(ρ0jω2 − 2κ0 − γ0k2) + b63

[

ρ0ω2 − (µ0 + κ0)k2
]

+iκ0k(a62 − b23)

]

= 0.

(80)

This equation involves integrals a22, a62, b23, and b63 each involving correla-
tion functions between non-thermal medium-parameters only. Substituting
(76) in (80) and neglecting terms to the order ε2, the deviation δc can be
computed from:
[

ρ0ω2 − (µ0 + κ0)k2
c

](

ρ0jω2 − 2κ0 − γ0k2
c

)

− κ2
0k2

c

−ε2γ0δc
[

ρ0ω2 − (µ0 + κ0)k2
c

]

− ε2(µ0 + κ0)δc
(

ρ0jω2 − 2κ0 − γ0k2
c

)

− ε2κ2
0δc

−ε2

[

a22
(

ρ0jω2 − 2κ0 − γ0k2
c

)

+ b63
[

ρ0ω2 − (µ0 + κ0)k2
c

]

+iκ0(a62 − b23)kc

]

= 0 .

If ε2 = 0, then we know
[

ρ0ω2 − (µ0 + κ0)k2
c

](

ρ0jω2 − 2κ0 − γ0k2
c

)

− κ2
0k2

c = 0 .

Hence δc and similarly δs are obtained in the forms:

δc ≈ −b63
[

ρ0ω2 − (µ0 + κ0)k2
c

]

+ a22
(

ρ0jω2 − 2κ0 − γ0k2
c

)

+ (a62 − b23)iκ0kc

γ0
[

ρ0ω2 − (µ0 + κ0)k2
c

]

+ (µ0 + κ0)
(

ρ0jω2 − 2κ0 − γ0k2
c

)

+ κ2
0

,

(81)
and

δs ≈ −b63

[

ρ0ω2 − (µ0 + κ0)k2
s

]

+ a22

(

ρ0jω2 − 2κ0 − γ0k2
s

)

+ (a62 − b23)iκ0ks

γ0
[

ρ0ω2 − (µ0 + κ0)k2
s

]

+ (µ0 + κ0)
(

ρ0jω2 − 2κ0 − γ0k2
s

)

+ κ2
0

.

(82)
Both δc and δs are complex quantities. Computing real and imaginary parts
one can write:

k = kc +
ε2δc

2kc
= kc + ε2 Reδc

2kc
+ iε2 Imδc

2kc
, (83)
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and

k = ks +
ε2δs

2ks
= kc + ε2 Reδs

2ks
+ iε2 Imδs

2ks
. (84)

Hence for longitudinal waves

i~k ~x = ikx = ix

[

kc +
ε2δc

2kc

]

= ix

[

kc + ε2 Reδc

2kc
+ iε2 Imδc

2kc

]

,

and for transverse waves

i~k ~x = ikx = ix

[

ks +
ε2δs

2ks

]

= ix

[

ks + ε2 Reδs

2ks
+ iε2 Imδs

2ks

]

.

Thus change in the wave number and attenuation occurs in both cases,
having attenuation factors of the forms

exp

[

− ε2x

2
Im

(

δc

kc
,

δs

ks

)]

. (85)

It may be recalled here that the only term in Eq. (36) that might contribute
to some effect of thermal parameters on δc,s is

∫

〈K1G4R′
1〉( ~Aei~k·~x′

)d~x′

= −ωθ0(1 − iδlkt0ω)(~k ~A)ei~k ~x
∫ {~∇

[

G4(r)Rmm(r)
]

−iω~∇
[

G4(r)Rmm•

]}

e−i~k′·~rd~r .

This term clearly does not add anything to a22 since in our case ~k ~A =
(kA1, 0, 0). Therefore the integrals a22, a62, b23 and b63 are all independent of

the thermal field. However the integral
∫

〈K1G4R′
1〉( ~Aei~k·~x′

)d~x′ contributes
an additional term to a11 which is

−4iπωθ0(1−iδlkt0ω)k

∫

∝

0

[

(Rmm−iωRmm•)G′

4+(R′

mm−iωR′

mm•)G4

]

r2f ′dr .

This term has already been included in the radial expression for a11 in (58).

8 Attenuation of high frequency nonthermal waves

in a particular case

This topic has already been discussed in [18]. However for the sake of
continuity of discussion, the salient features are briefly enumerated below.
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It may be noted that the expressions derived for δc and δs do not depend
on generalized thermal parameters. Hence the phenomenon of propagation
of transverse type of displacement and microrotation waves in the random
micropolar elastic medium is considered taking

Rρρ(r) = 〈ρ2
1〉e−r

a 6= 0, a〉0 , (86)

and making all other auto- and cross-correlation functions vanish. (Auto-
correlation functions 〈κ1κ′

1〉, 〈β1β′
1〉, 〈γ1γ′

1〉, signifying effects of random vari-
ation of micropolar elastic properties of the medium appear several times in
b63 making calculations unmanageably lengthy and cumbersome and hence
are omitted). Then

b63(kc) =
4jπω2〈ρ2

1〉
kc

∫

∝.

0
re−

r
a

[

G4(r)
]

33
sin(kcr)dr (87)

and

a22(kc) = a62(kc) = b23(kc) = 0 . (88)

where [G4(r)]33 has already been evaluated [18]. Components including
[G4(r)]33 of the associated Green’s tensor have been reproduced in the
App. III for ready-reference.

For large ω the approximate values of k2
c , k2

s , k2
m, and k2

n were computed
to show that transverse type of displacement waves attenuate. In a similar
way it was shown that high frequency transverse type microrotation waves
attenuate if j > 1. Results indicate that body waves of these types attenuate
due to randomness as they propagate through the medium, only in the non-
thermal environment.

9 Computation of the dispersion of the field from
the mean field

In this section we propose to give an outline of the procedure to evaluate
an expression for dispersion of the field from the mean field. It is assumed
that v0(~x) and v(~x) represent solutions of operator equations L0v0(~x) = 0
and Lv(~x) = 0 respectively, where L = L0 + εL1 + ε2L2 + O(ε3).

Following Karal and Keller ([23], Eq. (5)) it can be easily shown that

v = v0 + εL−1
0 L1v0 + ε2(L−1

0 L1L1
0l1 + L−1

0 l2)v0 + O(ε2) . (89a)
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Hence

v̄T = v̄T
0 + ε(L−1

0 L1v0)T + ε2
[

(L−1
0 L1L−1

0 L1v0)
T

+ (L−1
0 L2v0)

T
]

+ O(ε3) ,

(89b)
where vT is the transpose of v and v̄T is the complex conjugate of vT .
Therefore

v̄T v = v̄T
0 v0 + ε

[

(L−1
0 L1v0)T v0 + v̄T

0 (L−1
0 L1v0)

]

+ε2

[

(L−1
0 L1v0)

T
(L−1

0 L1v0) + (L−1
0 L1L−1

0 L1v0)T v0

+(L−1
0 L2v0)T v0 + v̄T

0 (L−1
0 L1L−1

0 L1v0) + v̄T
0 (L−1

0 L2v0)

]

+ O(ε3)

We take expectation of this equation taking that 〈L1〉 = 0, so that

〈

v̄T
0 (L−1

0 L1v0)
〉

= v̄T
0 L−1

0 〈L1〉 v0 = 0

and
〈

(L−1
0 L1v0)T v0

〉

=
(

L−1
0 〈L1〉 v0

)T
v0 = 0 .

The condition 〈L1〉 = 0 with the help of Eq. (23), leads to

m2 = iωm3 and 1 = it0ω,

taking δlk = 1 and assuming ω to be complex. Combining these two rela-
tions one gets

m2 = im3 × 1

it0
.

Hence
m3 = t0m2 . (90)

Therefore

v̄T v = v̄T
0 v0 + ε2

[〈

(L−1
0 L1v0)

T
(L−1

0 L1v0)

〉

+

〈

(L−1
0 L1L−1

0 L1v0)
T

v0

〉

+

〈

(L−1
0 L2v0)

T
v0

〉

+
〈

v̄T
0 (L−1

0 L1L−1
0 L1v0)

〉

+
〈

v̄T
0 (L−1

0 L2v0)
〉

]

+ O(ε3) . (91)
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From (89a) we obtain on taking the expectation

〈v〉 = v0 + ε2
[

〈

L−1
0 L1L−1

0 L1v0

〉

+
〈

L−1
0 L2v0

〉

]

+ O(ε3) .

Hence

v0 = 〈v〉 − ε2
[

〈

L−1
0 L1L−1

0 L1v0

〉

+
〈

L−1
0 L2v0

〉

]

+ O(ε3) .

and by iteration it follows that

v0 = 〈v〉 − ε2
[ 〈

L−1
0 L1L−1

0 L1

〉

〈v〉 +
〈

L−1
0 L2

〉

〈v〉
]

+ O(ε3) (92)

and

v̄T
0 =

〈

v̄T
〉

− ε2
[〈

(

L−1
0 L1L−1

0 L1 〈v〉
)T〉

+

〈

(

L−1
0 L2 〈v〉

)T〉]

+ O(ε3)

(93)
Thus

v̄T
0 v0 =

〈

v̄T
〉

〈v〉 − ε2
[〈

(

L−1
0 L1L−1

0 L1 〈v〉
)T〉

〈v〉 +
〈

v̄T
〉

×
〈(

L−1
0 L1L−1

0 L1 〈v〉
)〉

+

〈

(

L−1
0 L2 〈v〉

)T〉

〈v〉

+
〈

v̄T
〉 〈(

L−1
0 L2 〈v〉

)〉]

+ O(ε3) (94)

Substituting Eqs. (92)–(94) into (91) we obtain the expression

〈

v̄T v
〉

−
〈

v̄T
〉

〈v〉 = ε2
[〈

(L−1
0 L1 〈v〉)

T
(L−1

0 L1 〈v〉)
〉]

+ O(ε3) , (95)

which is equal to sum of variances of real and imaginary parts of all the
components of v. This relation holds only under the condition that m3 =
t0m2. Taking in general

L = (Mlj), (lj) = 1, 2, 3 (96)

L−1
0 f =

∫

(Glj)ei~k · ~x′

d~x′ , (97)

〈v(~x)〉 = [Aj ]ei~k · ~x , (98)
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~k = ~k1 + i~k2 , k1 , k2 ≡ real , (99)

〈L1〉 = 0 ,

it has been shown that
〈

v̄T v
〉

−
〈

v̄T
〉

〈v〉 = ε2e−2Im~k · ~x (
∑ |Cl|2)

= ε2e−2Im~k ~xℓ (Al) .
(100)

where ℓ (Al) ≥ 0 is seen from (92) to be a bilinear function of the ampli-
tudes Al. Then Eq. (100) shows that the dispersion (

√
variance) of the field

from the mean field represented by the plane wave (98), is a small quantity
of order ε and that it decays as the wave propagates in those cases where
Im k > 0. It follows that [18] the field may differ from the plane wave mean
field by a quantity of order ε with finite probability.

10 Variance for micropolar generalized thermo-

elastic wave propagation in the random medium

This analysis is next applied to the waves in the random micropolar gen-
eralized thermoelastic medium. In this case

(101)

where
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Let us write
(

L−1
0 L1 〈v〉

)T
= ei~k2 · ~x ei~k1 · ~x(c1 + id1 , c2 + id2) , (102)

where ci, di, are linear functions of A1, A2, B1, B2, and B3. Then it can be
shown as before that

(L−1
0 L1 〈v〉)

T
(L−1

0 L1 〈v〉) = e−2(Imk)x ℓ (Al , Bl)

where ℓ(Al , Bl) is clearly a non-negative, bilinear function of Al and Bl.
Hence the amount of dispersion of waves from the mean field comes out to
be εe−(Imk)x

√
ℓ.

It may be concluded that the dispersion of the wave field from the
mean field may be obtained following this procedure in many other cases
examined by employing Keller’s perturbation theory.

11 The uncoupled problem

This section proposes to outline, approximately following Chow [25] the
method of examining the uncoupled random micropolar generalized-thermal
problem. With this end in view the ~u−term is dropped from the tempera-
ture Eq. (7), so that the reduced temperature equation becomes

η(~x)
[

θ̇(~x, t) + t0θ̈(~x, t)
]

= ~∇
{

ν(~x)~∇[θ(~x, t)]
}

+ q .
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The objective is to study the random elasticity-displacement Eq. (5) inde-
pendently. The three dispersion equations (29)–(31) now become:

[

ρ0ω2 ~A − (λ0 + µ0)(~k ~A)~k − (µ0 + κ0)k2 ~A
]

+ iκ0(~k × ~B) − ε(im2 + ωm3)C~k

+ε2
[

ωθ0(1 − ωt0δlk)m2(m2 − iωm3)(~k ~A)
]

∫

[

(~∇G4)
]

e−i~k ~rd~r

−ε2
∫







〈[M1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+P1{G2(M ′
1

~A + P ′
1

~B + K ′
1C) + G3(N ′

1
~A + Q′

1
~B)}

+K1G4(R′
1

~A + S′
1C)]〉






e−i~k·~rd~r = 0 ,

(103)

iκ0(~k × ~A) −
[

(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k ~B)~k
]

−ε2
∫

[

〈[N1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+Q1{G2(M ′
1

~A + P ′
1

~B + K ′
1C) + G3(N ′

1
~A + Q′

1
~B)}]〉

]

e−i~k·~rd~r = 0

(104)
and

[

iω(1 − it0ω)η0 − ν0k2]C = 0 . (105)

Simplified Case I. Equation (105) is easily solvable since C 6= 0. The
first two equations can be analyzed as before or otherwise. Considering
equations up to ε-order terms one gets

[

ρ0ω2 ~A−(λ0+µ0)(~k ~A)~k−(µ0+κ0)k2 ~A
]

+iκ0(~k× ~B)−ε(im2+ωm3)C~k = 0

and

iκ0(~k × ~A) −
[

(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k ~B)~k
]

= 0 .

The six equations are

[

ρ0ω2 − (λ0 + 2µ0 + κ0)k2]A1 − ε(im2 + ωm3)Ck = 0 ,

[

ρ0ω2 − (µ0 + κ0)k2]A2 + iκ0kB3 = 0 ,

iκ0kB2 = 0

and
[

(2κ0 − ρ0jω2) + (α0 + β0 + γ0)k2]B1 = 0 ,

(2κ0 − ρ0jω2 + γ0k2)B2 = 0 ,
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iκ0kA2 − (2κ0 − ρ0jω2 + γ0k2)B3 = 0 .

It is clear that the amplitude ratio

A1

C
=

ε(im2 + ωm3)k

ρ0ω2 − (λ0 + 2µ0 + κ0)k2
= O(ε)

and is dependent upon expectation values of generalized thermal parame-
ters m and m• = t1m. Moreover A1 is finite but small such that A1 = O(ε).
Also B2 = 0 indicates that there is no propagation along B2. Further B1 6= 0
and B1 ≡ finite, indicates that waves with wave number given by

k2 =
ρ0jω2 − 2κ0

α0 + β0 + γ0

propagate in the medium. Finally the coupled dispersion equation for waves
propagating along A2 and B3 directions is represented by

A2

B3
= − iκ0k

ρ0ω2 − (µ0 + κ0)k2 =
2κ0 − ρ0jω2 + γ0k2

iκ0k
,

[

ρ0ω2 − (µ0 + κ0)k2
][

2κ0 − ρ0jω2 + γ0k2
]

= κ2
0k2 .

Case II. Unlike Chow ([25], cf. Eq. (4.3)), we retain the ε-order term in
(31) to get

[

iω(1 − it0ω)η0 − ν0k2]C − εωθ0(1 − iωt0δlk)m2(~k ~A) = 0 . (106)

Then Eqs. (103), (104), and (105) can be analyzed as in Sec. 4 or otherwise.

12 Summary and conclusions

1. The integrand of a11 only is dependent on generalized thermal param-
eters including thermomechanical auto-correlation function and the
cross-correlation function between thermomechanical and generalized
thermomechanical coupling parameters. This dependence holds good
both for L-S and G-L thermoelastic fields.

2. Numerical solutions can be easily obtained by setting

Rmm(r) = 〈ρ2
1〉e−

r
b , Rmm(r) = 〈ρ2

1〉e−
r
b .
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3. On the other hand integrands of a22, a62, b23, and b63 are clearly
independent of auto- and cross-correlation functions Rmm(r) and
Rmm•(r).

4. The three vector wave equations considered up to first order pertur-
bation only leads to the dispersion equation for the wave propagation
in the deterministic micropolar elastic medium. However effects of
generalized thermal field are discernible only if the second order per-
turbation term is retained in this dispersion equation. This will be
evident from the Eq. (48) of Sec. 4.

5. Equation (64) shows that longitudinal type displacement waves get
modified due to random fluctuation of inhomogeneities of the microp-
olar medium under generalized thermoelasticity such that the wave
number is increased by ε2 δl

2kl
, where δl is a function of Rmm(r) and

Rmm•(r). These results are valid for both L-S and G-L generalized
thermoelasticity.

6. Equation (68) shows that the change in wave number δl depends upon
the random variation of the generalized thermal field and measured in
terms of statistical means, m2 and m3, for both L-S and G-L theories.
For L-S, the change depends upon m2 only, and for G-L upon m2 and
m3.

7. Equation (100) shows that the dispersion (
√

variance) of the field
from the mean field is a small quantity of order ε and that it decays
as the wave propagates in those cases where Im k > 0. This result
holds good only if m3 = t0m2.

8. It is quite clear from Eqs. (70) and (75) that longitudinal type mi-
crorotation waves propagate in the random generalized thermoelastic
micropolar medium but are scarcely affected by the random inhomo-
geneities of the medium, at least up to the domain of second order
perturbation. In this case the amplitude B1 is important in compar-
ison to the amplitudes A1, A2, B2, and B3.

The study of micropolar materials and micropolar generalized-
thermoelasticity in particular has been enormously drawing the in-
terest of applied mathematicians and engineers in recent times. Mi-
cropolar materials include fibrous and granular or composite sub-
stances. The domain of micropolarity is therefore expanding in time.
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The study of micropolar properties in relation to wave propagation
in coupled media therefore has been gaining importance from the
perspective of probable applications in industry, engineering and to
a great extent in earthquake prediction and seismology. Research
studies are being carried out through various methodologies. The
present paper has introduced the smooth perturbation technique [21]
in examining the phenomenon of wave propagation in an infinite ran-
dom generalized thermoelastic micropolar medium. In future certain
other methods, viz., iterative perturbation method [31] or the method
of scatters [37] may be employed in measuring effects of random varia-
tion of parameters. The domain decomposition method developed by
Adomian [43] may also be employed to study micropolar elasticity in
coupled dynamic problems. There is possibility of solving micropolar
coupled elastic problems with the help of fractional calculus theories
[44,45].
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Appendix I

Components of the associated Green’s tensor

The 36+9 components of the Green’s tensor

G =

∣

∣

∣

∣

∣

∣

∣

G1 G2 0
G3 G4 0
0 0 G5

∣

∣

∣

∣

∣

∣

∣

,

where Gi, i = 1, 2, 3, 4, are 3 × 3 matrices, are then obtained and given by
(for ω2 >> κ0(κ0 + 2µ0):

(Gj)kl = (Gj)kkδkl (1)

with (G1)11 = (G1)22 for j = 1, 4;

(Gj)kl = 0 if (k, l) 6= (1, 2), (2, 1); (2)

with (G1)12 = −(G1)21, j = 2, 3;

and (G3)kl = −(G2)kl.

Components of G5 have been defined in (27) and (28).

The independent components (G1)11, (G1)33, (G2)12, (G4)11 and (G4)33

are given by:

(G1)11 =
iκ2

0
2πγ0(µ0 + κ0)2r3

[

r2 − (i + kmr)
(k2

m − k2
c ) (k2

m − k2
s) eikmr

+ r2 − (i +kcr)
(k2

c − k2
m) (k2

c − k2
s)eikcr + r2 − (i + ksr)

(k2
s − k2

m) (k2
s − k2

c )eiksr
]

− 1
4πr3

[

r2k2
s′

+ irks′ −1

µ0k2
s′

eiks′ r − ikc′r −1

(λ0 + 2µ0)k2
c′

eikc′ r

]

(G1)33 = −iκ0
πγ0(µ0 + κ0)22r3

[

i + kmr
(k2

m − k2
c ) (k2

m − k2
s)eikmr + i + kcr

(k2
c − k2

m) (k2
c − k2

s)eikcr

+ i+ksr
(k2

s −k2
m) (k2

s−k2
c )

eiksr
]

+ 1
4πr3

[

2(iks′ r−1)

µ0 k2
s′

eiks′ r − k2
c′

r2+2ikc′r−2

(λ0+2µ0)k2
c′

eikc′ r

]

(G2)12 =
−k0

2πγ0(k2
c − k2

s) (µ0 + k0)r2

[

(i + kcr)eiKcr − (i + ksr)eiKsr
]

The other 9 components have been computed in the text.
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Appendix II

Method of forming products and taking expectation values

〈M1G0M
′

1〉( ~Aei~k·~x′

), etc.

〈N1G0M ′
1〉( ~Aei~k ~x′

)

= κ1
~∇ × G0[−(λ′

1 + µ′
1)(~k ~A)~k − (µ′

1 + κ′
1)k2 ~A+

i~∇′λ′
1(~k ~A) + i ~∇′µ′

1 × (~k × ~A)+i[ ~∇′(2~µ′ + κ′
1)~k] ~A + ρ′

1ω2 ~A]ei~k ~x′

A2
∂(G0)22

∂x − A1
∂(G0)11

∂y )∂(2Rκµ+Rκκ)
∂x′ .
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+ω2Rκρ(−A2
∂(G0)22

∂z , A1
∂(G0)11

∂z , A2
∂(G0)22

∂x − A1
∂(G0)11

∂y )]ei~k·~x′

.

Appendix III

A note on transforming to radial forms

~r = ~x − ~x′ = (ξ, η, ς) = (r cos θ, r sin θ cos φ, r sin θ sin φ);

∂
∂x = ∂

∂ξ , ∂
∂y = ∂

∂η , ∂
∂z = ∂

∂ς ; ∂
∂x′ = − ∂

∂ξ , ∂
∂y′ = − ∂

∂η , ∂
∂z′ = − ∂

∂ς ;

r2 = ξ2 + η2 + ς2; r ∂r
∂ξ = ξ;∴ ∂r

∂ξ = ξ
r , ∂r

∂η = η
r , ∂r

∂ς = ς
r ;

∂
∂x = ∂

∂ξ = ( ∂
∂r )∂r

∂ξ = ξ
r

∂
∂r = cos θ ∂

∂r ;

∂
∂y = η

r
∂
∂r = sin θ cos φ ∂

∂r ; ∂
∂z = ς

r
∂
∂r = sin θ sin φ ∂

∂r ;

∂2

∂x2 = ξ
r

∂
∂r ( ξ

r
∂
∂r ) = cos2 θ ∂2

∂r2 ; ∂2

∂y2 = η
r

∂
∂r (η

r
∂
∂r ) = sin2 θ cos2 φ ∂2

∂r2 ;

∂2

∂z2 = ς
r

∂
∂r ( ς

r
∂
∂r ) = sin2 θ sin2 φ ∂2

∂r2 .

1.
∫ 2π

0 cos2 φdφ = .
∫ 2π

0 sin2 φdφ = π;

2. f(r) = sin kr
kr

3. f ′(r) = d
d(kr)

sin kr
kr ; f ′′(r) = d2

d(kr)2
sin kr

kr

4.
∫ π

0 e−ikr cos θ sin θdθ = 2 sin kr
kr = 2f(r) =

∫ 1
−1 e−ikrxdx

5.
∫ π

0 e−ikr cos θ sin θ cos θdθ = 2if ′(r) =
∫ 1

−1 xe−ikrxdx

6.
∫ π

0 e−ikr cos θ sin θ cos3 θdθ = −2if ′′′(r)
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7.
∫ π

0 e−ikr cos θ sin3 θ cos θdθ = 2i[f ′(r) + f ′′′(r)]

8.
∫ π

0 e−ikr cos θ sin θ cos2 θdθ = −2f ′′(r)

9.
∫ π

0 e−ikr cos θ sin3 θdθ = −2[f(r) + f ′′(r)]

10.
∫ 2π

0 cos3 φdφ =
∣

∣

∣sin φ − 1
3 sin3 φ

∣

∣

∣

2π

0
= 0.

Appendix IV

Finite parts of some integrals [46]

(i) Pf
∫

∞

0
e−pt

t dt = − log p − γ = − log Cp, Rep > 0,
where γ = log C = .577 (Euler’s constant) .

(ii) Pf
∫

∞

0
e−pt

t2 dt = p(log p + γ − 1) .

(iii)
∫

∞

0 e−pt sin bt
t dt = tan−1 b

p , |arg p| < π/2 .

(iv) Pf
∫

∞

0 e−pt cos bt
t dt = −1

2 log(p2 + b2) − γ, |arg p| < π/2 .

(v) Pf
∫

∞

0 e−pt sin bt
t2 dt = −r

1 [θ cos θ + {log r − Ψ(2)} sin θ, |arg p| < π/2 ,

θ = tan−1 b
p , r =

√

p2 + b2.

(vi) Pf
∫

∞

0 e−pt cos bt
t2 dt = −r

1

{

[

log r − Ψ(2)
]

cos θ − θ sin θ

}

, |arg p| < π/2,

Ψ(2) = −γ + 1 + 1
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Greek symbols

α – coefficient of the share of cogeneration
∆ – increase
| − ∆| – savings (reduction, decrease)
ε – index of internal electricity or heat consumption
η – efficiency
σ – power to heat ratio

Subscripts

a – absorption chiller
c – cooling agent
ch – chemical
com – compressors
con – consumers
ct – cooling agent transmission
E – energy
el – electrical
G – gross
h – heat
hp – heat-generating plant
ht – heat transport
int – integrated
los – losses
N – net
pp – power plant
rec – recovery
ref – reference
reg – regenerative
sb – steam boiler
sep – separate production
sys – systems
tt – transformation and transmission

Abbreviations

CCS – CO2 capture and storage
CHP – combined heat and power
COP – coefficient of performance
CP U – CO2 processing unit

1 Introduction

The municipal and industrial thermal processes can be usually provided
with heat from the combined heat and power (CHP) units or heat-generating
plants by means of heat distribution network. Losses of heat during trans-
mission as well as consumption of heat in additional installations as for
instance absorption chiller in trigeneration (or combined cooling, heat and
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power – CCHP) technology or desorber in amine CO2 processing unit cause
the increase of internal consumption of heat and in consequence increase
of fuel consumption. Partial compensation of the increased internal con-
sumption of heat takes place in the CHP units because electricity is cogen-
erated as a by-product deciding about the system effects of the reduction
of primary energy consumption. This problem has been highlighted in [1],
where heat losses during transmission of heat from the CHP plants or heat-
generating plants by heat distribution network have been analysed. The
essence of this problem is a perception of the fact that although heat losses
cause additional consumption of the chemical energy of fuels in the CHP
plant (local effect), on the other hand, however, the production of elec-
tricity grows and increases primary energy savings thanks to cogeneration
(system effects). Thus the final result is positive. This effect does not take
place in the case of the production of heat in a heat-generating plant. It
should also be stressed that the system effect of primary energy reduction
thanks to cogeneration is recorded not directly in the CHP plant but on
the level of the national energy system.

The first author of this considerations paid attention in his earlier pa-
pers to the fact that the same effect can also be observed in the case of
trigeneration technology with the absorption chiller [2,3]. Similarly as in
the previous case, this effect is caused by the production of electricity in
cogeneration with the production of heat for the absorption chiller. The
index of the savings of chemical energy of fuel in the trigeneration system
grows with decreasing of the coefficient of performance (COP) of the ab-
sorption chiller. It should not however be understood that the worse COP,
leads to elevated savings. It means, however, that cooperation of the ab-
sorption chiller with the cogeneration system (CHP plant) causes less severe
consequences of the worse COP of the absorption chiller if the demand for
driving heat is realized by the CHP plant [3].

Large internal users of heat are systems of CO2 capture and storage
(CCS), particularly with post-combustion CO2 capture [4]. In the case of
CHP-CCS systems the internal demand for regeneration heat in CO2 cap-
ture unit is realized by the bleeders of the extraction-condensing turbine
or outlet steam from the back-pressure turbine. Due to this, a growth of
gross production of electricity in cogeneration has been observed. But on
the other hand, the internal consumption of electricity increases because of
driving the CO2 compressors as well as pumps and fans in CO2 processing
unit. Finally, the net production of electricity in cogeneration has been
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decreased but this reduction is lower, the greater is the demand for heat
concerning regeneration of solvent. This is also a system effect of primary
energy reduction due to cogeneration technology [5,6].

The algorithms of the aforesaid above three cases of system effects of
primary energy reduction connected with power and heat cogeneration tech-
nology are presented in this paper. For each case the results of exemplary
calculations confirming the thesis described in algorithmic part of the pa-
per have also been presented. It should be noticed that generally the useful
effect of heat and electricity cogeneration being a primary energy savings
is not observed locally in a CHP plant because this is a system effect [7,8].
Direct savings of the chemical energy of fuels takes place in a system power
plant in which some part of electricity production has been replaced by
production of the CHP plant. Including consumption of energy during
extraction, processing and transport of fuels we can evaluate cumulative
energy savings on the level of national energy system [8].

2 Partial compensation of chemical energy
consumption of fuel charging the heat losses in
heat distribution network supplied from CHP

plant

Every loss of heat in the heat distribution network cooperating with a heat-
generating plant or a CHP plant causes a growth of the gross production of
heat. In consequence, the consumption of chemical energy of fuel increases.
In the case of heat-generating plant the increase of the consumption of the
chemical energy of fuel connected with additional production of heat due
to heat losses is as follows:

∆Ech hp =
Qlos

ηE hp G
, (1)

where:
∆Ech hp – additional consumption of the chemical energy of fuels in

heat-generating plant due to heat losses,
Qlos – heat losses in heat distribution network,
ηE hp G – gross energy efficiency of heat-generating plant.

Thus, when heat distribution network are fed from the heat-generating
plant the heat losses cause directly the increase of the consumption of
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chemical energy of fuels.
Heat losses in the heat distribution network cooperating with CHP plant

also lead to increasing the consumption of chemical energy of fuel locally
in CHP plant but simultaneously increase the cogeneration of electricity
and in result we can observe decreasing the consumption of the chemical
energy of fuels in the replaced power plant due to substituting the some
part of its electricity production by the CHP plant. The system effect of
these operations is calculated by means of the equation

∆Ech sys = ∆Ech CHP − |−∆Ech pp| , (2)

where:
∆Ech sys – system effect of increasing the consumption of the chem-

ical energy of fuels in the case of CHP plant cooperating
with heat distribution network,

∆Ech CHP – increase of the consumption of the chemical energy of fuel
in the CHP plant,

|−∆Ech pp| – decrease of the chemical energy of fuel consumption in
the replaced power plant due to cogeneration of heat and
electricity.

The increase of the consumption of the chemical energy of fuels due to heat
losses, concerning CHP plant, is as follows:

∆Ech CHP =
Qlos + ∆Eel CHP G

ηE CHP G
, (3)

where:
∆Eel CHP G – increase of gross electricity production in cogeneration

of heat covering the heat losses,
ηE CHP G – gross energy efficiency of a CHP plant.

Assuming that the efficiencies of transformation and transmissions of elec-
tricity are the same in the case of power plant and CHP unit the decrease
of the consumption of the chemical energy of fuels in a system power plant
due to replacing the part of electricity production by a CHP plant results
from the equation

|−∆Ech pp| =
∆Eel CHP G (1 − εCHP )

ηE pp N
, (4)

where:
ηE pp N – net energy efficiency of the replaced power plant,
εCHP – index of internal electricity consumption concerning CHP

plant.
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Including Eqs. (3) and (4) into Eq. (2) we get a formula concerning system
increase of the chemical energy of fuels in the case of cogeneration:

∆Ech sys = Qlos

[

1 + σ

ηE CHP G
− σ (1 − εCHP )

ηE pp N

]

, (5)

where σ denotes power to heat ratio.
Reduction of the consumption of chemical energy of fuels, charging the

heat losses in heat distribution network, due to cogeneration of heat and
electricity in comparison with the separate production of heat results from
the equation:

|−∆Ech| = ∆Ech hp − ∆Ech sys , (6)

where |−∆Ech| denotes energy savings of the chemical energy of fuels due
to cogeneration.

In Eq. (6) it was assumed that the change of electricity consumption for
heat transmission due to the change of heat losses is nearly the same in both
considered cases, namely cogeneration and separate production of heat in
heat generating plant. As the partial efficiency of electricity production in
a CHP plant is the same as efficiency of electricity production in system
power plant [8,9] the changes of the consumption of the chemical energy of
fuel in the case of heat transmission from heat generating plant and in the
case of CHP plant are the same. Therefore both these items included into
Eq. (6) are reduced.

Introducing Eqs. (1) and (5) into Eq. (6) and referring energy savings
to heat losses we have

|−∆Ech|
Qlos

=
1

ηE hp G
− 1

ηE CHP G
+ σ

(

1 − εCHP

ηE pp N
− 1

ηE CHP G

)

. (7)

The following input data have been assumed in the analysis: ηE hp G = 0.85,
ηE pp N = 0.43, and εCHP = 0.11. The analysis has been carried out in the
following ranges of ηE CHP G and σ: 0.75–0.85, and 0.3–0.5, respectively.

Figure 1 presents the reduction of consumption of chemical energy of fuels
covering the heat losses in heat distribution network supplied from CHP
plant. This effect of partial compensation of chemical energy of fuels con-
nected with heat losses depends on the gross energy efficiency of CHP
plant and power to heat ratio. The higher values of those parameters the
higher system effects (reduction of chemical energy consumption) thanks
to cogeneration. Generally we can say that heat losses connected with the
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Figure 1: Reduction of the consumption of chemical energy of fuels covering heat losses
by cogeneration.

transmission of heat by means of heat distribution network are less severe
in the case of its cooperation with CHP plant in comparison with supply
the heat distribution network from heat generating plant [9].

3 System effects of primary energy reduction in
trigeneration installations

Combination of a CHP plant with centralized system of cooling agent pro-
duction [10] is called ‘trigeneration’. This consideration is devoted to an in-
stallation equipped with absorption chiller driven by heat from CHP plant.
Figure 2 presents a scheme of a classical CHP plant cooperating with the
centralized system of cooling agent production.

The additional gross production of heat dedicated to production of cool-
ing agent in a CHP plant and additional gross cogeneration of electricity
are charged by the additional consumption of the chemical energy of fuels:

∆Ech CHP =
Qc con (1 + σ)

ηE CHP Gηct (1 − εc) COPa
, (8)

where:
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Figure 2: Scheme of a CHP unit with a centralized system of providing the cooling agent:
Ech – chemical energy of fuel, Eel – production of electricity, Qh – production
of heat, Qc – production of cooling agent.

∆Ech CHP – additional consumption of the chemical energy of fuels in
a CHP plant due to production of cooling agent,

Qc con – amount of cooling agent by the consumers,
σ – power to heat ratio,
ηE CHP G – gross energy efficiency of a CHP plant,
ηct – efficiency of cooling agent transmission from CHP plant,
εc – own consumption of cooling agent in a CHP plant,
COPa – coefficient of performance of absorption chiller.

In the case of separate production of the cooling agent in cooperation with a
heat-generating plant and electricity production in the system power plant
the consumption of chemical energy of fuels is as follows:

Ech sep =
Qc con

ηE hp Gη
′

ct (1 − ε′

c) COPa
+

σ Qc con (1 − εel) ηtt

ηE pp Nηct (1 − εc) COPaη
′

tt

, (9)

where:
Ech sep – consumption of chemical energy of fuels charging the sep-

arate production of cooling agent and electricity,
ηE hp G – gross energy efficiency of heat-generating plant,

ηct, η
′

ct – efficiency of cooling agent transmission from CHP plant
and heat generating plant,
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ε
′

c – own consumption of cooling agent in heat-generating
plant,

ηE pp N – net energy efficiency of a systems power plant,
εel – own consumption of electricity in a CHP plant,

ηtt, η
′

tt – efficiency of transformation and transmission of electric-
ity from CHP plant and systems power plant.

Assuming that ηtt = η
′

tt and neglecting the own consumption of the cooling
agent and its losses during transmission the savings of chemical energy of
fuel results from the comparison of ‘trigeneration’ system with a separate
production of heat, cooling agent and electricity is as follows:

|−∆Ech|
Qc con

=
1

COPa

[

1

ηE hp G
− 1

ηE CHP G
+ σ

(

1 − εel

ηE pp N
− 1

ηE CHP G

)]

.

(10)

Figure 3: Energy savings of the chemical energy of fuels due to trigeneration.

Figure 3 presents energy savings of chemical energy of fuel thanks to the
production of cooling agent in the absorption chiller in cooperation with the
CHP plant (trigeneration technology). These savings result from replacing
the electricity production in a system power plant, thanks to additional
production of electricity in cogeneration, with additional heat demand for
absorption chiller. It is natural that the energy savings increase with in-
creasing power to heat ratio but the growth with the decreasing COPa of the
absorption chiller needs explanation. This tendency cannot be interpreted
that the worse efficiency is better. It merely means that the production of
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heat in cogeneration with electricity partially compensates worse COPa of
the absorption chiller [2,3].

4 System effect of partial compensation of

the increased own consumption of heat in
a CHP plant integrated with an amine CO2

processing unit

The post-combustion CO2 capture based on amine solvent belongs at present
to the most technically mature ways of CO2 removal [11–14]. The weak
side of this method is a high demand for heat in order to regenerate the
solvent. Figure 4 presents scheme of CHP plant integrated with CO2 pro-
cessing unit (CPU) and installation of waste heat recovery. CPU consists
of CO2 absorption column and desorption column [13]. Desorption col-
umn serves to the regeneration of aqueous solution of mixture containing
monoethanoloamine, dieethanoloamine and methyldieethanoloamine. This
process in desorber requires additional production of heat for internal con-
sumption. The process heat for this purpose is transported from the bleeds
of the extraction-condensing steam turbine or from the outlet of back-
pressure turbine with a pressure of about 0.2 MPa. It provides required
range of temperature regeneration. In [12] attention has been paid to the
considerable consumption of heat concerning amine regeneration. In this
consideration, the unit consumption of heat for regenerative purposes has
been assumed: 4, 3.4, and 3.15 MJ/kg CO2. The first value concerns tra-
ditional installations existing up to now whereas the second one is treated
as a value possible to be achieved today. The third value can be treated as
a value in the nearest future confirmed by several research works [15–19].

It should be stressed that the CPU installation is not only consumer of
process heat but also is a source of waste heat in which recovery may cover
partially the demand for system of the heat distribution network (district
or industrial). The source of waste heat is the process of CO2 desorption
in which the condensation of H2O takes place. Also, the installation of
interstage cooling of CO2 compressors are sources of waste heat.

Similarly as in previous subsections the growth of internal consumption
of heat for the purpose of solvent regeneration in the CHP plant leads to an
increase of the electricity production. But in this case the situation is more
complicated because simultaneously the demand for electricity growths due
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Figure 4: Scheme of a CHP plant integrated with CO2 processing unit and installation
of waste heat recovery: Ech – chemical energy of fuel, fg – flue gases, Eel –
electricity for external consumers, Eelcom – electricity for CO2 compressors,
Qreg – regenerative heat, Qh – heat for external consumers, Qrec – heat from
waste energy recovery.

to driving the CO2 compressors in CPU. Additionally, waste heat recovery
from CPU leads to a reduction of the demand for low-pressure heating
steam from the turbine and in consequence the production of electricity
cogenerated with low-pressure heating steam has been decreased. Such the
thermodynamic analysis characterizes the greater complexity than in the
cases presented previously. That is why simulation models were prepared
by means of the commercial engineering software Thermoflex [20]. This
software allows to construct requisite models of the analysed energy system
based on predefined components available in the library of Thermoflex.
The components are among others group of turbine stages, compressors,
pumps, heat exchangers of regeneration and heat engineering and also for
instance the installation of CO2 processing unit. Simulation models have
been constructed not only as a design mode but also as off-design one.
Annual duration curve of outdoor temperature and the characteristics of the
heat distribution network have been applied in the simulation calculations
[5,6].

First of all the reference CHP plant with an extraction-back-pressure
turbine and CFB peak boiler (without CPU) has been modeled. In this
case the index of savings of chemical energy of fuel is calculated from the
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formula [6]





∣

∣

∣−∆Ėch

∣

∣

∣

Q̇con





ref

=

αcog

ηht

[

1

(1 − εh hp) ηE hp G
+

σref (1 − εel ref )

(1 − εh ref ) ηE pp N
−

1 +
σref

ηme

(1 − εh ref ) ηE sb

]

, (11)

where:
∣

∣

∣−∆Ėch

∣

∣

∣ – savings of the chemical energy of fuel,

Q̇con – demand of heat flux by consumers,
αcog – coefficient of the share of cogeneration,
ηht – efficiency of heat transmission,
εh hp – relative internal consumption of heat concerning heat-

generating plant,
ηE hp G – gross energy efficiency of heat-generating plant,
σref – power to heat ratio concerning the reference CHP plant,
εel ref – relative internal consumption of electricity in concerned

reference CHP plant,
εh ref – relative internal consumption of heat concerning refer-

ence CHP plant,
ηE pp N – net energy efficiency of replaced power plant,
ηme – electromechanical efficiency,
ηE sb – energy efficiency of steam boiler.

Next, the model of the CHP plant with back-pressure turbine and CO2

processing unit has been elaborated. The additional desulphurization sys-
tem must be installed due to requirement of amine CO2 processing unit.
The compressors station of CO2 has been equipped with four units. Waste
heat from interstage cooling of CO2 compressors has been utilized in the
basic heat exchanger of district heating system. In order to regenerate the
amine solution, the CO2 processing unit is fed by the process steam from
the outlet of back-pressure turbine. The index of savings of chemical energy
of fuel is as follows [6]:

(

|−∆Ėch|
Q̇con

)

int
=

αcog

ηht

[

1

(1−εh hp) ηint
E hp G

− 1
(1−εh int) ηint

E cog G

]

+

+σint

[

αcog

(1−εh int) η
ht

− Q̇rec

Q̇con
+ Q̇reg

Q̇con

]

[

(1−εel int)
ηint

E pp N

− 1
ηint

E cog G

]

(12)
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where:
(

|−∆Ėch|
Q̇con

)

int
– index of the chemical energy savings concerning CHP

integrated with CPU and installation of waste heat
recovery,

ηint
E hp G – gross energy efficiency of integrated heat-generating

plant,
ηint

E cog G – gross energy efficiency of integrated CHP plant,

εh int – relative internal consumption of heat concerning inte-
grated CHP plant,

σint – power to heat ratio of integrated CHP plant,

Q̇rec – flux of heat from installation of waste heat recovery,

Q̇reg – flux of heat from regeneration of solvent,
εel int – relative internal consumption of electricity concerning

integrated CHP plant,
ηint

E pp N – net energy efficiency of replaced integrated power
plant.

Table 1 presents the results of simulation analysis concerning the CHP
plant integrated with amine CO2 processing unit and waste heat recovery
installation [5,6]. The following additional input data have been used in an
analysis:

• unit consumption of the chemical energy of fuel and production of
electricity in a reference CHP plant (without CO2 removal) with
reference to heat by consumers – Ech ref /Qcon = 1.1665 J/J and
Eel ref /Qcon = 0.3446 J/J,

• net efficiency of replaced integrated power plant – ηint
E pp N = 0.334,

• index of the chemical energy savings concerning the reference CHP
plant with reference to heat by the consumers – |−∆Ech ref | /Qcon =
0.381 J/J.

The additional demand for internal consumption of heat in CPU instal-
lation connected with the regeneration of the solvent in CPU installation
causes, of course, an additional consumption of the chemical energy of fuel
but on the other hand the electricity additionally cogenerated with heat for
regeneration of solvent influences the reduction of the chemical energy con-
sumption concerning systems power plant due to decrease of its electricity
production (effect of replacement). The CPU installation operates together
with the CO2 compressor station. Therefore, besides the increase of inter-
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nal consumption of heat due to regeneration of the solvent also internal
consumption of electricity increases due to driving CO2 compressors.

Table 1: Selected results of simulative analysis of CHP plant integrated with CO2 pro-
cessing unit and waste heat recovery installation [5,6]∗).

Unit consumption of heat for regeneration of
solvent, qreg , MJ/kg CO2

4.0 3.4 3.15

Unit consumption of chemical energy of fuel
with reference to heat by the consumers,
Ech int/Qcon, J/J

1.3499 1.2395 1.2006

Increase of unit consumption of chemical en-
ergy of fuel in comparison with reference
CHP plant, (Ech int − Ech ref ) /Qcon, J/J

0.1834 0.0730 0.0341

Unit production of electricity with reference
to heat by the consumers, Eel int/Qcon, J/J

0.3898 0.3579 0.3467

Increase of unit production of electricity
in comparison with reference CHP plant,
(Eel int − Eel ref ) /Qcon, J/J

0.0452 0.0133 0.0021

Increase of internal unit consumption of
electricity due to CO2 processing unit,
(εel intEel int − εel ref Eel ref ) /Qcon, J/J

0.0537 0.0493 0.0478

Deficit of the electricity production in the in-
tegrated CHP plant, |−∆Eel int| /Qcon, J/J

-0.0085 -0.0360 -0.0457

Increase of the consumption of chemi-
cal energy of fuel charging the produc-
tion of electricity in replaced power plant,
∆Ech pp/Qcon, J/J

0.0254 0.1078 0.1368

Index of chemical energy savings with
reference to heat by the consumers,
|−∆Ech int| /Qcon, J/J

0.342 0.323 0.308

∗)All values in Tab. 1, except the unit consumption of heat for regeneration of solvent,
have been calculated with reference to heat by the consumers.

Basing on the results of simulation analysis of power plant integrated
with post-combustion CO2 capture the increase of internal consumption of
electricity due to compression of CO2, as well as the increase of additional
production of electricity in cogeneration with heat have been evaluated.
The differences between them for the particular unit consumption of re-
generative heat (4.0, 3.4, 3.15) are negative values (Tab. 1). It means that
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by the assumption of Eelcon = idem (demand for electricity by consumers
must be kept, similarly as demand for heat by consumers Qcon = idem) the
balance of electricity requires additional production in a replaced system
power plant, causing the additional consumption of chemical energy of fuel.

Figure 5: System effect of decreasing the deficit of the electricity production in the CHP
plant: ∆Echpp – chemical energy of fuel in replaced integrated power plant
charging the production of electricity closing the balance, Qcon – heat loco
consumers, -∆EelCHP – deficit of electricity production, qreg – unit consump-
tion of heat for regeneration of solvent.

Figure 5 presents both deficit of electricity concerning CHP plant (the
least value concerns qreg= 4.0 MJ/kg CO2) and additional consumption of
chemical energy of fuels charging the production of electricity in replaced
power plant closing its balance. Similarly as in the previous cases it is
clear that thanks to cogeneration we may observe a partial compensation
of severe consequences of the worse coefficient of the unit consumption for
regenerative purpose. In the case of the highest value of unit consumption
of heat regeneration of solvent the deficit of electricity is the lowest. The
lowest is also the increase of additional consumption of chemical energy of
fuel in replaced integrated power plant.

Additional argument concerning the partial compensation of the in-
creased internal consumption of heat thanks to cogeneration is showed in
Fig. 6, where the relative reduction of the index of chemical energy savings
in comparison with the reference CHP plant is presented. The lowest rela-
tive reduction of primary energy savings corresponds with the highest unit



76 A. Ziębik and P. Gładysz

Figure 6: Relative reduction of primary energy savings due to additional consumption of
heat for regeneration of solvent in the CO2 processing unit:
|−∆Echref |– energy savings of fuel concerning reference CHP plant,
|−∆Echint|– energy savings of fuel corresponding the CHP plant integrated
with CPU, qreg – unit consumption of heat for regeneration of solvent.

consumption of heat for the solvent regeneration. It does not indicate that
the worse amine CPU (qreg= 4.0 MJ/kg CO2) the better, because in this
case the consumption of chemical energy of fuel in the CHP integrated with
amine CPU is the largest (Ech int/Qcon = 1.3499J/J – Tab. 1). It may only
indicate that thanks to cogeneration of heat production we may observe
less severe consequences of the worse energy efficiency of CPU installation.
This effect does not take place in the separate production of heat.

5 Conclusions

The presented problem, characterizing additional positive effects of CHP
plants, is rarely exposed as an advantage of cogeneration technology. Al-
ready the first example concerning the partial compensation of heat losses
during transmission of heat to industrial or municipal consumers, men-
tioned in literature [1], indicates clearly that heat losses during the trans-
mission of heat from the CHP plant are less severe in comparison with the
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transmission from the heat-generating plant. Generally the positive effects
of cogeneration are observed not locally in a CHP plant but within the
frame of the national energy system. It means that the index of savings
of chemical energy of fuel in comparison with separate production of heat
and electricity is an adequate measure of the effectiveness in the case of
heat and electricity cogeneration. At this point two additional remarks
have to be mentioned. First of all, the system effects of primary energy
reduction connected with cogeneration should be investigated for the CHP
plants that have been already internally optimized, e.g., by means of the
coefficient of the share of cogeneration [21]. Secondly, the proposed within
the paper methodology concerning heat losses during the transmission of
heat can only be used for the centralized cogeneration systems, thus within
the wide range of small-scale cogeneration solution (e.g., micro-CHP based
on the gas boiler with ORC module [22]) the presented approach cannot
be applied.

Trigeneration realized in cooperation with absorption chiller is the sec-
ond example in which system approach is needed for interpreting the useful
effects. The savings of the chemical energy of fuel growth with the grows of
the power to heat ratio and with decreasing the COP of absorption chiller.
If the first reason is natural, the second one has a system character and re-
sults from the production of electricity in cogeneration with heat delivering
the absorption chiller which partially replaces the production of electricity
in the system power plant. The growing tendency of energy savings with
the decreasing of COP of absorption chiller should explain that thanks to
cogeneration we have less severe consequences due to the worse coefficient
of performance of absorption chiller.

In a CHP plant integrated with amine post-combustion CO2 processing
unit there is not only an increase of internal consumption of heat but also
an increase of the internal consumption of electricity. Therefore, on the
one hand we have an increase of electricity cogeneration due to additional
demand for heat delivered to regeneration of solvent and on the other hand
the increase of internal consumption of electricity concerning the driving
of the CO2 compressors. In the considered case this causes the deficit in
electricity balance of the CHP plant covered by the system power plant.
Similarly as in trigeneration thanks to cogeneration of heat and electricity
there is to be observed an effect of less severe consequences due to high value
of the coefficient of unit consumption of heat for regeneration purposes of
the solvent.
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Summing up these considerations it can be noticed that thanks to com-
bined heat and power plants the increase of internal consumption of heat
relates to the system effect of less severe consequences in comparison with
separate production of heat and electricity. Examples presented in this
paper confirm this conclusion.
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Abstract Direct and inverse problems for unsteady heat conduction
equation for a cylinder were solved in this paper. Changes of heat con-
duction coefficient and specific heat depending on the temperature were
taken into consideration. To solve the non-linear problem, the Kirchhoff’s
substitution was applied. Solution was written as a linear combination of
Chebyshev polynomials. Sensitivity of the solution to the inverse problem
with respect to the error in temperature measurement and thermocouple in-
stallation error was analysed. Temperature distribution on the boundary of
the cylinder, being the numerical example presented in the paper, is similar
to that obtained during heating in the nitrification process.
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Nomenclature

a – thermal diffusivity, m2/s
c – specific heat, J/kgK
f – temperature on the cylinder boundary, ◦C
Fo – Fourier number
g – distance between the thermocouple and cylinder boundary, m
MINUS – values calculated with the thermocouple installation error of δr∗into

the direction of the axis of cylinder
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PLUS – values calculated with the thermocouple installation error of δr∗into
the direction of cylinder boundary

r – radius, m
R – maximum radius, m
random – values calculated with stochastic disturbance of temperature measure-

ment
t – time, s
T – temperature, ◦C
dp – values calculated with the use of the direct problem
ip – values calculated with the use of the inverse problem

Greek symbols

β – coefficient in the assumed temperature function on the cylinder
boundary

δ – absolute error
∆ – difference, Laplacian
∇ – gradient
ϑ – temperature in non-dimensional coordinates
λ – heat conduction coefficient for the cylinder, W/mK
ξ – radius in non-dimensional coordinates
ρ – density, kg/m3

τ – time in non-dimensional coordinates

Subscripts

0 – start time (for t = 0)
max – maximum value during heating
+ δξ∗ – inexact thermocouple location by δξ∗ towards the boundary
– δξ∗ – inexact thermocouple location by δξ∗ further from the boundary
δϑ – the error in temperature measurement of δϑ
m – measuring

Superscripts

* – measuring

1 Introduction

Realization of thermal field fulfilling the set criteria is required in processes
of heating machine’s components. To control body heating, it is important
to know the temperature on the boundary of the region. However, it is not
always possible to measure the boundary temperature, as, for example, in
the burning chamber or on the inner surface of gas-turbine casing. It is ex-
tremely difficult when radiation constitutes a great part of heating process
(heat treatment processes). In such cases, the boundary temperature can
be determined from solution of the inverse problem based on temperature
measurement at inner points in the body, arranged close to the boundary
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where the course of temperature is not known [1,21]. Some methods of
solving one-dimensional inverse problem of thermal field distribution for a
cylinder were presented in [3]; and for the cylindrical layer – in [2]. Solu-
tion of the inverse problem based on Laplace’s transform was discussed in
[2,3,10,12]. Inverse problem for the heat conduction equation was solved
with the use of sequential method and described in papers [2,22]. Analysis
of thermal fields during unsteady heat transfer for an irregular geometry
was described in [4]. Method of inverse problem finds a wide application in
technical issues. In [24], a substitute calculation model for the inverse heat
conduction problem was discussed. Boundary condition for a heated beam
was sought for using this model and the finite element method. Paper [5]
presents the algorithm for solving the inverse heat flow problems, which
use the finite element method. The concept of this algorithm consists in
solving the Neumann problem, where the heat flux on the inner boundary is
sought. Algorithm gave smooth, non-oscillating and stable solution. It was
used to analyse heat transfer in the region with holes. Paper [6] presents
a method of solving the inverse heat conduction problem, comprising the
solution of the Poisson’s equation for simpler and linked with each other re-
gions instead of the Laplace’s equation for multiply-connected region, such
as the gas-turbine blade with cooling channels. In paper [17], by means
of solving the heat equation for 2D model in a steady-state with the use
of the inverse problem, thermal conductivity of material as the polyno-
mial depending on temperature was sought for. Paper [14] discusses heat
flow in high-temperature industrial furnaces. Solving direct and inverse
problems with the use of the conjugate gradient method for the changes
of phase of metal solidification were analysed. Trefftz methods as well as
the method of fundamental solutions are often used for solving direct and
inverse problems for the equation of heat conduction [13,18, 23]. Paper
[8] presents the solution of direct and inverse non-Fourier heat conduction
problems with the use of Trefftz functions and Trefftz method. Paper [9]
presents the method of solving nonlinear direct and inverse heat conduc-
tion problems with the use of Trefftz functions. Paper [16] discusses the
solution of the inverse problem for the Poisson equation with the use of
fundamental solution method and Tikhonov regularization. Application of
the fundamental solutions method for solving the inverse problem of heat
source determination in an unsteady heat conduction is presented in [15].
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Heat treatment and thermo-chemical treatment processes comprise wide
ranges of temperature. For nitrification process, heating temperature ranges
from an ambient temperature up to the temperature of approx. 550 oC.
Considering such range of temperature for steel, any change of heat conduc-
tion coefficient, λ, and specific heat, c, is significant. For the analysed range
of temperature, the heat conduction coefficient changes from 52 W/(mK)
to 36 W/(mK), and specific heat changes from 440 J/(kgK) to 750 J/(kgK)
[11]; it is 30.8% and 70.5% of their initial values, respectively Heat conduc-
tion equation includes the change of thermal diffusivity a = λ/ρc. Hence,
the increase of λ and decrease of c causes the change of thermal diffu-
sivity coefficient a from 0.000015 m2/s to 0.000007 m2/s, what is 53.3%.
Such significant change of thermal diffusivity for temperature ranging from
20 oC to 550 oC in heat treatment processes requires application of math-
ematical model in which λ and c are functions depending on temperature
(non-linear problem). Knowledge of temperature distribution during heat-
ing enables precise analysis of heat treatment processes and stresses arising
during heating. Therefore, non-linear and unsteady heat conduction equa-
tion was solved in this paper with the use of the method of inverse problem.

2 Direct problem

Solution of direct problem enables determining temperature distribution
in a cylinder with the known temperature on its boundary. For the heat
conduction equation

ρ (T ) c (T )
∂T

∂t
= div

(

λ (T ) ∇T
)

(1)

the following initial condition was assumed

T (r, t = 0) = T0 = 0 . (2)

Kirchhoff’s substitution [7] was applied

ϑ =
1

λ0

∫ T

T0

λ (u) du =
1

λ0

∫ T

0
λ (u) du (3)

and

ϑ + δϑ =
1

λ0

∫ T +δT

0
λ (u) du . (4)
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After substracting (3) from (4), we obtain

δϑ =
1

λ0

(

∫ T +δT

0
λ (u) du −

∫ T

0
λ (u) du

)

=
1

λ0

∫ T +δT

T
λ (u) du . (5)

It was hence obtained [7]

∂ϑ

∂t
= a (ϑ (T )) ∆ϑ . (6)

Equation (1) in polar coordinates reads

∂ϑ

∂t
= a (ϑ (T ))

(

∂2ϑ

∂r2
+

1

r

∂ϑ

∂r

)

(7)

and when the non-dimensional coordinate

ξ̄ =
r

R
∈ 〈0, 1〉 (8)

is introduced the Eq. (2) is transformed to the form

∂ϑ

∂t
= a

(

ϑ (T )
) 1

R2

(

∂2ϑ

∂ξ̄2
+

1

ξ̄

∂ϑ

∂ξ̄

)

. (9)

It was assumed that density changes a little during the heating process,
and heat conduction coefficient and specific heat depend on temperature

∂ϑ

∂t
=

λ (ϑ (T ))

ρ0c (ϑ (T ))

1

R2

(

∂2ϑ

∂ξ̄2
+

1

ξ̄

∂ϑ

∂ξ̄

)

. (10)

When the non-dimensional time coordinate τ = Fo = at
R2 = λ0t

ρ0c0R2 was
introduced, the following equation was obtained:

∂ϑ

∂τ
=

λ
(

ϑ (T )
)

λ0

c0

c
(

ϑ (T )
)

(

∂2ϑ

∂ξ̄2
+

1

ξ̄

∂ϑ

∂ξ̄

)

, ξ̄ ∈ (0, 1) . (11)

Since the variable ξ̄ ∈ 〈0, 1〉, therefore substitution ξ = 2ξ̄−1 is done. Then
[19]

ξ̄ =
ξ + 1

2
,

∂ϑ

∂ξ̄
= 2

∂ϑ

∂ξ
,

∂2ϑ

∂ξ̄2
= 4

∂2ϑ

∂ξ2
. (12)
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Hence
∂ϑ

∂τ
= 4

λ
(

ϑ (T )
)

λ0

c0

c
(

ϑ (T )
)

(

∂2ϑ

∂ξ2
+

1

ξ + 1

∂ϑ

∂ξ

)

. (13)

Approximating the derivative with respect to time by the backward differ-
ence quotient, we have obtained the following linear equation:

ϑ̃ (τi) − ϑ̃ (τi−1)

∆τ
≈ 4

λ
(

ϑ̃i−1

)

λ0

c0

c
(

ϑ̃i−1

)

(

d2ϑ̃

dξ2
+

1

ξ + 1

dϑ̃

dξ

)

. (14)

Solution to Eq. (11) is sought in the form of the linear combination of
Chebyshev polynomials

ϑ̃ =
N
∑

k=0

αkWk (ξ) , ξ ∈ 〈−1, 1〉 , (15)

where Wk (ξ) denotes the Chebyshev polynomials of the first type [20].
Assuming that β2 = 1

∆τ , Q = ϑ (τi−1) and taking substitution (15) into
account, we obtain the following system of linear equations

β2
N
∑

k=0

αkWk (ξ) − β2Q =

4
λ
(

ϑ̃i−1

)

λ0

c0

c
(

ϑ̃i−1

)

(

N
∑

k=0

αkW
′′

k (ξ) +
1

ξ + 1

N
∑

k=0

αkW
′

k (ξ)

)

. (16)

Let q (ξ, τ) = 4λ(ϑi−1)
λ0

c0
c(ϑi−1) , thus we have

q (ξ, τ)
N
∑

k=0

αkW
′′

k (ξ)+
1

ξ + 1
q (ξ, τ)

N
∑

k=0

αkW
′

k (ξ)−β2
N
∑

k=0

αkWk (ξ) = −β2Q .

(17)
Therefore,

N
∑

k=0

αkq (ξ, τ) W
′′

k (ξ)+
N
∑

k=0

αk
1

ξ + 1
q (ξ, τ) W

′

k (ξ)−
N
∑

k=0

αkβ2Wk (ξ) = −β2Q .

(18)
Hence, assuming p (ξ) = 1

ξ+1 and r (ξ, τ) = −β2Q, we have

N
∑

k=0

αk

(

q (ξ, τ) W
′′

k (ξ) + p (ξ) q (ξ, τ) W
′

k (ξ) − β2Wk (ξ)
)

= r (ξ, τ) . (19)



Non-linear unsteady inverse boundary problem. . . 87

To determine coefficients αk, the collocation method is used, then for the
radius ξi (for a period of time), we obtain the equation

N
∑

k=0

αk

(

q (ξi) W
′′

k (ξi) + p (ξi) q (ξi) W
′

k (ξi) − β2Wk (ξi)
)

= r (ξi) (20)

and demand that Eq. (20) is satisfied at all inner points ξi (i = 1, 2, . . . ,
N −1). Hence we have N – 1 of equations, and the number of unknowns is N
+ 1, α0, α1, . . . , αN ; to close the system of equations, boundary conditions
are joined

∂ϑ̃

∂ξ

∣

∣

∣

∣

∣

ξ=−1

= 0 , (21)

ϑ̃
∣

∣

∣

ξ=1
= f (τ) , (22)

which, based on (15), has the form

∂ϑ̃

∂ξ

∣

∣

∣

∣

∣

ξ=ξ0=−1

=
N
∑

k=0

αkW
′

k (ξ0 = −1) = 0 , (23)

ϑ̃
∣

∣

∣

ξ=ξN =1
=

N
∑

k=0

αkWk (ξN = 1) = f (τ) . (24)

Equation (20) together with boundary conditions (23) and (24) creates the
following matrix equation

A(N+1)×(N+1)































α0

α1
...

αN−1

αN































=































0
r (ξ1)

...
r (ξN−1)

f































. (25)

Elements of matrix A are expressed by the formulae

a0j = W
′

j (ξ0 = −1) , (26)

aij = q (ξi) W
′′

j (ξi) + p (ξi) q (ξi) W
′

j (ξi) − β2Wj (ξi) , (27)

aNj = Wj (ξN = 1) (28)
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for i = 1, 2, . . . , N − 1, j = 0, 1, 2, . . . , N . Multiplying the left side of
Eq. (25) by the matrix A−1, we obtain































α0

α1
...

αN−1

αN































= A−1































0
r (ξ1)

...
r (ξN−1)

f































, (29)

what can be noted as






























α0

α1
...

αN−1

αN































=



















ã00 ã01 . . . . . . ã0N

ã10 ã11 . . . . . . ã1N
...

...
. . .

...
...

...
. . .

...
ãN0 ãN1 . . . . . . ãNN

















































0
r (ξ1)

...
r (ξN−1)

f































, (30)

where ãij are elements of the matrix A−1.

3 Inverse problem

The purpose of solving the inverse problem is to determine unknown tem-
perature on the boundary of the cylinder f (in subsequent moments of time)
based on temperature measurements inside the cylinder and on the form
of the solution to the direct problem. On the basis of the Eq. (30) we have
that































α0

α1
...

αN−1

αN































=



































∑N−1
i=1 ã0ir (ξi) + f ã0N

∑N−1
i=1 ã1ir (ξi) + f ã1N

...

...
∑N−1

i=1 ãNir (ξi) + f ãNN



































. (31)

Therefore,

αj =
N−1
∑

i=1

ãjir (ξi) + f ãjN for j = 0, 1, 2, . . . , N . (32)

Coefficients αj were introduced into the solution (15). Hence,

ϑ̃ (ξ) =
N
∑

k=0

(

N−1
∑

i=1

ãkir (ξi) + f ãkN

)

Wk (ξ) . (33)
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Figure 1: Measuring points.

For measuring points ξ∗

l , where l = 1, 2, . . . , L (Fig. 1), we have that

ϑ̃ (ξ∗

l ) =
N
∑

k=0

(

N−1
∑

i=1

ãkir (ξi) + f ãkN

)

Wk (ξ∗

l ) . (34)

To determine unknown parameters α0, α1, . . . , αN , the functional should be
minimized

I (f) =
L
∑

l=1

(

ϑ̃ (ξ∗

l , f) − ϑ̃m (ξ∗

l )
)2

. (35)

Having substituted formula (33), for the value calculated at measuring
points ξ∗

l , where l = 1, 2, . . . , L, we have

I (f) =
L
∑

l=1

[

N
∑

k=0

(

N−1
∑

i=1

ãkir (ξi) + f ãkN

)

Wk (ξ∗

l ) − ϑ̃m (ξ∗

l )

]2

. (36)

Annihilation of the first derivative is the necessary condition of the func-
tional (4) minimum

dI

df
= 0 . (37)

Including Eqs. (4) and (37), we obtained

L
∑

l=1

{[

N
∑

k=0

(

N−1
∑

i=1

ãkir (ξi) + f ãkN

)

Wk (ξ∗

l ) − ϑ̃m (ξ∗

l )

]

N
∑

k=0

Wk (ξ∗

l ) ãkN

}

= 0 .

(38)
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Hence,

L
∑

l=1

{[

N
∑

k=0

Wk (ξ∗

l )

(

N−1
∑

i=1

ãkir (ξi)

)

− ϑ̃m (ξ∗

l )

]

N
∑

k=0

Wk (ξ∗

l ) ãkN +

f

(

N
∑

k=0

Wk (ξ∗

l ) ãkN

)2






= 0 . (39)

Let

Al =

[

N
∑

k=0

Wk (ξ∗

l )

(

N−1
∑

i=1

ãkir (ξi)

)

− ϑ̃m (ξ∗

l )

]

N
∑

k=0

Wk (ξ∗

l ) ãkN , (40)

Bl =

(

N
∑

k=0

Wk (ξ∗

l ) ãkN

)2

, (41)

then the Eq. (39) can be noted as

L
∑

l=1

{Al + fBl} = 0 . (42)

Therefore,

f =

−
L
∑

l=1

Al

L
∑

l=1

Bl

. (43)

In mathematical model, the heat conduction coefficient depends on temper-
ature, and can be noted as the linear combination of Chebyshev polynomials

λ (T ) =
n
∑

i=0

aiWi(T̃ ) , (44)

where temperature T̃ = 2T −Tmax−T0
Tmax−T0

, then T̃ ∈ 〈−1, 1〉. Applying the Kirch-
hoff’s substitution (3), we obtain

ϑ =
1

λ0

∫ T

T0

λ (u) du =
Tmax − T0

2λ0

∫ T

T0

n
∑

i=0

aiWi(T̃ )dT̃ . (45)

Since ϑ = g (T ), hence T = g−1 (ϑ). For the value ϑ (T ), the interval
〈Ti, Ti+1〉 (Fig. 2), for which the following inequality is satisfied, is sought

ϑ (Ti) ≤ ϑ (T ) ≤ ϑ (Ti+1) . (46)
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Figure 2: Determination of temperature ϑ(T ) intermediate value in (Ti, Ti+1) interval in
the function of k parameter, Eq. (48).

Then, on the basis of linear extrapolation

ϑ (T ) = kϑ (Ti) + (1 − k) ϑ (Ti+1) , (47)

T = kTi + (1 − k) Ti+1 . (48)

Hence,

k =
ϑ (T ) − ϑ (Ti+1)

ϑ (Ti) − ϑ (Ti+1)
. (49)

Specific heat was also presented as the linear combination of Chebyshev
polynomials

c (T ) =
n
∑

i=0

biWi(T̃ ) , (50)

where temperature T̃ ∈ 〈−1, 1〉. Coefficients ai and bi were determined
with the use of the least squares approximation method [14]. They are
presented in Tab. 1.

4 Sensitivity of the solution to the inverse
problem to errors in measurements

To determine the distribution of temperature on the cylinder boundary,
it is necessary to measure temperature inside this cylinder as close to the
boundary as possible. Sensitivity of the solution to the inverse problem
comprises the impact of the thermocouple installation error ±δξ∗

l as well
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Table 1: Coefficients of polynomials approximating functions λ(T) and c(T).

i ai bi

0 41.519 660.920

1 -11.350 247.360

2 -0.90257 51.725

3 0.010553 18.980

as the error in temperature measurement δϑl = h (δTi) (5) on the sought
distribution of temperature on the cylinder boundary. Non-dimensional
temperature on the boundary is

f±δξ∗

l
,δϑ =

−
L
∑

l=1

Al,±δξ∗

l
,δϑl

L
∑

l=1

Bl,±δξ∗

l
,δϑl

, (51)

where

Al,±δξ∗

l
,δϑl

=

[

N
∑

k=0

Wk (ξ∗

l )

(

N−1
∑

i=1

ãkir (ξi)

)

−

(

ϑ̃m (ξ∗

l ± δξ∗

l ) + δϑl

)

]

N
∑

k=0

Wk (ξ∗

l ) ãkN , (52)

Bl,±δξ∗

l
,δϑl

= Bl =

(

N
∑

k=0

Wk (ξ∗

l ) ãkN

)2

. (53)

5 Numerical example

To test the program, it was assumed that the distribution of temperature
on the cylinder boundary can be described by the function of the form

f (τ) = Tmax

(

1 − e−βτ
)

, where β = 1.1. Calculations were performed for

the cylinder of 100 mm diameter. The following values were assumed for
calculations: λ0 = 52.531 W

mK , c0 = 429.331 J
kgK , and ∆τ = 0.187. Direct

problem was solved and distributions of temperature on radii r1 = 48 mm,
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a) b)

Figure 3: Course of the random error in temperature measurement of values from the
interval [−0.01T ∗, 0.01T ∗] (a), and [−0.02T ∗, 0.02T ∗] (b) for the temperature
measurement at the distance of 2 mm from the boundary of the cylinder with
the installation error δr∗ = – 0.5 mm.

Figure 4: Distribution of temperature on the boundary of the cylinder assumed in the
direct problem (dp) as well as calculated with the use of the inverse problem
(ip) including error in thermocouple installation (PLUS, MINUS) and random
error in temperature measurement (random): a) 0.01T∗, b) 0.02T∗.

r2 = 46 mm and r3 = 44 mm (g1 = 2 mm, g2 = 4 mm and g3 = 6 mm)
were determined. Obtained temperature values were input data for the so-
lution of inverse problem and corresponded to the temperature measured by
thermocouples. Analysis of solution sensitivity to errors in thermocouple
installation was conducted. It was assumed that each of thermocouples may
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be shifted into the direction of the cylinder boundary by δr∗ = 0.5 mm,
what was noted as PLUS in Fig. 3. Shifting thermocouple closer to the
cylinder axis corresponds to the error in installation δr∗ = −0.5 mm and
is noted as MINUS (Fig. 4). In calculations, random error in tempera-
ture measurement δT ∗ was included, what is denoted as random in Fig. 3.
This error was a random number from the interval [−0.01T ∗, 0.01T ∗] or
[−0.02T ∗, 0.02T ∗]. Figure 3 presents illustrative course of the random error
in temperature measurement for the thermocouple located at the distance
of 2 mm from the boundary with the installation error δr∗ = −0.5 mm and
with the maximal errors in temperature measurement δT ∗ = 0.01T ∗ and
δT ∗ = 0.02T ∗.

Distributions of temperature on the boundary of the cylinder, assumed
in the direct problem and calculated with the use of inverse problem, includ-
ing the sensitivity of the solution were presented in Fig. 4. For the random
error in temperature measurement δT ∗ = 0.01T∗ and for thermocouples
shifted into the direction of the cylinder axis by |δr∗|= 0.5 mm, the error of
temperature distribution on the cylinder boundary was slightly above 6 ◦C
(Fig. 5a, b). Larger differences between the assumed temperature and the
calculated one with the use of the inverse problem were obtained when the
random disturbance in temperature measurement was up to 0.02T ∗. Those
values are up to 13 ◦C (Fig. 5c, d).

Temperature distributions in the cylinder, assumed in the direct prob-
lem and calculated with the use of the inverse problem method for the time
of 900 s, 2100 s, 3000 s, 4200 s, 5100 s, and 8100 s are presented in Fig. 6.
Calculations were made for thermocouples located at the distance of 2, 4
and 6 mm from the boundary. Installation error was δr∗ = −0.5 mm. Ran-
dom error in temperature measurement reached maximally 2% of the mea-
sured value, what correspond to values from the interval [−0.02T ∗, 0.02T ∗].

Figure 7 presents the assumed distribution of temperature on the bound-
ary of the cylinder as well as the distributions of temperature calculated
with the use of the inverse problem for thermocouples located at the dis-
tance of 2, 4 and 6; 4, 6, and 8 as well as 6, 8, and 10 mm from the
boundary. For random error in temperature measurement up to 0.02T ∗,
when the distance of thermocouple location from the boundary increases,
the maximal error in calculations on the cylinder boundary increases too.

Numerical tests, presented above, assumed greater measurement distur-
bances than those occurring real production conditions. Figure 8 presents
distributions of temperature obtained as a result of solution of the in-
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Figure 5: Difference in temperatures on the boundary of the cylinder assumed in the
direct problem (dp) and calculated with the use of the inverse problem (ip),
including the thermocouple installation errors δr∗ = 0.5 mm (a, c) and δr∗ =
-0.5 mm (b, d) as well as the random error in temperature measurement up to
0.01T ∗ (a, b) and 0.02T ∗ (c,d).

verse problem, with the installation error δr∗ = 0.5 mm (PLUS) and
δr∗ = −0.5 mm (MINUS). Stable during the whole heating process er-
ror in temperature measurement of 3◦C (PLUS) or −3 ◦C (MINUS) was
assumed. These parameters correspond to heating conditions obtainable
during the experiment. Errors in temperature distribution, obtained in
this experiment, slightly exceeded 3 ◦C.
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Figure 6: Temperature distribution along the radius of the cylinder for the time of
a) t = 900 s, b) t = 2100 s, c) t = 3000 s, d) t = 4200 s, e) t = 5100 s,
f) t = 8100 s with the maximal disturbance of 0.02T∗ and thermocouples lo-
cated at the distance of 2, 4, and 6 mm from the boundary with the instalaltion
error δr∗ = −0.5 mm.
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Figure 7: Temperature distribution on the boundary of the cylinder assumed in the di-
rect problem (dp) and calculated with the use the inverse problem (ip) for
installation errors δr∗ = 0.5 mm (PLUS) and δr∗ = −0.5 mm (MINUS) with
the temperature measurement error up to 0.02T ∗ and thermocouples located
at the distance of: a) 2, 4, 6 mm; b) 4, 6, 8 mm; c) 6, 8, 10 mm from the
boundary of the cylinder.

6 Conclusion

In heat treatment processes, such as nitrification and carburising, heat
conduction coefficient and specific heat change significantly during heat-
ing. In the computational model, described in this paper, the change in
heat conduction coefficient and specific heat with respect of temperature
were included. It enables temperature distribution on the boundary of the
cylinder to be determined more precisely by solving the inverse problem and
then by solving the direct problem inside the cylinder. It is a basis of pre-
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Figure 8: Distribution of temperatue on the boundary of the cylinder assumed in the
direct problem (dp) and calculated with use of the inverse problem (ip) for
installation errors δr∗ = 0.5 mm (PLUS) and δr∗ = -0.5 mm (MINUS) with
the error in temperature measurement δT ∗ = 3 ◦C (PLUS) and δT ∗ = −3 ◦C
(MINUS) and thermocouples located at the distance of 2, 4 and 6 mm from
the boundary of the cylinder.

cise analysis of structure of the layer, being the subject of heat treatment,
and of stresses arising in the component being heat treated. Obtained re-
sults indicate low sensitivity of the solution to the inverse problem to the
thermocouple installation and temperature measurement errors.

Received 9 June 2016
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Abstract The model of the equations of generalized thermoelasticity in
a semi-conducting medium with two-temperature is established. The entire
elastic medium is rotated with a uniform angular velocity. The formula-
tion is applied under Lord-Schulman theory with one relaxation time. The
normal mode analysis is used to obtain the expressions for the considered
variables. Also some particular cases are discussed in the context of the
problem. Numerical results for the considered variables are obtained and
illustrated graphically. Comparisons are also made with the results pre-
dicted in the absence and presence of rotation as well as two-temperature
parameter.
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Nomenclature

a∗ – two temperature parameter
ce – specific heat at constant strain
DE – carrier diffusion coefficient
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Eg – energy gap of semiconductor
K – coefficient of thermal conductivity
N – carrier density
N0 – carrier concentration at temperature T
T – thermodynamic temperature above the reference temperature T0

u, v – displacement vector components

Greek symbols

α – thermal expansion coefficient
γ = (3λ + 2µ)α
δij – thermal expansion coefficient
δn – difference of deformation potential of conduction and

valence band such that δn = (3λ + 2µ)dn

εij – strain components
θ – conductive temperature
κ = ∂N0

∂T
1
τ

λ, µ – Lame’ constants
τ – photo-generated carrier lifetime
τ0 – thermal relaxation time
ρ – mass density
σy – stress components

1 Introduction

Thermoelasticity theories, which admit a finite speed for thermal signals,
have received a lot of attention for the past four decades. In contrast to
the coupled thermo-elasticity theory based on a parabolic heat equation [1],
which predicts an infinite speed of the propagation of heat, these theories
involve a hyperbolic heat equation and are referred to as generalized ther-
moelasticity theories. The theory of thermoelasticity with one relaxation
time proposed by Lord and Shulman [2] arose as a result of the modification
of equation of heat conduction in [1], originally proposed by Maxwell [3] in
the context of theory of gases, and later by Cattaneo [4] and Vernotte [5] in
the context of heat conduction in rigid bodies. Resulting from that theory
heat equation of the wave type ensures the finite speed of wave propaga-
tion of heat and the displacement distributions. This theory was extended
by Dhaliwal and Sherief [6] to include the anisotropic case. Othman and
Said [7] used the normal mode analysis to study the effect of rotation on
the two-dimensional problem of a fibre-reinforced thermoelastic with one
relaxation time.

The first photothermal method was discovered by Gordon et al. [8]
when they found the intracavity sample where a laser-based apparatus gave
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rise to photothermal blooming, namely the photothermal lens. Sometime
later, Kreuzer [9] showed that photoacoustic spectroscopy could be used for
sensitive analysis when laser light sources were used. The photo-thermal
generation during a photothermal process was studied by many authors.
For semiconductor materials, the mechanism of this process includes two
parts: two parts: part one: the propagation of a thermal wave causing
elastic vibration in the medium; this is the thermoelastic (TE) mechanism
of photothermal generation (Todorovic et al. [10]). Part two: the photoex-
cite free carriers produce directly a periodic elastic deformation that is, the
electronic deformation (ED) in the sample (Todorovic et al. [10]). A gen-
eral theoretical analysis of the (TE) and (ED) effects in a semi-conductor
medium during a photo-thermal process consists in modeling the complex
systems by simultaneous analysis of the coupled plasma, thermal, and elas-
tic wave equations (Song et al. [11]). System of partially coupled plasma,
thermal and elastic wave equations and conditions for neglecting the cou-
pling between them is analyzed (Todorovic [12]). The treatment considers
a semiconductor elastic medium for isotropic and homogeneous, thermal
and elastic properties. Song et al. [13] used the coupled generalized ther-
moelastic with thermal relaxation time and plasma theories to study the
reflection problem at the surface of a semi-infinite semiconducting medium
during a photothermal process.

Some research in the past investigated different problems of rotating
media. In a paper by Schoenberg and Censor [14], the propagation of
plane harmonic waves in a rotating elastic medium without a thermal field
has been studied. It was shown there that the rotation causes the elastic
medium to be depressive and anisotropic. Many authors [15–25] studied
the effect of rotation on elastic waves. These problems are based on the
more realistic elastic model since earth, the moon and other planets have
angular velocity.

Thermoelasticity with two temperatures is one of the nonclassical the-
ories of thermoelasticity of elastic solids. The thermal dependence is the
main difference of this theory with respect to the classical one. Chen and
Gurtin [26], Chen et al. [27,28] have formulated a theory of heat con-
duction in deformable bodies, which depend on two distinct temperatures,
the conductive temperature and thermodynamic temperature. For time
independent situations, the difference between these two temperatures is
proportional to the heat supply. For time dependent problems and with
respect to wave propagation problem in particular, the two-temperatures
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are in general different, regardless of the presence of heat supply. The two
temperatures, T , and θ, and the strain are found to have representations in
the form of a traveling wave plus a response, which occurs instantaneously
throughout the body [29]. Warren and Chen [30] investigated the wave
propagation in the two-temperature theory of thermoelasticity. Recently,
Youssef [31,32], Abbas and Youssef [33] and Bijarnia and Singh [34] studied
different problems under two temperature generalized thermoelastic theory.

This paper investigates the effect of two-temperature parameter and ro-
tation in a semiconducting medium into the context of the two-temperature
generalized thermoelasticity theory with one relaxation time.

2 Formulation of the problem and basic equations

Generally, theoretical analyses of the transport process in a semiconduc-
tor involve in the consideration of coupled plasma waves, thermal waves
and elastic waves simultaneously. For a medium with isotropic and ho-
mogeneous properties, when the body forces are neglected, the governing
equations are; Fig. 1:

1. Strain-displacement relations:

εij =
1

2
(ui,j + uj,i), i, j = 1, 2 , (1)

where the components of the displacement vector are u ≡ (u, v, 0).

2. Constitutive relations:

σij = 2µ εij + [λe − γ T − δn N ]δij . (2)

3. Heat conduction equation (hyperbolic equation [35]):

K∇2θ +
Eg

τ
N − γ T0

(

1 + τ0
∂

∂t

)

ė = ρce

(

1 + τ0
∂

∂t

)

Ṫ , (3)

such that
T = θ − a∗∇2θ . (4)

4. Equation of motion:
Since the medium is rotating uniformly with an angular velocity Ω =
Ωn ≡ (0, 0, Ω) where n is a unit vector representing the direction of
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the axis of the rotation, the equation of motion in the rotating frame
of reference has two additional terms (Schoenberg and Censor [14]):
centripetal acceleration Ω × (Ω × u) due to time-varying motion only
and Corioli’s acceleration 2 Ω × u̇, then the equation of motion in
a rotating frame of reference is

µ ∇2ui+(λ+µ)∇e−γ ∇T −δn ∇N = ρ
[

üi+[Ω×Ω×u]i+2(Ω×u̇)i
]

.
(5)

5. Coupled plasma transport equation (parabolic equation [35]):

DE∇2N − N

τ
+ κ T =

∂N

∂t
, (6)

where N is the carrier density, T is the thermodynamic temperature
above the reference temperature T0, σij are the stress components,
εij are the strain components, λ, µ are Lame’ constants, γ = (3λ +
2µ)αt, αt is the thermal expansion coefficient, δn is the difference
of deformation potential of conduction and valence band such that
δn = (3λ + 2µ)dn, δij is the Kronecker delta, K is the coefficient of
thermal conductivity, θ is the conductive temperature, a∗ is the two
temperature parameter, ρ is the mass density, ce is the specific heat
at constant strain, Eg is the energy gap of semiconductor, DE is the
carrier diffusion coefficient, τ is the photo-generated carrier lifetime,
τ0 is the thermal relaxation time and κ = ∂N0

∂T
1
τ , N0 is the carrier

concentration at temperature T.

The governing equations can be put into a more convenient form by using
the following non-dimensional variables:

(x′, y′, u′, v′) =
1

CT t∗
(x, y, u, v), (t′, τ

′

0) =
1

t∗
(t, τ0),

{T ′, θ′}=
γ

(λ + 2µ)
{T, θ}, N ′ =

δn

(λ + 2µ)
N,

σ
′

ij =
1

µ
σij , Ω

′

= t∗ Ω, C2
T =

(λ + 2µ)

ρ
, t∗ =

K

ρceC2
T

. (7)

Introducing the displacement potentials Φ(x, y, t) and Ψ(x, y, t), which re-
lated to displacement components by the relations

u = Φ, x + Ψ, y v = Φ,y − Ψ,x . (8)
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Figure 1: Schematic diagram of the problem.

Using Eqs. (2) and (8), in Eqs. (3)–(6), we obtain (the dashed above
quantities have been removed for convenience):

[

∇2 + Ω2 − ∂2

∂t2

]

Φ − 2Ω
∂Ψ

∂t
−
(

1−a0∇2)θ − N = 0 , (9)

2Ω β2 ∂Φ

∂t
+

[

∇2 + β2 Ω2 − β2 ∂2

∂t2

]

Ψ = 0 , (10)

{[

1+a0

(

1+τ0
∂

∂t

)

∂

∂t

]

∇2−
(

1+τ0
∂

∂t

)

∂

∂t

}

θ−ε1

(

1+τ0
∂

∂t

)

∇2Φ̇+ε2N = 0 ,

(11)
[

∇2 − Kt∗

ρceτDE
− K

ρceDE

∂

∂t

]

N+ε3 (1−a0∇2)θ = 0 , (12)

T= (1−a0∇2)θ . (13)

For the stress-tensor components, we have the following expressions:

σxx = β2u,x + (β2 − 2)v,y − β2T − β2N , (14)

σyy = (β2 − 2)u,x + β2v,y − β2T − β2N , (15)

σzz = (β2 − 2)∇2Φ − β2T − β2N , (16)

σxy = u,y + v,x, σxz = σyz = 0 , (17)

where:
ε1 = γ2 T0 t∗

Kρ , ε2 =
αtEgt∗

ρ ce τ dn
, ε3 = Kκ dnt∗

ρ ce αtDE
, β2 = (λ+2µ)

µ , and a0 = a∗

C2
T

t∗2 .
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3 Normal mode analysis

The solution of considered physical quantities can be decomposed in terms
of normal mode as follows:

[Φ, Ψ, T, θ, N, σij](x, y, t) = [Φ∗, Ψ∗, T ∗, θ∗, N∗, σ∗

ij](y) exp(ω t + ia x) ,
(18)

where a is the wave number in the x-direction, i =
√

−1, ω is a com-
plex constant, Φ∗, Ψ∗, T∗, θ∗, N∗, and σ∗

ij
are the amplitudes of the field

quantities Φ, Ψ, T, θ, N , and σij.
Using Eq. (18), Eqs.(9)–(12) become respectively:

(D2 − b1)Φ∗ − b2Ψ∗ + (a0 D2 − b3)θ∗ − N∗ = 0 , (19)

b4 Φ∗ + (D2 − b5) Ψ∗ = 0 , (20)

− b6 (D2 − a2) Φ∗+(b7 D2 − b8) θ∗ + ε2 N∗ = 0 , (21)

(b9 D2 − b10) θ∗ − (D2 − b11) N∗ = 0 , (22)

where:
b1 = a2 + ω2 − Ω2, b2 = 2 ω Ω, b3 = (1 + a0 a2), b4 = b2 β2,
b5 = a2 + β2 (ω2 − Ω2), b6 = ε1 ω (1 + τ0 ω), b7 = 1 + a0 ω (1 + τ0 ω),
b8 = a2 b7 + ω (1+ τ0 ω), b9 = a0 ε3, b10 = ε3 (1+ a0 a2), b11 = a2 +α,
α = K t∗

ρ ceτDE
+ Kω

ρ ceDE
, D = d

d y .

Eliminating Φ∗(y), Ψ∗(y), θ∗(y), and N∗(y) between Eqs. (19)–(22), the
following eighth order ordinary differential equation satisfied by Φ∗(y), Ψ∗(y),
θ∗(y), and N∗(y) can be obtained:

(

D8 − A D6 + B D4 − C D2 + E
)[

Φ∗(y), Ψ∗(y), θ∗(y), N∗(y)
]

= 0 , (23)

where:
A = 1

(a0 b6+b7)

[

(b1 + b5 + b11) b7 + b8 − (ε2 − b6) b9 + a0 b6 (a2 + b11)

+ b6 (a0 b5 + b3)
]

,

B = 1
(a0 b6+b7)

[

b3 b5 b6 + b8 b11 − ε2 b10 + (b1 + b5) (b7 b11 + b8 − ε2 b9)+

(b1b5+b2b4) b7+a2 b6(a0b11 + b9) + b6(a0 b5 + b3)(a2 + b11) + b6 (b5 b9 + b10)
]

,

C = 1
(a0b6+b7)

[

(b1 + b5)(b8b11 − ε2b10) + (b1b5 + b2b4)(b7b11 + b8 − ε2b9)

+a2 b6 b11(a0 b5 + b3) + b3 b5 b6 (a2 + b11) + b5 b6 b10 + a2 b6(b5 b9 + b10)
]

,
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E = 1
(a0 b6+b7)

[

(b1 b5 + b2 b4) (b8 b11 − ε2 b10) + a2 b5 b6(b3 b11 + b10)
]

.

Equation (23) can be factored as

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)(D2 − k2

4){Φ∗(y), Ψ∗(y), θ∗(y), N∗(y)} = 0,
(24)

where k2
j (j = 1, 2, 3, 4) are the roots of the characteristic equation given

by Eq. (24). The limit of Eq. (24), solution as y → ∞, reads:

Φ∗(y) =
4
∑

n=1

Mn e−kn y , (25)

Ψ∗(y) =
4
∑

n=1

H1n Mn e−kn y , (26)

θ∗(y) =
4
∑

n=1

H2n Mn e−kn y , (27)

N∗(y) =
4
∑

n=1

H3n Mn e−kn y , (28)

here Mn (n = 1, 2, 3, 4) are some coefficients and H1n = b4
(b5−k2

n) ,

H2n =
b6 (k2

n − a2) (k2
n − b11)

[(k2
n − b11)(b7 k2

n − b8) + ε2 (b9 k2
n − b10)]

, H3n =
(b9 k2

n − b10) H2n

(k2
n − b11)

.

Using Eqs. (8), (13), (18), and (25)–(28), the displacement components and
the thermo-dynamic temperature can be obtained in the following form:

u∗(y) =
4
∑

n=1

v1n Mn e−kn y , (29)

v∗(y) = −
4
∑

n=1

v2n Mn e−kn y , (30)

T ∗(y) =
4
∑

n=1

v3n Mn e−kn y . (31)

Using Eqs. (14)–(18) and (25)–(31), we obtain

σ∗

xx =
4
∑

n=1

H4n Mn e−kny , (32)



Effect of rotation on a semiconducting medium. . . 109

σ∗

yy =
4
∑

n=1

H5n Mn e−kny , (33)

σ∗

zz =
4
∑

n=1

H6n Mn e−kny , (34)

σ∗

xy = −
4
∑

n=1

H7n Mn e−kny, σ∗

xz = σ∗

yz = 0 , (35)

where: v1n = i a−kn H1n, v2n = kn+i a H1n, v3n = [1−a0(k2
n−a2)]H2n,

H4n = (β2 − 2)kn v2n + β2(i a v1n − v3n − H3n), H5n = i a (β2 − 2) v1n +
β2(kn v2n − v3n − H3n), H6n = (β2 − 2)(k2

n − a2) − β2(v3n + H3n),
H7n = kn v1n + i_a v2n.

4 Boundary conditions

The coefficients Mn (n = 1, 2, 3, 4) have to be chosen such that the bound-
ary conditions on the surface y = 0, take the form

σxx = −P ∗

1 exp(ω t + iax) , σxy = 0 ,

T = P ∗

2 exp(ω t + i a x) , (36)

DE
dN

dy
= sN ,

where P ∗
1 , P ∗

2 , and s are constants.
Applying the boundary conditions (4) at the surface y = 0, we obtain

a system of four equations. After applying the following inverse of matrix
method










M1

M2

M3

M4











=











H41 H42 H43 H44

H71 H72 H73 H74

v31 v32 v33 v34

(k1+s1)H31 (k2+s1)H32 (k3+s1)H33 (k4+s1)H34











−1 









−p∗
1

0
p∗

2

0











(37)

we obtain the values of coefficients Mn (n = 1, 2, 3, 4), where

s1 =
s CT t∗

DE
.
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5 Particular cases

1. The expressions for the displacement components, force stresses, car-
rier density and temperature distribution in a rotating generalized
semiconducting medium can be obtained from the above equations
by taking a∗ = 0 (a∗ = 0 indicates one type temperature).

2. Neglecting the angular velocity (i.e., Ω = 0) in the above equa-
tions, one can obtain the displacement components, carrier density,
stress components, conductive temperature and thermodynamic tem-
perature distribution in a non-rotating generalized semiconducting
medium with two-temperature.

After substituting Ω = 0 in Eq. (5), and use Eqs. (2), (8), and (18), it
can be reached that

[

D
2 − (a2 + ω2)

]

Φ∗ + (a0 D2 − b3)θ∗ − N∗ = 0 , (38)

(D2 − m2) Ψ∗ = 0 , (39)

− b6 (D2 − a2) Φ∗+(b7 D2 − b8) θ∗ + ε2 N∗ = 0 , (40)

(b9 D2 − b10) θ∗ − (D2 − b11) N∗ = 0 . (41)

Eliminating Φ∗(y), θ∗(y), and N∗(y) in Eqs. (38), (40), and (41), the follow-
ing sixth order ordinary differential equations for Φ∗(y), θ∗(y), and N∗(y)
can be obtained

(

D6 − A1 D4 + B1 D2 − E1

)[

Φ∗(y), θ∗(y), N∗(y)
]

= 0 . (42)

Equation (42) can be factored as

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)
[

Φ∗(y), θ∗(y), N∗(y)
]

= 0 , (43)

where k2
n(n = 1, 2, 3) are the roots of the characteristic equation of Eq. (43),

m2 = a2 + β2 ω2,
A1 = 1

(a0 b6+b7) [(a0 a2 + a0 b11 + b3) b6 + (a2 + ω2 + b11) b7 + b8 + (b6 − ε2) b9],

B1 = 1
(a0 b6+b7) [b6 (a2 a0 b11 + a2 b3 + a2 b9 + b10 + b3 b11) + b8 b11 − ε2 b10

+(a2 + ω2) (b8 + b7 b11 − ε2 b9)],

E1 = 1
(a0 b6+b7) [(a2 + ω2) (b8 b11 − ε2 b10) + a2 b6(b3 b11 + b10)].
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The solution of Eqs. (43) and (39), take the form

Φ∗(y) =
3
∑

n=1

Gn e−kn y , (44)

θ∗(y) =
3
∑

n=1

R1n Gn e−kn y , (45)

N∗(y) =
3
∑

n=1

R2n Gn e−kn y , (46)

Ψ∗(y) = G4 e−m y , (47)

where Gn (n = 1, 2, 3, 4) are some coefficients,

R1n =
(k2

n − b11) [k2
n − (a2 + ω2)]

[(b9 k2
n − b10) − (k2

n − b11)(a0 k2
n − b3)]

, and R2n =
(b9 k2

n − b10) R1n

(k2
n − b11)

.

Using Eqs. (8), (13)–(18), and (44)–(47), the expressions for the displace-
ment components, the thermodynamic temperature and the stress compo-
nents distribution in a non-rotating generalized semiconducting medium
with two temperature can be written as follows:

u∗(y) =
3
∑

n=1

i a Gn e−kn y − m G4 e−m y , (48)

v∗(y) = −
3
∑

n=1

kn Gn e−kn y − i a G4 e−m y , (49)

T ∗(y) =
3
∑

n=1

R3n Gn e−kn y , (50)

σ∗

xx =
3
∑

n=1

R4n Gn e−kn y − 2 i a m G4 e−m y , (51)

σ∗

yy =
3
∑

n=1

R5n Gn e−kn y + 2 i a m G4 e−m y , (52)

σ∗

zz =
3
∑

n=1

R6n Gn e−kn y , (53)
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σ∗

xy = −
3
∑

n=1

R7n Gn e−kn y + (a2 + m2) G4 e−m y, σ∗

xz = σ∗

yz = 0 , (54)

where R3n = [1−a0(k2
n −a2)] R1n, R4n = (β2 −2)k2

n −β2(a2 +R2n +R3n),
R5n = β2(k2

n −R2n −R3n)−a2(β2−2), R6n = (β2−2)(k2
n −a2)−β2(R2n+

R3n), R7n = 2 i a kn.

Applying the boundary conditions (4) at the surface, y = 0, a system of
four equations is obtained. After solving this system, the coefficients Gn

(n = 1, 2, 3, 4) can be defined as follows:











G1

G2

G3

G4











=











R41 R42 R43 −2iam
R71 R72 R73 −(a2 + m2)
R31 R32 R33 0

(k1 + s1)R21 (k2 + s1)R22 (k3 + s1)R23 0











−1 









−p∗
1

0
p∗

2

0











. (55)

6 Numerical results

Silicon, Si, is chosen as the material for numerical simulations. The param-
eters for silicon are taken as (Song et al. [11,13]):
λ = 3.64 × 1010 N m−2, µ = 5.46 × 1010 kg m−1s−2, K = 150 W m−1K−1,

αt = 3 × 10−6 K−1, ρ = 2.33 × 103 kg m−3, CE = 695 J kg−1 K−1,

T0 = 300 K, Ω = 0.4 s−1, a∗ = 0.4, a = 0.5, p∗
1 = p∗

2 = 0.01, τ0 = 0.01,

t = 0.02, ε3 = − 450, x = 0.5, ω = ωRe. + iωIm, ω = ωRe = 0.6,

ωIm = 0, dn = − 9 × 10−31 m3, DE = 2.5 × 10−3 m2s−1,

Eg = 1.12ev, τ = 5 × 10−5 s, s = 2 m s−1.

The thermophysical data, outlined above, were used for the determination
of the distribution of the real part of displacement components u, v, ther-
modynamic temperature T, conductive temperature θ, carrier density N,
stress components σxx, σyy, σzz, and σxy in the presence and absence of the
rotation as well as the two temperature parameter. Here, all variables are
taken in the non-dimensional form. The results are shown in Figs. 2–10.
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In these figures, the solid lines represent the solution for Ω = 0.4, a∗ = 0.4,
the dashed ones represent the solution derived for Ω = 0, a∗ = 0.4, and
the dot-dashed lines represent the solution for Ω = 0.4, a∗ = 0. Due to the
boundary conditions, the stress components σxx and σxy always start from
negative values and zero, respectively, and terminate at a zero value.

Figure 2: Distribution of horizontal displacement u.

Figure 3: Distribution of vertical displacement v.

Figure 2 describes the variation of the horizontal displacement u against
the distance y. It is clear from Fig. 2 that the values of u decrease in
the range 0 ≤ y ≤ 2.5, then increase and go to zero in the range 2.5 ≤
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Figure 4: Distribution of the thermodynamic temperature T .

Figure 5: Distribution of the conductive temperature θ.

y ≤ 10, for Ω = 0.4, a∗ = 0.4, while, it increases in the range 0 ≤ y ≤
0.9 then decrease in the range 0.9 ≤ y ≤ 5 and finally increase and go
to zero for Ω = 0.4, a∗ = 0, while u is an increasing function in the
range 0 ≤ y ≤ 10 for Ω = 0, a∗ = 0.4. Figure 3 shows the variation
of the vertical displacement v. In this figure, a significant difference in the
vertical displacement v is noticed for different values of the two temperature
parameter a∗ as well as rotation. It shows that the magnitude of v for
a∗ = 0.4 is higher than that of a∗ = 0. It is also observed from this figure
that the rotation acts to increase the magnitude of the real part of v.
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Figure 6: Distribution of the carrier density N .

Figure 7: Distribution of stress component σxx.

Figure 4 is plotted to show the variation of the thermodynamic temperature
T. It is observed that the thermodynamic temperature, T , decreases in the
range 0 ≤ y ≤ 8 and finally goes to zero for the different cases. It is
also clear that the parameter a∗ of two-temperature and the rotation, Ω,
act to decrease the values of T. It is clear that the values of conductive
temperature, θ, as shown in Fig. 5, in the two-type temperature cases are
small compared to those for one-type temperature case. It is also noticed
that the conductive temperature θ is inversely proportional to the rotation.
Figure 6 clarifies that the values of the carrier density N always begin
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Figure 8: Distribution of stress component σyy.

Figure 9: Distribution of stress component σzz.

from negative values and increase in the range 0 ≤ y ≤ 10, then go to
zero for the different cases. It is also seen that the carrier density N is
directly proportional to the rotation and the two-temperature parameter.
Figure 7 represents the change in the stress component σxx with distance
y. The values of σxx always start with increasing to a maximum value
then decrease and finally go to zero. It is noticed that σxx is strongly
affected by the two temperature parameter as well as the rotation. It is
directly proportional to both of them. It is clear that the two-temperature
parameter a∗ and the rotation act to decrease the values of σyy as shown
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Figure 10: Distribution of stress component σxy.

Figure 11: Distribution of the displacement component u versus components of distance
at Ω = 0.4 and a∗ = 0.4.

in Fig. 8. Figure 9 depicts that the distribution of stress component σzz

always begins from positive values. For different cases, the values of σzz

start with increasing to a maximum value in the range 0 ≤ y ≤ 1.2, then
decrease in the range 1.2 ≤ y ≤ 10 and finally tend to zero. It is clear
that the two-temperature parameter a∗ as well as, the rotation acts to
decrease the values of σzz. Figure 9 explains that the distribution of the
stress component σxy always starts with zero at the origin which agrees with
the boundary conditions. It is clear that the two-temperature parameter a∗

acts to increase the values of σxy. It can be also observed from this figure
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Figure 12: Distribution of the thermodynamic temperature T versus components of dis-
tance at Ω = 0.4 and a∗ = 0.4.

Figure 13: Distribution of the conductive temperature θ versus components of distance
at Ω = 0.4 and a∗ = 0.4.

that the values of the stress component σxy in the presence of rotation
are higher than those in the absence of rotation. Figures 10–15 depict the
3D curves which represent the relation between the physical quantities and
both components of distance in the context of the (L-S) theory for Ω = 0.4,
and a∗ = 0.4, these figures are very important to study the dependence of
these physical quantities on the vertical component of distance. The curves
obtained are highly depending on the vertical distance and all the physical
quantities are moving in the wave propagation.
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Figure 14: Distribution of carrier density N versus components of distance at Ω = 0.4
and a∗ = 0.4.

Figure 15: Distribution of stress component σxx versus components of distance at Ω = 0.4
and a∗ = 0.4.

7 Conclusion

According to the results of this work, one can see the effect of rotation as
well as of the two temperature parameter on the wave propagation of all
fields and how they play a vital role in increasing or decreasing the am-
plitude of different physical quantities. This work proves the importance
of distinguishing between the conductive temperature and the thermody-
namic temperature. Also, the figures show that the presence of either the
two temperature parameter or the rotation has the same effect on the dif-
ferent physical quantities. This work can serve for the analysis and design
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Figure 16: Distribution of stress component σyy versus components of distance at Ω = 0.4
and a∗ = 0.4.

of the thermal resistance coated materials. There are a lot of applications
on diverse field as semiconducting and the reactions during a photothermal
process and other fields in physical engineering, electronic devices, transis-
tors, also in physical chemistry and medical physics.
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