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This work presents a simulation of the response of packets of microbubbles in an ultrasonic pulse-
echo scan line. Rayleigh-Plesset equation has been used to predict the echo from numerically obtained
radial dynamics of microbubbles. Varying the number of scattering microbubbles on the pulse wave form
has been discussed. To improve microbubble-specific imaging at high frequencies, the subharmonic and
second harmonic signals from individual microbubbles as well as microbubbles packets were simulated
as a function of size and pressure. Two different modes of harmonic generation have been distinguished.
The strength and bandwidth of the subharmonic component in the scattering spectrum of microbubbles
is greater than that of the second harmonic. The pressure spectra provide quantitative and detailed
information on the dynamic behaviour of ultrasound contrast agent microbubbles packet.
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1. Introduction

The dynamics of a single gas bubble in free space
was first described by (Rayleigh, 1917) and was later
refined (Plesset, 1947; Neppiras, Noltingk, 1951;
Noltingk, Neppiras, 1950; Poritsky, 1952) to ac-
count for surface tension and viscosity of the liquid.
There are a large number of investigations on the ra-
dial motion of the bubble (Prosperetti, 1984; Feng,
Leal, 1997). If a bubble experiences a time-varying
pressure field (such as an incoming ultrasound wave)
it will react with compression or expansion. Depend-
ing on the amplitude of the ultrasound wave, the vi-
brations will be related either linearly or nonlinearly
to the applied acoustic pressure. For low acoustic pres-
sures, the instantaneous radius oscillates linearly in re-
lation to the amplitude of the applied external pressure
field. For higher amplitudes of the external field, the
pulsation of the bubbles becomes nonlinear. The de-
formation of two bubbles’ surfaces was investigated by
(Liang et al., 2012) and the area of stability about ini-
tial radius and sound pressure for two interacting bub-
bles was obtained. Sijl et al. (2011b) showed that the
radial dynamics of an isolated oscillating microbubble
can be used to predict its acoustic emission.
In this paper we present a simulation of the signal

pathway in a simple pulse-echo system operating in
a fluid which contains number of microbubbles. This
simulation enables us to study the effect of scatter-

ing pressure on pulse waveforms, and how it affects
the spatial resolution of the system. Microbubbles are
excited by the transmitted pulse into an oscillation,
which in turn converts into an acoustic response re-
ceived by the ultrasound system. This path is schemat-
ically presented in Fig. 1. It is clear that the response

Fig. 1. Function block diagram of system model.
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from packets of microbubbles is predicted. The simu-
lation of the signal path includes the microbubbles re-
sponse and the electro-acoustic properties of the trans-
ducer. The approach taken is to assume that these two
processes are time invariant and separable from each
other. The overall signal pathway is assumed to be
the convolution of two impulse response representing
the transducer and microbubbles respectively. Equiv-
alently, the signal pathway can be considered in the
frequency domain as a multiplication of the transfer
function representing each of the two phenomena.

2. Theory

If the bubble is considered spherical and is sur-
rounded by an incompressible liquid of infinite extent
the kinetic energy supplied to the surrounding liquid
should balance the difference between the work per-
formed by the fluid far from the bubble and that at
the bubble wall and the Rayleigh-Plesset equation is
obtained
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In this equation R, Ṙ, and R̈ describe the radius, the
velocity and the acceleration of the bubble wall re-
spectively. The pressure difference is determined by the
pressure in the liquid at the bubble wall, PL, and the
pressure far from the bubble wall, P∞. If we neglect
viscosity and the vapor pressure inside the bubble and
assuming that the gas inside the bubble is described
by the polytropic ideal gas law Pg ∝ R−3γ , where γ
is the polytropic exponent, the following equation can
be obtained:
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Inserting Eq. (2) into Eq. (1) the total equation
becomes:
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In this equation the initial bubble radius is given by R0

and the ambient pressure by P0. The driving pressure
pulse is described by P (t), σ the surface tension, µ
the viscosity of the surrounding liquid and P (t) is the
applied acoustic field.
The sound emitted by an oscillating microbubble

consists of two parts. The first is a passive contribu-
tion that results from the geometrical scattering of the
microbubble (could also be a non-oscillating body) in
the incident ultrasound field and the second is an active

contribution that results from the volumetric oscilla-
tions of the bubble. In regular applications, ultrasound
contrast microbubbles are much smaller than the inci-
dent wavelength and the passive contribution can be
safely neglected. The active contribution is determined
by the radial dynamics of the microbubble, described
by the radius time curve R(t). From the conservation
of mass and momentum it follows that the emitted
pressure wave Ps(r, t), at a distance r, is determined
from the second time derivative of the volume V of the
bubble

Ps (r, t− r/c) =
ρ

4πr
V̈ (t) =
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[
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]
, (4)

where ρ is the density of the surrounding liquid. The
finite time for the pressure wave to travel a distance
r from the bubble wall to the transducer surface is
accounted for by the term r/c where c is the speed of
sound in the liquid medium. A regularly used form of
Eq. (4) is obtained by rewriting:

Ps (r, t− r/c) =
ρ

r

[
R(t)

2
R̈(t) + 2R(t)Ṙ(t)

2
]
. (5)

In the equations it is assumed that the receiver is
sufficiently far from the microbubble to neglect the
Bernoulli pressure (also referred to as the kinetic
wave), which decreases with 1/r4 (Vokurka, 1985;
Leighton, 1994). Furthermore, Eq. (4) accounts only
for volumetric oscillations of the bubble. The Runga
Kutta fourth order algorithm will be used to simulate
the Eq. (3) with boundary condition R(t = 0) = R0

and Ṙ(t = 0) = 0.0.

3. The transducer response

There are many computer models describing the
behaviour of ultrasonic piezoelectric transducer. In this
work, the simulation was carried out by using a pre-
viously developed digital computer model (Ali, 2000)
to evaluate the pulse-echo responses of circular ultra-
sonic piezoelectric thickness expanders. The above sim-
ulation was applied using typical data for transducer
constructed with a load zirconate titanate (PZT-5A)
piezoelectric element with tungsten-epoxy (Ali, 1999)
(z = 19× 106 kg m−2s−1) back block. The transmitter
response is obtained for a 10 mm diameter pulse-echo
transducer of 5 MHz center frequency. Figure 2a shows
the front face pressure output response expected wave-
form at the transducer terminals. Figure 2b shows the
spectrum of the front face pressure output. From this,
it can be seen that the pressure spectrum yield −3 dB
bandwidth of 37.1% of the center frequency. Figure 2c
shows the expected waveform at the transducer termi-
nals when the device acts as a receiver for the force
waveform of Fig. 2a.
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a)

b)

c)

Fig. 2. Simulation of a 5 MHz pulse-echo transducer: a) the
front face pressure output response, b) pulse-echo fre-
quency response for pressure response, c) the expected
waveform at the transducer terminals when the device acts
as a receiver for the force waveform of Fig. 1a; that is in

pulse-echo mode with no field effects.

4. Overall system response

The signal pathway of a pulse-echo system con-
sists of the response of the transducer in transmission
and reception combined with the scattered pressure
response described by Eq. (4). The signal transfer pro-
cess can be modelled by a series of convolution. If x(t)
is the input voltage drive to the pulse-echo transducer
and v(t) is the output voltage at the transducer termi-
nals in reception, then

y(t) = fT (t) ∗ Ps(t) ∗ fR(t) ∗ x(t), (6)

where ∗ represents the convolution integral given by

g(t) ∗ q(t) =
+∞∫

−∞

q(τ)g(t − τ)dτ. (7)

The symbols have the following meanings: fT (t) is
transmission transducer impulse response Ps(t) is scat-
ter bubble response fR(t) is the receiver transducer
impulse response.
The real frequency model is obtained from the im-

pulse response by a Fourier transformation and replac-
ing the time domain convolution by a frequency do-
main multiplication, thus

Y (jω) = FT (jω)Ps(jω)Fr(jω)X(jω), (8)

where

Y (jω) =

+∞∫

−∞

y(t)e−jωt dt. (9)

5. Simulation results

The simulation was carried out by multiplying the
transfer functions of the two transducer responses by
the transfer function of scattered pressure of microbub-
bles. The resulting response was then converted back
into discrete time domain by inverse Fourier transfor-
mation. In order to investigate the combined effects
of the transducer and the bubbles response described
above on scanning system performance the simula-
tion was applied to a medium of water containing
number of bubbles. It was assumed that ultrasound
contrast microbubbles are gaseous and much smaller
than the incident field wavelength. The active con-
tribution to the scattered ultrasound field was deter-
mined by the radial dynamics of the microbubble de-
scribed by R(t). The microbubbles were assumed to
be spherical at all times. The original parameters be
summarized as the liquid is water, the environmental
temperature is 298 K, liquid density ρ = 1000 Kg/m3,
viscosity η = 0.001 Pa·s, surface tension σ = 4 Pa m,
the polytropic index κ = 1.4, velocity of sound in water
c = 1480 m/s, the static pressure P0 = 101.3 KPa, and
the vapor pressure pv = 3.2718 KPa. The driving pres-
sure as shown in Fig. 2a was used as input to Eq. (3) to
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calculate the radial response of a 4 µm radius air mi-
crobubble in water and to calculate the scattered pulse
(Eq. (4)). The pulse-echo response of the transducer
shown in Fig. 2c was convolved with the scattered pulse
response. The overall time domain voltage response at
the receiver terminals from microbubble is shown in
Fig. 3a. The frequency domain is the amplitude of the
Fast Fourier transform of the overall pulse. Figure 3b
shows the amplitude spectrum pulse. It is clear that the
linear response is observed for small driving pulse am-
plitude and yield −3 dB bandwidth of 28% of the cen-
ter frequency. Assuming microbubbles have different
diameters independent and separable from each other.
The scattered pulse for a package of microbubbles was
carried out by multiplying the transfer functions for
each microbubble in the frequency domain. The re-
sulting response was then converted back into the dis-
crete time domain by inverse Fourier transformation.
Figure 4 shows the scattered pulse of five microbub-
bles of diameters 3, 4, 5, and 6 µm. Figure 5 shows

a)

b)

Fig. 3. a) Time domain pulse-echo response operating into
4 µm microbubble, b) pulse-echo frequency response for

Fig. 3a.

Fig. 4. Simulated scatter response of a air microbubbles
package with radius 3, 4, 5, and 6 µm in water.

a)

b)

Fig. 5. Simulated pulse-echo response of a air microbub-
bles package with radius 3, 4, 5, and 6 µm in water: a) the
voltage at the terminals when an echo is received from a mi-
crobubbles package, b) pulse-echo frequency response.
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the overall voltage response and frequency response at
the transducer terminal from a packet of microbub-
bles. It is clear from this figure that the duration of
time decreased to 0.4 µs and −3 dB bandwidth yield
94% of the center frequency.

5.1. Nonlinear response

In the paragraph presented above the bubble is os-
cillating linearly, and no signal appears at the higher
frequencies. A detailed theoretical understanding of
the source of this nonlinear behavior was provided
by (Sijl et al., 2011a) through a weakly nonlin-
ear analysis of the shell buckling model proposed by
(Marmottant et al., 2005). At higher driving fre-
quencies a strong subharmonic component develops af-
ter a few cycles of the driving pulse (Sijl, 2010). The
driving pressure function was an envelope with 5 MHz
center frequency. A Hanning pulse was chosen as it is
a typical medical ultrasound pulse (Fig. 6). Radius-
time and pressure-time responses were simulated for
microbubbles at a driving pulse of 2.0 MPa and 5 MHz.

a)

b)

Fig. 6. a) Hanning pulse, center frequency 5 MHz, and
2 MPa amplitude, b) amplitude spectrum.

Fig. 7. The simulated radial response. The initial bubble
radius was 4 µm. The driving pressure pulse had peak am-

plitude of 2 MPa and a frequency of 5 MHz.

b)

Fig. 8. Predicted scattered pressure wave for 4 µm air mi-
crobubbles in water from simulation obtained radial dy-
namics: a) scatter pressure response, b) the power spec-
trum. A subharmonic response is visible at a frequency of
2.5 MHz and 7.5 MHz. Also, a second harmonic response

is visible at a frequency 10 MHz.
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Figure 7 shows an example of a bubble with a non-
linear oscillation behaviour. The bubble has an initial
bubble radius of 4 µm. The plot shows that the driving
pulse amplitude decreases towards zero and the bubble
will continue to oscillate freely with lower amplitude.
To estimate the spectral response for microbubble ra-
dius, the Fourier transform of pressure-time response
was calculated (Fig. 8). In the acoustic response of
the microbubble presented in Fig. 8 we can identify
two different harmonics, (1/2)f , and 2f where f is
the resonance frequency, which are clearly demonstrat-
ing the strong non-linear character of the microbub-
ble response. To estimate the pressure-time response
for packet of microbubbles, the Fourier transform of
pressure time response was carried out by multiplying
the transfer functions for each microbubble in the fre-
quency domain. The resulting pressure response was
then converted back into the discrete time domain by
inverse Fourier transformation (Fig. 9). It is clear from

b)

Four bubbles 3, 4, 5, 6

Fig. 9. Predicted scattered pressure wave for a package of
air microbubbles with radius 3, 4, 5, and 6 µm in water from
simulation obtained radial dynamics: a) scatter pressure
response, b) the power spectrum. A subharmonic response
is visible at a frequency of 2.5 MHz and 7.5 MHz. Also,
a second harmonic response is visible at a frequency 10 MH.

this figure that the three harmonics (1/2)f , (3/2)f ,
2f appear as shown in Fig. 8 but the bandwidths of
harmonics are more wider than that shown in Fig. 8.
Figure 9 shows scattering frequency responses for the
four different number of microbubbles package. This
figure demonstrates that the amplitude spectra for
subharmonic and second harmonic increases with in-
creasing the number of bubbles in the packet. Figure 10
shows the normalized scattering frequency responses
for second harmonics of Fig. 9. It clearly presents that
the one, two, four and five bubbles package yield 3 dB
bandwidths of 7.36, 13.8, 16.56 and 23.92% of the cen-
ter frequency respectively. These four curves have been
scaled to the same peak value so as to emphasize the
effect on bandwidth. Additionally, Fig. 11 shows the
normalized scattering frequency responses for subhar-
monics at 2.5 MHz. From this figure it can be seen

Fig. 10. Amplitude spectrum of scattered pressure
for different number of air microbubbles normal-

ized relative to the first harmonic.

Fig. 11. Amplitude spectrum of second harmonic
for different number of air microbubbles normal-

ized to the same peak amplitude.
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Fig. 12. Amplitude spectrum of subharmonic at 2.5 MHz
for different number of air microbubbles normalized to the

same peak amplitude.

that the one, two, four and five bubbles package yield
−3 dB bandwidths of 30, 33, 35, and 40% of the center
frequency respectively.

6. Conclusion

This paper has described a simulation of the signal
pathway in a pulse echo system. The model included
the piezoelectric transducer and different number of
air microbubbles package in water. The simulation has
been used to predict acoustic emission from radial dy-
namic of oscillating microbubbles package. Small am-
plitude behaviour and the higher-harmonic response
were shown to be characterized more sensitively by the
number of microbubble package. The acoustic response
of targeted microbubbles was examined to improve
nonlinear imaging techniques and aid signal quantifi-
cation.
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