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THE RAYBIT MODEL AND THE ASSESSMENT OF ITS QUALITY 
IN COMPARISON WITH THE LOGIT AND PROBIT MODELS

1. INTRODUCTION

A prevailing amount of methods of econometric model analysis refers to the situ-
ation when variables (both dependent and explanatory) are continuous variables. This 
is the case of a quantitative model – a quantitative dependent variable. If the variable 
can take a finite number of values, it is referred to as a discrete or a qualitative vari-
able. Gruszczyński (2012) draws attention to an increasing importance of qualitative 
models, as they constitute a basic tool for describing microeconometric models used 
in empirical corporate finance. In the case when a variable takes only two values it 
is called a dichotomous variable (also binomial or binary variable). 

The simplest method of solving an equation with a binary dependent variable is 
a linear probability model, the solution of which has one vital drawback, namely, a pos-
sibility of obtaining the probability which falls outside the interval [0;1] (Maddala, 
1992). In order to get rid of this drawback, it is assumed that the probability cor-
responds to the cumulative distribution function of a random variable. In the case of 
a logistic distribution, a logit model is obtained, and in the case of a normal distribu-
tion – a probit model (Maddala, 1992).

In the literature other types of transformations can be found. Nerlove (1973) pro-
vides the following formulas:

 ,   , (1)

 ,   , (2)

 ,   . (3)
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McFadden (1984) lists the following transformations: the cumulative distribution 
function of the Student’s t-distribution, the cumulative distribution function of the 
Cauchy distribution and the arctan model (equation (2)). Finney (1973) lists four trans-
formations: the arctan model, the rational function, the sin2 x and parabolic function.

In this paper the author proposes his own model, in which the probability is 
expressed by a Rayleigh cumulative distribution function, hence the name of the 
model – raybit. The Rayleigh distribution is a special case of the Weibull distribution, 
the cumulative distribution function of which is given by (Rine, 2009):

 . (4)

By assuming in equation (4) a = 0, b = 1 and c = 2, the Rayleigh cumulative 
distribution function is obtained:

 . (5)

While conducting computer simulations described in section 5 of the paper, it 
was observed that the values of parameters a nad b (equation (4)) do not affect the 
results of the proposed method. In order to obtain the simplest form of the Rayleigh 
cumulative distribution function (equation (5)), a = 0 and b = 1 were assumed.

The continuous random variable with a Weibull distribution (Rayleigh) has been 
widely applied in modeling physical and economic phenomena (Polakow, Dunne, 
1999; Celik, 2003).

The random variable with a Weibull distribution is also applied in binary variable 
analysis, yet the cumulative distribution function is given by a relation other than 
equation (4) (Chou, 1983):

 . (6)

This misunderstanding is explained by Train (2009), namely, the distribution (6) is 
also called Gumbel and type I extreme value, and quite often is mistakenly referred to 
as the Weibull distribution. The Gumbel distribution is often used in modeling extreme 
values (Koutsoyiannis, 2003).

Hence it can be concluded that the Rayleigh distribution (equation (5)) has not 
been used in modeling a discrete variable yet.

2. PROBABILITY MODELS FOR A BINARY VARIABLE

It is assumed that a variable Y can take two values: one or zero, corresponding to 
the fact of making or not making a decision – an occurrence of an event A.

The subject of the analysis are the models of a binary variable for grouped data.
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If among ni of decision-makers, yi of them made a sensible decision, then a quotient

 , (i = 1,2,...,I) (7)

represents an empirical frequency of making a decision in an i-th group of decision-
-makers.

The easiest model is a linear model of probability (Judge et al., 1980): 

 p = Xα + ε, (8)

where:
p – I-dimensional vector of empirical probabilities,
X – [I × (k+1)] dimensional matrix including k number of explanatory variables,
α – (k+1) vector of parameters,
ε – I-dimensional vector of random elements.
Based on equation (8), the following can be observed

 pi = Pi + εi, (9)

where:
pi – empirical probability of an occurrence of an event A for an i-th value of a vector 

of explanatory variables,
Pi – probability of an occurrence of an event A for an i-th value of a vector of explana-

tory variables,
εi – a disturbance: E(εi) = 0 and cov(εi, εj) = 0 for i ≠ j.

Since a variable yi (equation (7)) has a binomial distribution, the variance of 
a disturbance is given by relation (Judge et al., 1980)

 , (10) 

which means that the disturbances appearing in equation (9) are heteroskedastic.
Due to the drawback mentioned in the Introduction of this paper (p. 1), the linear 

probability model will not be further discussed.
It is assumed that the probability Pi, with which the decision in question is made 

in an i-th group of decision-makers, is a function F of a variable 

 , (11)

where F is a cumulative distribution function,  is an i-th row of an explanatory 
variable matrix.
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The most commonly applied cumulative distribution functions are as follows:
– a logit model, hereafter referred to as LOG 

 , (12)

 where L denotes the cumulative distribution function of a logistic distribution 
– a probit model, hereafter referred to as PRO

 , (13)

 where Φ denotes the cumulative distribution function of a standardized normal 
distribution.

Depending on the model, a vector v is called:

– an observed logits , LOG (14)

– an observed probits , PRO (15)

 where Φ–1( ) – the inverse function to the cumulative distribution function of 
a standardized normal distribution.

The following relations can be observed (Amemiya, 1981; Judge et al., 1980):

 ,

– for the logit model , (16)

– for the probit model , (17)

 where φ – a standard normal density.
In this paper, the Rayleigh cumulative distribution function, given by equation (5), 

is considered as a function F in equation (11),

 . (18)
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A vector v of the observed raybit is given by formula:

 . (19)

From equations (18) and (19) it follows that

 . (20)

Starting from equation 

 , 

and adopting approximate formulas, applicable for small values δ (δ ≈ 0):

 ,

 ,

the following is derived

 . (21)

From equations (10) and (21), the following is obtained: 

 . (22)

Which means that the random variable ηi is heteroskedastic.
In the analysis of each model the following three steps can be singled out (Judge 

et al., 1980; Jajuga, 1989):

A. The first step
Estimation of a vector α0 of parameters α

 , (23)

where: W is a diagonal covariance matrix (of a size I × I), where the elements on the 
main diagonal equal:

 , LOG (24)
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 , PRO (25)

 . RAY (26)

The estimation of theoretical probability:

 , LOG (27)  

 , PRO (28)

 . RAY (29)

B. The second step
By applying the ordinary least squares (OLS), the following is obtained:

 , (30)

where: v is defined by formulas (14), (15), (19).
The estimation of theoretical probability

 ,  LOG (31)

 , PRO (32)

 . RAY (33)

C. The third step
Estimation of a vector α2 of parameters α

 , (34)

where: v is defined by formulas (14), (15), (19).
W1 is a diagonal covariance matrix, where the elements on the main diagonal equal:

 , LOG (35)

 , PRO (36)
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 , RAY (37)

where p1i is given by equations (31), (32) and (33). 
The estimation of theoretical probability:

 , LOG (38)

 , PRO (39)

 . RAY (40)

In the literature (Judge et al., 1980; Jajuga, 1989) there are two alternative methods 
described: the probability p0 and the probability p2 (in which case the probability p1 
is used to determine p2). In this paper the probability p1 is taken into account in the 
same way as p0 and p2.

The forms of the likelihood function for the logit and probit models can be found 
in the paper by Chow (1983). In the case of the raybit model, the likelihood function 
is given by: 

 ,

where  is the number of decision-makers for whom a variable yi = 1 (equation (7)).
The log-likelihood function of the model is given by:

. (41)

The necessary condition for extremum leads to the set of equations:

 , (42a)

 , (42b)

 .............................................................................................................. ,
 

 . (42c)
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3. ESTIMATING THE ERROR OF THE MODEL

The most popular measure of goodness of fit of a model is the mean square error 
(MSE):

 , (43)

where: 
pi – empirical probability (equation (7)),

 – the estimation of theoretical probability. 
As  the results of the following four methods (p0i, p1i, p2i, pMLi) are taken. 
Guzik et al. (2005) recommends equation (43) as a criterion of goodness of fit of 

a theoretical probability model.
Another measure is the mean absolute error (MAE):

 . (44)

Due to the heteroskedasticity of the disturbance, many authors (cf. Amemiya, 
1981; Jajuga, 1989; Maddala, 2006) propose a criterion called the Weighted Mean 
Squared Error (WMSE):

 . (45)

The main problem lies in the fact that the variance of MSE (equation (43)) and 
MAE (equation (44)) depends heavily on the value of the empirical probability. 
Therefore, a recommended measure of goodness of fit is the weighted mean squared 
error (equation (45)). This issue was discussed in the paper by Purczyński et al. (2015), 
where computer simulations were carried out using a random number generator with 
a binominal distribution. As a result of these studies, yet another measure of goodness 
of fit was proposed, namely the Weighted Mean Absolute Error (WMAE):

 . (46)

Adopting as a criterion a constant value of a variance for a changing empirical 
probability, it was shown, in the aforementioned paper, that the least useful measure 
of goodness of fit of the model is MSE (equation (43)), a slightly better measure is 
MAE (equation (44)), still better is WMSE (equation (45)), however the best and the 
mostly recommended one is the weighted mean absolute error (equation (46)).
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4. COMPUTATIONAL EXAMPLES

A computational example was conducted based on the data taken from Household 
Budget Survey in 2012, CSO Warsaw 2013, which refers to the likelihood of pos-
sessing the PC by a household. The data presented in table 1 refer to the year 2012. 
Column 5 includes the number of households  equipped with the PC.

Table 1.
Households equipped with PCs

Lp.
Number 

of residents 
in thousand

Surveyed 
residents 

in thousand
x1i

Available income 
per person

x2i

Households 
surveyed

ni

Empirical
probability

pi

Number 
of households 
possessing PC

1 2 3 3 4 5

1 less than 20  10 1199.58  4296 0.652  2801

2 20–99  60 1272.82  6447 0.676  4358

3 100–199 150 1320.44  2719 0.707  1922

4 200–499 350 1497.20  3455 0.722  2495

5 500 and more 870 2011.66  4768 0.769  3667

6 rural 0.4 1027.63 15742 0.642 10106

Source: Household Budget Survey in 2012, GUS, Warsaw.

Column 1 of table 1 contains the number of residents of Polish towns in which 
the people, included in the survey and given in column 3, live. Column 2 (rows 1–4) 
contains the values which correspond to the center of the interval. In the case of towns 
of the population 500,000 and more, the mean was calculated for five Polish towns 
fulfilling this condition. Row 6 represents rural residents. Starting from the number 
of rural residents and the number of villages, the average number of rural residents 
was estimated at 360 persons, which was rounded off to 0.4 thousand. The household 
possessing the PC was chosen as the first model, where an explanatory variable x1i 
was the number of residents (column 2). Table 2 contains the results of calculations 
in the form of errors of the following models: logit, probit, raybit.

As far as labeling is concerned, the model errors MAE0, MAE1, MAE2 demon-
strate the results of calculations obtained using equation (44) for estimating the prob-
ability p0 – equations (27), (28) and (29). However MAEML represents the results of 
the Maximum Likelihood Method for the error given by equation (44).

Taking into account the data included in table 2, the values of errors for particu-
lar methods obtained for a given equation were compared. For instance, for the data 
included in column 1 and rows 1, 2, 3 it can be noticed that in the case of equation 
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(44) (MAE) and the results obtained for the estimation of the probability p0, the raybit 
model yields the smallest error. By conducting further comparisons, it was observed 
that the raybit method yielded the smallest errors in 13 cases. In the remaining three 
cases, the logit method yielded the smallest errors. 

Table 2.
Errors of the models: logit, probit and raybit for explanatory variable x1i

MAE0 MAE1 MAE2 MAEML MSE0 MSE1 MSE2 MSEML

1 2 3 4 5 6 7 8

1 Logit 0.01347 0.012963 0.01346 0.01347 0.0002569 0.0002120 0.0002532 0.0002550

2 Probit 0.01371 0.01320 0.01370 0.01371 0.0002640 0.0002178 0.0002619 0.0002634

3 Raybit 0.01346 0.012960 0.01345 0.01346 0.0002571 0.0002119 0.0002528 0.0002548

4 WMAE0 WMAE1 WMAE2 WMAEML WMSE0 WMSE1 WMSE2 WMSEML

5 Logit 955.388 1143.383 962.856 959.318 31.592 42.104 31.559 31.570

6 Probit 973.572 1157.956 978.093 975.187 32.589 42.896 32.571 32.581

7 Raybit 953.510 1143.878 961.957 958.031 31.543 42.159 31.507 31.518

Source: own elaboration.

Another model related to the household possessing the PC assumed an explanatory 
variable x2i as an available income per person (column 3 in table 1). The results of 
calculations are shown in table 3 with the labeling identical as in table 2.

Table 3.
Errors of the models: logit, probit and raybit for explanatory variable x2i

MAE0 MAE1 MAE2 MAEML MSE0 MSE1 MSE2 MSEML

Logit 0.009538 0.010287 0.009561 0.009557 0.0001530 0.0001492 0.0001523 0.0001526

Probit 0.009732 0.010510 0.009720 0.009723 0.0001580 0.0001535 0.0001586 0.0001578

Raybit 0.009545 0.010289 0.009558 0.009563 0.0001530 0.0001492 0.0001523 0.0001525

WMAE0 WMAE1 WMAE2 WMAEML WMSE0 WMSE1 WMSE2 WMSEML

Logit 454.606 583.21 456.855 456.444 14.4814 15.332 14.473 14.4754

Probit 473.849 604.317 472.204 467.372 14.956 15.890 14.960 14.939

Raybit 456.119 582.982 456.191 457.701 14.4815 15.338 14.472 14.4749

Source: own elaboration.
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On the basis of the data included in table 3 it can be concluded that the smallest 
errors are obtained through the raybit method – in 9 cases, and the logit method – in 
7 cases. Considering the total values of errors of MAE, MSE, WMAE and WMSE 
presented in tables 2 and 3, it can be noticed that the smallest values of the afore-
mentioned errors were obtained for the following probabilities: p0 – 6 cases, p1 – 10 
cases, p2 – 6 cases, pML – 2 cases. It only validates the application of the probability 
p1 in the same way as p0 and p2. There was no point in examining the model with 
two explanatory variables x1i and x2i, since they are strongly correlated – the Pearson’s 
correlation coefficient equaling 0.9985.

5. RESULTS OF COMPUTER SIMULATIONS 

In order to verify the applicability of particular models (logit, probit, raybit), 
computer simulations were conducted. 

In accordance with equation (47) a random variable S with a Bernoulli distribution 
was determined (Devroye, 1986) and takes the value:

 , (47)

where  are uniform random variables,
P – theoretical probability,
k = 1,2,…, M.

The observed value of a binomially distributed random variable Z is given by 
(Devroye, 1986):

 .

The generated empirical value of probability was derived from:

 , (48)

where M is the number of random variable in Bernoulli process.
The calculations were conducted for M = 50. The interval [0 ; 1] was divided into 

ten sub-intervals of the length 0.1 each. For each sub-interval of the form [An; An+1], 
where An = 0.1 ∙ n; n = 0,1,2,...,9 the values of the theoretical probability were deter-
mined:

 , where i = 0,1,...,10. (49)

From equation (48) the empirical probability pi was determined. For the val-
ues of the theoretical probability obtained from equation (49), a random number 
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generator with a binomial distribution was used, which provided the values of the 
empirical probability pi. For these values, the logit, probit and raybit methods were 
applied. For the obtained estimations  the error measures were calculated (equtions 
(43),(44),(45),(46)).

During the computer simulations, for each value i and n (equation (49)), K = 16000 
repetitions were made. The repetitions consisted in restarting the random number 
generator. The error measures were calculated as a mean from K repetitons.

The results of the computer simulations are presented in table 4. Rows 1 and 7 
contain the values of the theoretical probability P (equation (49)).

In rows 2 and 8 next to the names of the models, in brackets, the numbers of 
cases for which a given model yielded the smallest errors are provided. The total num-
ber of cases for particular probability sub-intervals [A; A+0.1] is 16 – four methods 
(p0, p1, p2, pML) multiplied by four criteria of an error. The total number of resaults, 
for 10 probability sub-intervals equals 160. By adding up the figures in brackets 
the number of cases with the smallest error is obtained: LOG 30 (17.5%), PRO 74 
(46.25%), RAY 58 (36.3%).

Table 4.
Errors of models: logit, probit and raybit obtained through computer simulations

1 Probability P ∈ [0; 0.1] P ∈ [0.1; 0.2] P ∈ [0.2; 0.3] P ∈ [0.3; 0.4] P ∈ [0.4; 0.5]

1 2 3 4 5 6

2 Model
LOG (1)
PRO (2)

RAY (13)

LOG (4)
PRO (2)

RAY (10)

LOG (4)
PRO (3)
RAY (9)

LOG (3)
PRO (5)
RAY (8)

LOG (5)
PRO (3)
RAY (8)

3 MAE p1 pML pML p0 p0

4 MSE pML pML pML pML pML

5 WMAE p1 p2 p0 p2 p0

6 WMSE p0 p0 p2 p0 p2

7 Probability P ∈ [0.5; 0.6] P ∈ [0.6; 0.7] P ∈ [0.7; 0.8] P ∈ [0.8; 0.9] P ∈ [0.9; 1.0]

8 Model
LOG (4)
PRO (11)
RAY (1)

LOG (1)
PRO (11)
RAY (4)

LOG (3)
PRO (10)
RAY (3)

LOG (3)
PRO (12)
RAY (1)

LOG (0)
PRO (15)
RAY (1)

9 MAE p0 p0 pML pML pML

10 MSE pML pML pML pML pML

11 WMAE p0 p1 p2 p2 p1

12 WMSE p2 p0 p0 p0 p0

Source: own elaboration.
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It shows that in terms of the goodness of fit, the probit model is the best one, 
the raybit model is worse and the logit model is the worst. Furthermore it should be 
noticed that the raybit model is substantially better (in fact twice as good) compared 
with the logit model. 

The following rows (from 3 to 6) contain the  information about which equation 
that defines the probability leads to the smallest value of a selected error measure. In 
the case of MAE, it is as follows: pML (five times), p0 (four times) and p1 (once). In 
the case of MSE, there is a clear advantage of the probability determined by applying 
MLE (pML) – all ten cases.

In the case of WMAE the following was observed: p0(3), p1(3) and p2(4). WMSE 
takes the smallest value for: p0(7) and p2(3).

Table 5 was compiled on the basis of the results included in table 4. The only dif-
ference are the intervals, which now take the form [0 ; A], where A = 0.1, 0.2, 0.3 ... 1. 
Rows 2 and 4 in table 5 contain the sum of subsequent columns in rows 2 and 8 in 
table 4. 

Table 5.
Errors of the models: logit, probit and raybit obtained through computer simulations (cont.)

1 Probability P ∈ [0; 0.1] P ∈ [0; 0.2] P ∈ [0; 0.3] P ∈ [0; 0.4] P ∈ [0; 0.5]

1 2 3 4 5 6

2 Model
LOG (1)
PRO (2)

RAY (13)

LOG (5)
PRO (4)

RAY (23)

LOG (9)
PRO (7)

RAY (32)

LOG (12)
PRO (12)
RAY (40)

LOG (17)
PRO (15)
RAY (48)

3 Probability P ∈ [0; 0.6] P ∈ [0; 0.7] P ∈ [0; 0.8] P ∈ [0; 0.9] P ∈ [0; 1.0]

4 Model
LOG (21)
PRO (26)
RAY (49)

LOG (22)
PRO (37)
RAY (53)

LOG (25)
PRO (47)
RAY (56)

LOG (28)
PRO (59)
RAY (57)

LOG (28)
PRO (74)
RAY (58)

Source: own elaboration.

The data shown in table 5 shows the advantage of the raybit model for P ∈ [0; A] 
where A = 0.1, 0.2, ... 0.8. It is only for P ∈ [0; 0.9] and P ∈ [0; 1.0] that the probit 
model gains the advantage.

The logit model performs worst of all analyzed models for any value from the 
interval P ∈ [0; A].

The data shown in table 4 demonstrates a variability in the number of cases when 
a given method yields the smallest error in relation to the value of the probability. In 
order to explain this phenomenon, the following numerical experiment was conducted. 
A random number generator was replaced by the values of the theoretical probability 
Pi = 0.01 ∙ (1 + i), where i = 0,1,...,98, which were used in place of the values of the 
empirical probability. Applying equations (27) – (29) and (38) – (40) the values of the 
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probability p0 and p2 were determined. The results of the calculations are shown in 
figures 1–4, where a dashed line represents the raybit model and a solid line – the 
linear model. Figure 1 proves that the results for the raybit model for Pi ∈ [0.01; 0.5] 
are very similar to the results for the linear model, which results in very small values 
of the error. This is the reason why the raybit model has a clear advantage over other 
models for this probability interval.

The probability pPRO0,i obtained for the probit model for the same interval shows 
much larger nonlinearity. However for the interval Pi ∈ [0.5; 0.99] the probit model 
fits well with the linear model.

Figure 1. The results of the probability p0 calculations for Pi ∈ [0.01; 0.99]
Applied labeling: dotted line pPRO0,i (probit model), dashed line pRAY0,i (raybit model), 

solid line pLIN0,i (linear model). 
Source: own elaboration.

Figure 2. The results of the probability p0 calculations for Pi ∈ [0.01; 0.99]
Applied labeling: dotted line pLOG0,i (logit model), dashed line pRAY0,i (raybit model), 

solid line pLIN0,i (linear model).
Source: own elaboration.
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On the basis of figure 2 it can be noticed that the probability pLOG0,i obtained 
for the logit model shows much larger nonlinearity (than the raybit model), especially 
for Pi ∈ [0.01; 0.2] and Pi ∈ [0.6; 0.99].

Figure 3. The results of the probability p2 calculations for Pi ∈ [0.01; 0.99]
Applied labeling: the same as in figure 1. 

Source: own elaboration.

The situation described in relation to figure 1 can be also observed in figure 3. 

Figure 4. The results of the probability p2 calculations for Pi ∈ [0.01; 0.99]
Applied labeling: the same as in figure 2. 

Source: own elaboration.

The results observed in figure 2 can be also observed in figure 4.
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6. CONCLUSION

In the paper the estimation of the parameters of qualitative econometric models 
was discussed including: the logit model, the probit model and the raybit model. The 
following methods of estimation were considered. The generalized least squares (equa-
tion (23)), where the elements of a diagonal covariance matrix are determined on the 
basis of the empirical probability. The method leads to the estimation of a theoretical 
probability labelled as p0 (equations (27) – (29)). The next method is two-step. As 
a first step, using OLS, the estimation of the probability p1 was determined (equa-
tions (31) – (33)). As a second step, GLS was used, where the elements of a diagonal 
covariance matrix were determined on the basis of the probability p1. Consequently, 
the estimation of the probability labelled as p2 was obtained (equations (38) – (40)). 
Although the probability p1 was used to calculate the probability p2, it was also treated 
as yet another value of the theoretical probability estimation. The last method of 
estimation of a qualitative econometric model was the maximum likelihood method, 
where the probability estimation was labelled as pML. 

With reference to the computational examples (tables 2 and 4), the raybit model, 
proposed in this paper, proved to be the best out of the three models under study. In 
computer simulations this model showed clear advantage for probability P ∈ [0; 0.8] 
(table 5). Only for P ∈ [0; 0.9] and P ∈ [0; 1.0] the probit model performs best. 
Despite the fact that for the above mentioned probability intervals the raybit model is 
worse than the probit model, it still has its advantages, namely, the analytical forms of 
the cumulative distribution function as well as  the inverse function to the cumulative 
distribution function.

It should be noticed that in the whole probability interval the raybit model yields 
a smaller error than the logit model.

It means that while analyzing a binomial qualitative variable, along with the classic 
logit and probit models, it is worth taking into account the results of the raybit model. 
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MODEL RAYBITOWY I OCENA JEGO JAKOŚCI W PORÓWNANIU 
Z MODELEM LOGITOWYM I PROBITOWYM

S t r e s z c z e n i e

W pracy zaproponowano nowy model dla zmiennej objaśnianej zero-jedynkowej (binarnej, dychoto-
micznej). Nazwa modelu raybit wynika stąd, że prawdopodobieństwo odpowiada dystrybuancie rozkładu 
Rayleigha. Ocenę jakości modeli przeprowadzono z wykorzystaniem 4 definicji błędu: MSE, MAE, 
WMSE, WMAE. Rozpatrzono dwa przykłady obliczeniowe, które wykazały, że model raybitowy prowa-
dzi do mniejszych wartości błędu, niż model logitowy i probitowy. Wykonano symulacje komputerowe 
z wykorzystaniem generatora liczb losowych o rozkładzie dwumianowym. Przeprowadzone symulacje 
wykazały, że dla wartości prawdopodobieństwa teoretycznego z przedziału Pi ∈ [0; 0,8] model raybitowy 
przewyższa pozostałe dwa modela prowadząc do mniejszej wartości błędu.

Słowa kluczowe: jakościowe modele ekonometryczne, model logitowy, model probitowy

THE RAYBIT MODEL AND THE ASSESSMENT OF ITS QUALITY 
IN COMPARISON WITH THE LOGIT AND PROBIT MODELS

A b s t r a c t

A new model for a dependent variable taking the value 0 or 1 (binary, dichotomous) was proposed. 
The name of the proposed model – the raybit model – stems from the fact that the probability corresponds 
to the Rayleigh cumulative distribution function. The assessment of the quality of selected models was 
conducted with the use of four definitions of error: MSE, MAE, WMSE, WMAE. Two computational 
examples were considered, which proved that the raybit model yields smaller values of error than the 
logit and probit models. Computer simulations were conducted using a random number generator with 
a binomial distribution. They proved that for the values of the theoretical probabilityfor the interval 
Pi ∈ [0; 0.8] the raybit model outperforms the other two models yielding a smaller value of error.

Keywords: qualitative econometric models, logit model, probit model




