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1. INTRODUCTION

Partial regression, developed by Frisch, Waugh (1933), is a popular method of 
elimination of nuisance slope parameters. It is widely used in inter alia panel data 
analysis. One of its special cases is commonly used to estimate regression parameters 
in, so called, fixed effects models. Partial regression allows one to find slope parameters 
without the need of estimating actual levels of fixed effects. In this form it is referred 
to as the demeaning procedure (cf. Baltagi, 2005).

As the Maximum Likelihood (ML) estimation procedure is one of the most popular 
estimation methods for Spatial Autoregressive Model (SAR) many researchers have 
also used the technique of demeaning in ML estimation of the SAR model. However, 
validity of this approach has been occasionally subjected to doubt (e.g. Anselin et al., 
2006) on the grounds that the demeaning procedure yields singular variance of the 
error term. As Pace (2014) rightly points out, maximising demeaned likelihood can 
still produce consistent estimates5 of regression parameters, as the demeaned likelihood 
can be interpreted as a concentrated likelihood. However, estimates of their variances 
are likely to be invalid.

A procedure to overcome this problem was first proposed by Lee, Yu (2010) for 
a reasonably general spatial fixed time/individual fixed effect model. They noticed 
that applying certain transformation of data, prior to conducting ML procedure, can 
effectively eliminate fixed effects and, at the same time, properly account for the 
singularity. In this paper we generalise this approach and show that, contrary to 
a statement included in Lee, Yu (2010), ML estimation with demeaning of SAR model 
is feasible in a larger class of settings than originally described.
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Our invariant subspace framework allows, under some assumptions, to effectively 
deal with large class of fixed effects designs in panel and non-panel data models. 
Designs handled by the framework range from group-specific fixed effects with 
non-uniform cardinality to multiple levels of group-specific effects with possibly 
overlapping groups and non-constant (yet known) effect sizes within those groups. 
This can be done under the assumption that the Krylov subspace6 for spatially lagged 
fixed effects is of incomplete dimension. The crucial requirement expresses certain 
degree of compatibility of the fixed effects design with assumed spatial weight matrix. 
In the original paper of Lee, Yu (2010) the considered model specification also includes 
spatially correlated error term, however in our paper, for simplicity of presentation, 
we employ only autoregressive scheme. Therefore, the aim of our paper is to develop 
extension of the fixed effect eliminating transformation of Lee, Yu (2010), so that 
effectively a larger class of fixed effect designs can be handled.

Unless specified differently, throughout the paper we use the short term SAR 
model to actually describe the panel-data SAR model. All statements applicable to 
non-panel data SAR model are also valid in the panel case. Whenever  is used to 
denote sample size, it can be read , moreover ,  
etc. This notation can also cover the case of either spatial unit unbalanced or time 
unbalanced panel data set, that is if  and , or 
if , etc., respectively.

The rest of this paper is structured as follows. Section 2 introduces the concept of 
partial regression by Frisch, Waugh (1933). Section 3 introduces Spatial Autoregressive 
Model specification and describes the well-known naive approach of demeaning in ML 
estimation. Section 4 presents our original approach. Section 5 formulates statements 
on asymptotic behaviour of our estimator. Finally, section 6 presents a summary and 
conclusions.

2. PARTIAL REGRESSION

Although for our purposes it is enough to consider the basic form of the Frisch-
Waugh (F-W) theorem, it is worthwhile to mention some of its interesting extensions. 
In particular, Fiebig, Bartels (1996) develop an extension of the F-W procedure that 
is able to handle model specifications with non-spherical disturbances, that is where 
the variance covariance matrix of the error term is not proportional to identity matrix.

Another interesting extension to partial regression has been recently developed in 
Yamada (2016). It has been shown that the F-W theorem is invariant under certain 
modification of the least squares objective function. Namely, if instead of the usual 
least squares optimization problem

 

6 To be defined in section 4, can be found also in e.g. Liesen, Strakoš (2013).
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we consider the LASSO (least absolute shrinkage and selection operator) regression. 
This can be described as solution to the modified problem  

, where  is a tuning parameter and . Similarly, the F-W 
theorem still holds if the usual least squares is replaced with ridge regression i.e. 

. 
Those results suggest that partial regression might be a technique applicable in 

a variety of estimation schemes. The maximum likelihood estimation procedure is one 
of them. This is implied by fact of equivalence of the estimates form OLS and ML 
approaches under normality of error term. However, the question of applicability of 
partial regression becomes far more difficult if one considers the spatially autoregressive 
term in model specification. In our paper we show that, under some assumptions, the 
Maximum Likelihood estimation procedure in case of a spatially autoregressive DGP 
can also benefit from virtues of F-W theorem.

In the reminder of this section we present the concept of partial regression developed 
by Frisch, Waugh (1933). Let us consider a standard linear model

 ,  ,

where  is a  vector of observations,  and  are respectively  
and  design matrices,  is the unknown parameter of interest and 

 is a nuisance parameter. The partial regression technique allows us to find 
 without actually estimating  (c.f. Greene, 2008), Section 3.3). Let us denote 

. The partial regression estimator  is given by

  (1)

and asymptotically unbiased7

 . (2)

It turns out that  coincides with the corresponding element of slope estimator in the 
full Ordinary Least Squares scheme, i.e.  with

 .

Moreover, the Frisch-Waugh theorem also states that

  (3)

7 Provided that .
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and the variance of  can be obtained through the partitioned inverse8 of the design 
moment matrix , which is 

g p
. In the context of panel data 

model, by substituting a time or individual effect dummy variable for  we obtain 
the well-known demeaning procedure.

3. DEMEANING IN ML ESTIMATION OF SPATIAL AUTOREGRESSIVE MODEL

In this section we introduce the Spatial Autoregressive Model specification and 
describe the well-known naive approach of demeaning in ML estimation, as used in 
e.g. Elhorst and Fréret (2008). Let us consider a standard spatial autoregressive linear 
model

 , , (4)

where  is an arbitrary spatial weight  matrix (with zero diagonal) and  is the 
scalar autoregressive parameter. Moreover, as previously,  is a  vector of obse-
rvations,  and  are ,  respectively design matrices,  
is the unknown parameter of interest and  is the nuisance parameter. The  
term is referred to as the spatial autoregressive term. The elements  of  
have the common interpretation of spatial weights, i.e. a measure of influence of -th 
unit on unit . Since , the spatial autoregressive term 
conveys information on weighted averages of influences from other spatial9 units 
( , ) on a given unit.

It is a well-known fact that the specification (4) cannot be estimated with the use 
of classical Ordinary Least Squares (see Anselin, 1988). Instead, the ML estimation 
procedure is a commonly suggested feasible alternative. To implement the maximum 
likelihood estimation procedure for the SAR specification it is enough to notice that, 
using the form of Gaussian density of , we can obtain the following formula for log 
likelihood function

 
  (5)
 ,

with the assumption that  is positive for all  in its parameter space 10. 
A straightforward implementation of the idea of partial regression consists in applying 

 8 I.e. the relevant part of the inverse.
 9 Or spatio-temporal in dynamic panel case.
10 It is a common practice to assume that the parameter space for spatial autoregressive parameter  

is an interval  such that . The endpoints of  are established from a condition ensuring 
invertibility of the spatial lag , for example , for a matrix (submultiplicative) norm or 
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the demeaning operator  to the formula under the norm in (5). This, widely used, 
approach is supported by the fact that first order differential optimality condition on 
(5) is consistent with (3), i.e.

 

and, as a result of simple algebra, we get the concentrated log likelihood

 
  (6)
 .

Unfortunately, the operator  is not unitary, let alone invertible thus the formula 
above cannot be interpreted as a regular likelihood function. Nonetheless, the estima-
tion approach of maximising (6) with respect to  yields reasonably good estimates, 
provided that , c.f. Elhorst (2009). However, the estimate of the asymptotic 
variance of the resulting ML estimator may be invalid. Moreover, the estimates of , 
when , are not consistent.

4. PARTIAL REGRESSION IN ML ESTIMATION OF SAR MODEL

In this section we derive our original approach to the problem of eliminating 
fixed effects in case of ML estimation of the SAR model by employing an alternative 
to the idea of partial regression. We will consider two cases. In Case I we assume 
that the spatial weight matrix is in some sense consistent with the nuisance slope 
parameter design . In Case II an assumption about dimension of certain invariant 
subspace is made instead.

One approach to the issue of singularity of the  operator can be to pre-multiply 
 by an orthogonal (i.e. transformation of coordinates) matrix  which maps the range 

of  onto  interpreted as a natural subset of , 
where  is the coordinate-wise direct sum of linear spaces. Then, we could integrate 
over unnecessary degrees of freedom, at the same time eliminating  from the likelihood 
function (5). Effectively, this is the same as using the transformation , with 

 being the natural projection  preserving  first coordina-
tes. Indeed, it can be observed that , thus .

Obviously, the transformations  and  are not uniquely defined. In fact any 
such transformation , as described in previous paragraph can be equally useful. Here, 
we propose a method of construction of a possible candidate. Let  be rows of 
the matrix . Let . For , once , for , have been defined, 

, where  is a modulus-maximal real eigenvalue of  (c.f. Appendix in Olejnik, 
Özyurt, 2016).
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we can set . Having chosen vectors  
as a basis of the range of , we can proceed with Gram-Schmidt ortho-normalization 
process and thus obtain an orthonormal system of vectors , for . We 
apply the same procedure for matrix  and obtain orthonormal system , for 

. Finally, it is enough to set .

Case I
Let us assume that . Since , we can immediately 

conclude that , so that . Notice that, by denoting 
 and observing that , we have

 

 .

It can be noticed that  is invertible if 
 is invertible. Indeed, it is enough either to observe that, by a simple 

algebra, we have , since 
. Thus, for each value of  in its parameter space we can 

properly define the transformation

 , for .

Since  and  we obtain the following form of 
logarithm of likelihood function for θ, based on observable values of 

 

  (7)
 .

Now, we can differentiate  with respect to  and equate the 
result to zero, thus get the optimal relations between ,  and 

 , (8)

 . (9)
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Relations (8) and (9) are SAR counterparts of partial regression estimators (1), (2). 
In order to obtain the ML estimates  and  we need to evaluate the above formulas 
a the maximum likelihood estimate of .

Substituting the above equations, (8) and (9), into (7) we get the concentrated log 
likelihood function 

 ,

where the coefficients of the quadratic polynomial in  are given by

 ,

 ,

 ,

and  is the column vector of OLS residuals obtained by regressing  on . 
Lastly, it is clear that simply maximising (presumably numerically)  
with respect to its single parameter  gives the desired value of , which can be 
further substituted into (8) and (9).

Case II
Now, let us assume that . The approach we present further 

is based on the concept of Krylov subspace. The Krylov subspace for  with respect 
to  is the minimal -invariant subspace containing . We will denote it by , i.e.

 .

We will assume that  is a proper subspace of , so that , with 
.

With the notation of  being orthogonal projection on orthogonal complement 
of , as previously, we define linear isometry  to be an operator that takes range 
of  onto  with coordinate-wise . Furthermore, 
let  be orthogonal projection preserving first  coordinates. We have 

 and .
Again, considering the fact that , we can immediately conclude 

that , and further that . Notice that, denoting 
 and observing that  we have
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 .

It can be also noticed that  is invertible if 
 is invertible, since , since 

.
As a result, for each value of  in its parameter space we can properly define the 

transformation

 , for .

Since  and  we obtain the following form of loga-
rithm of likelihood function for  based on observable values of 

 
  (10)

.

Now, we can differentiate with respect to  and equate to zero to get optimal 
relations between ,  and  

 , (11)

 , (12)

which are SAR counterparts of partial regression estimators (1), (2). In order to be able 
to evaluate the above formulas we need to obtain maximum likelihood estimate of .

Substituting the above equations, (11) and (12), to (10) we get the concentrated 
likelihood function 

 ,

where the coefficients of quadratic polynomial in  are given by



An Alternative to Partial Regression in Maximum Likelihood Estimation… 331

 ,

 ,

 

and  is the column vector of OLS residuals obtained by regressing  on . 
By maximising  with respect to its single parameter  we obtain 
the desired value of , which can be further substituted into (11) and (12).

Finally, let us notice that Case II simplifies to Case I if  thus the 
remaining part of the paper considers Case II only. Still, in this section, we have 
retained the presentation of both cases separately since Case I is considerably simpler 
in application and should be used instead of Case II whenever possible.

5. ASYMPTOTICS OF THE PARAMETER ESTIMATES

In this section we formulate two statements on asymptotic behaviour of the ML 
estimator presented in section 3. First of those statements concerns consistency, second 
concerns limiting variance of the estimates from our ML estimator.

Large sample theory for maximum likelihood estimation establishes, under 
some assumptions, two important facts about the ML estimator . Firstly, it 
is the consistency of ML estimates and secondly the limiting distribution for the 
quantity , where  is the true parameter value. Clearly, in the case of 
the SAR model, given by equation (4), the observed sample  is not 
independent thus the classical textbook results are not applicable. Nonetheless, it has 
been a commonplace since the early days of applied spatial econometrics (c.f. Anselin, 
1988) to assume that  is consistent and the its deviation  is asymptotically 

normal with zero mean and variance . This popular belief 
was supported by the fact that any sensible asymptotic theory (covering at least the 
increasing domain scheme) would definitely have to give asymptotics of the form 
mentioned. This is because, such a theory would have to include the simple asymptotic 
setting, in which there exists a sequence of parallel spatial domains, independent and 
unrelated to one another, being included in the sample as  increases. Notice that 
this simple setting is subject to vector-valued independent sample ML asymptotics 
theorem. If one further assures identifiability and uniqueness of the maximiser, the 
above-mentioned asymptotics follow.

With the papers of Kelejian and Prucha (2001) as well as Lee (2004) it became 
apparent that an asymptotic theory covering more sophisticated asymptotic settings 
is possible. Using general tools for consistency and asymptotic normality proofs 
(described in e.g. Pötscher, Prucha, 1997) one can construct asymptotic theory for ML 
estimates covering both infill and increasing domain schemes. The crucial assumptions 
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that have to be made concern the spatial weight  and the design matrix . From 
those assumptions identifiable uniqueness of parameters and a certain uniform law 
of large numbers for the log likelihood function can be deduced. Those two elements 
allow one to utilize the theory of general M-estimators from Pötscher, Prucha (1997) 
to obtain the desired results.

Below we describe (after Lee, Yu, 2010) a set of possible assumptions which assure 
fairly general statement about asymptotics of ML estimates. Apart from the natural 
postulates of the zero diagonal of spatial weight matrix  we mention the 
following.

Assumption 0. The error term  in (4) follows multivariate normal distribution with 
uncorrelated, homoscedastic components. In particular, this implies that all moments 
of  are finite.

Assumption 111. For elements  of its parameter space12  the spatial lag operator 
 is invertible and the true value of  is an interior point of .

Assumption 213. There exists a constant  such that for any rows or columns, say , 
of any of the matrices ,  and , , , , 
its -norm14  does not exceeds .

Assumption 315. The elements of non-stochastic design matrix  are 
bounded and the sequence  converges to a non-singular limit.

Assumption 4. The ratio  converges as  and .
Assumption 516. Estimated parameters are uniquely identified17.
Let us note that the natural Assumption 1 is crucial not only for identifiability 

of the parameter  but it is also necessary for our ability to present a closed form 
of  from (4), thus for effective interpretation of the model. Assumption 2 limits 
spatial dependence to ‘manageable degree’. This means, in particular, that the amount 
of information obtained from a larger sample is sufficient to decrease variance of 
estimates. Assumption 3 assures that the design matrix is well-behaved and in particular 
through non-singularity of the corresponding limit conveys sufficient information on 
the slope parameters of interest.

Assumption 4 guarantees that the dimension of appropriate Krylov space does 
not reduce the number of available degrees of freedom excessively. Assumption 5 
assures that the hypothetical probability distributions for different parameter values 
remain clearly distinguishable by ML estimation procedure as sample increases. This 
assumption is typically expanded into a highly technical statement involving terms 
from log likelihood function, so that it implies unique identification. In our paper, to 

 11 C.f. Lee, Yu, page 167, Assumption 3 therein.
12 See footnote 10.
13 C.f. Lee, Yu, page 167, Assumption 5 therein.
14 For either a column or row vector  its -norm is .
15 C.f. Lee, Yu, page 167, Assumption 4 therein.
16 C.f. Lee, Yu, page 168, Assumption 7 therein.
17 In the sense of Definition 3.1 in Pötscher, Prucha (1997).
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avoid unnecessary complexity we decide to readably assume the unique identification 
of parameters.

Lastly, for completeness of presentation, we conclude with the asymptotic 
distribution of . Namely, under the assumptions 1–5 we can state that  
converges in distribution to . More precisely, conducting differentiation 
and applying expectation in the score matrix we obtain a formula for the Fisher 
information  for parameter . Namely, denoting  
and  we obtain18

 ,

 ,

 .

Setting , we have convergence in distribution of  
to  provided that the limit  exists.

6. DISCUSSION OF THE ADOPTED ASSUMPTION

The Assumptions 1–3 and 5 are well known in spatial econometric literature. 
Extensive discussion on the topic has been given in numerous papers e.g. Kelejian, 
Prucha (2001), Lee (2004), Lee, Yu (2010). The new assumption introduced in this 
paper is the Assumption 4, which connects  – the increasing sample size, with 
the amount of degrees of freedom lost due to the use of the generalized demeaning 
procedure. In terms of a standard fixed effects setting, where , Assumption 4 
is equivalent to requiring that , when  spatial fixed effects are present, and 
requiring that , whenever  temporal fixed effects are included in the model.

Obviously, in a fully general case it cannot be guaranteed that the requirement 
in Assumption 4 is satisfied. Then, a natural question arises: is Assumption 4 often 
met in practice? It turns out that some “rules of thumb” can be formulated which 
imply affirmative answer in many practical settings. We will present them in the 
following examples as well as in an empirical illustration described in next section. 
For simplicity, we consider the case of , that is a standard balanced panel 

18 C.f. Elhorst (2014), page 46.
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data set. Moreover, the spatial  weight matrix is purely spatial, i.e. it does not 
contain any dynamic references.

For arbitrary  let us denote . If the spatial weight 
matrix  is constant in time, i.e. , and the fixed effect design  is 
constant in time (i.e. each column of  is of the form , for some ) 
then  is also time-constant. By induction, we infer that the Krylov space  for  
contains only time-constant vectors. Finally, , thus , which 
converges to 1 as .

Another example is when, as it is very often found in practice,  is row-
standardized, and when the matrix  contains purely temporal effect of arbitrary 
shape. That is, each column of  is of the form , for some , then 

. This implies that , thus . Even if  is not 
bounded, Assumption 4 is satisfied if , since obviously .

7. AN EMPIRICAL ILLUSTRATION

The background for this empirical illustration is a theoretical model developed 
by Fingleton (2001, 2004), which is based on the NEG theory and Verdoorn’s law 
(c.f. Verdoorn, 1949). This law links the increase in labour productivity with an increase 
in production. More precisely, the Verdoorn’s law states that in a long run productivity 
grows proportionally to the square root of output. According to e.g. Fingleton (2001), 
the exponential growth rate of productivity can be modelled by the use of the following 
specification

 , 

where:  represents the exponential growth rate of productivity,  is a spatial weight 
matrix,  refers to human capital,  is the initial level of technology, and  is the 
exponential growth rate. As described in Olejnik and Olejnik (2017) the specification 
can be further transformed into the following Spatial Panel Durbin Model

 , (13)

with , , , ,  being model parameters,  is spatial weight matrix. The term 
 does not appear in (13) as they have been incorporated into fixed effects . In 

our example the fixed effects are  dummy variables of the form  and 
, , where  and  are fixed effects distinguishing periods 

after EU enlargement and global financial crises in 2008, respectively. Notice that the 
groups of observations distinguished by this fixed effect design are overlapping, thus 
the standard demeaning procedure cannot be used. Moreover, the additional term of 
spatially lagged exogenous variable  has been introduced into (13) to account for 
additional externalities.
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The data for the example covers 261 regions of EU for the years 2000–2013. The 
productivity growth  for the years 2001–2013 is approximated by the exponential 
rate of change of regional productivity (quotient of regional production over the 
number of economically active population) related to regional productivity in the 
initial year 2000. Similarly, the exponential growth rate is approximated by logarithm 
of the ratio of regional production in years 2001–2013 to the base year 2000. The 
matrix  is a row-standardised spatial weight matrix of three nearest neighbours (c.f. 
Anselin, 1988). The human capital  is approximated by employment in technology 
and knowledge-intensive sectors expressed as a percentage of economically active 
population, expressed in logarithms.

For the purpose of empirical comparison we apply both standard Maximum 
Likelihood estimation procedure using dummy variables and our modified approach. 
Results are presented in table 1.

Table 1.
Comparison of standard ML and the augmented ML approach

Parameter Corresponding variable
Standard ML New ML

Coeff. t-stat Coeff. t-stat

0.64 49.44 0.64 45.48

0.74 56.50 0.74 51.97

−0.45 25.66 −0.45 23.61

0.09 9.69 0.09 8.92

Error variance 1.0542 1.2459

Goodness of fit 0.9517 0.9429

Source: own calculation.

Table 1 shows that both estimation procedures yield virtually the same values 
for both autoregressive and regressive parameters (  and  respectively in notation 
from previous sections). However, there is a considerable difference in estimates of 
the  parameter. As expected, our procedure yields a consistent estimates of the 
error variance, which turns out to be rather cautious. This is because the standard ML 
estimate does not properly reflect the loss of degrees of freedom related to the use of 
general fixed effect dummies. In contrast our estimation scheme, through consideration 
of the dimension of Krylov space for fixed effects design matrix, allows one to estimate 

 and also goodness-of-fit measures more reliably. Moreover, if the size of fixed 
effect design grows with sample size (e.g. in our example  might grow with ), 
then the standard ML estimate of  might even turn out to be inconsistent.
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8. SUMMARY

Since the early days of spatial econometrics it has been known that ordinary 
least squares procedure for estimating model parameters in the case of spatial 
autoregressive specification leads to inconsistent estimates. This is because, the 
specification incorporates the lagged dependant variable term as one of the regressors. 
Maximal likelihood procedure has been long considered a remedy for this endogeneity 
problem. Although, new alternatives to ML have been found (e.g. generalized method 
of moments) the original procedure of maximal likelihood remains widely used by 
practitioners. 

In this paper we have proposed an alternative to partial regression in a spatial 
autoregressive econometric model when the maximum likelihood procedure is used. 
Under certain assumptions on the dimension of some invariant space associated with 
spatial weight matrix we have managed to formulate a feasible procedure, which can 
be used to handle large class of fixed effect designs. This can be done at the expense of 
possibly decreased number of degrees of freedom in Gaussian log likelihood function.

Our result contradicts the conjecture, expressed in a celebrated paper by Lee, 
Yu (2010) on bias correction in the case of incidental parameter problem, that such 
scheme would not be possible except cases of individual fixed effects and time fixed 
effects with row standardized spatial weight matrix. As in our reasoning we carefully 
manage the degrees of freedom at the step of sample transformation (demeaning), 
estimator bias in the case of incidental parameter problem does not occur in our 
setting, cf. Elhorst (2014).
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PROCEDURA ALTERNATYWNA DO REGRESJI CZĘŚCIOWEJ 
W ESTYMACJI MODELU PRZESTRZENNEGO AUTOREGRESYJNEGO 

METODĄ NAJWIĘKSZEJ WIAROGODNOŚCI

S t r e s z c z e n i e

W niniejszej pracy wprowadzono procedurę alternatywną do procedury regresji częściowej. Opisane 
postępowanie może być zastosowane w przypadku estymowania parametrów modelu przestrzennego 
autoregresyjnego metodą największej wiarogodności. Przy pewnych założeniach dotyczących wymiaru 
pewnej przestrzeni niezmienniczej związanej z macierzą wag przestrzennych sformułowany jest schemat 
postępowania obejmujący szeroką klasę macierzy efektów stałych. W pewnych przypadkach opisana 
procedura może eliminować efekty stałe kosztem obniżonej liczby stopni swobody. Dodatkowo, przed-
stawiono własności asymptotyczne zaprezentowanego estymatora.

Słowa kluczowe: regresja częściowa, metoda największej wiarogodności, model przestrzenny auto-
regresyjny, model z efektami stałymi

AN ALTERNATIVE TO PARTIAL REGRESSION IN MAXIMUM LIKELIHOOD ESTIMATION 
OF SPATIAL AUTOREGRESSIVE MODEL

A b s t r  a c t

In this paper an alternative procedure to partial regression is introduced. The presented procedure can 
be used in maximum likelihood estimation of spatial autoregressive model. Under certain assumptions 
on the dimension of certain invariant space associated with spatial weight matrix a feasible procedure 
is formulated, which can be used to handle large class of fixed effect designs. This is done at the 
expense of possibly decreased number of degrees of freedom in the Gaussian log likelihood function. 
Additionally, a statement on asymptotic behaviour of presented estimator is given.

Keywords: partial regression, maximum likelihood estimation, spatial autoregressive model, fixed 
effects model




