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Abstract: We evaluated the performance of nine machine learning regression algorithms 
and their ensembles for sub-pixel estimation of impervious areas coverages from Landsat 
imagery. The accuracy of imperviousness mapping in individual time points was assessed 
based on RMSE, MAE and R2. These measures were also used for the assessment of 
imperviousness change intensity estimations. The applicability for detection of relevant 
changes in impervious areas coverages at sub-pixel level was evaluated using overall 
accuracy, F-measure and ROC Area Under Curve. The results proved that Cubist 
algorithm may be advised for Landsat-based mapping of imperviousness for single dates. 
Stochastic gradient boosting of regression trees (GBM) may be also considered for this 
purpose. However, Random Forest algorithm is endorsed for both imperviousness change 
detection and mapping of its intensity.
In all applications the heterogeneous model ensembles performed at least as well as the 
best individual models or better. They may be recommended for improving the quality 
of sub-pixel imperviousness and imperviousness change mapping. The study revealed 
also limitations of the investigated methodology for detection of subtle changes of 
imperviousness inside the pixel. None of the tested approaches was able to reliably 
classify changed and non-changed pixels if the relevant change threshold was set as 
one or three percent. Also for fi ve percent change threshold most of algorithms did not 
ensure that the accuracy of change map is higher than the accuracy of random classifi er. 
For the threshold of relevant change set as ten percent all approaches performed 
satisfactory.

Keywords: impervious areas, sub-pixel classifi cation, machine learning, model 
ensembles, Landsat
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1. Introduction

Detection and quantifi cation of changes in land use and land cover (LULC) is one of 
the most common applications of remote sensing. Despite many approaches developed 
over the years, this is still one of the very actual research areas (Hussain et al., 2015; 
Tewkesbury et al., 2015).

The majority of change detection techniques are based on processing of remote 
sensing images at the per-pixel level (Hussain et al., 2015; Tewkesbury et al., 2015). 
They are able to detect the conversion of LULC form, ie. the change of one land 
cover type into another. However, in case of remote sensing images, especially these 
with medium or coarse resolution, pure pixels containing only one land cover type are 
quite rare. As a result, the considered changes have usually the form of modifi cation 
(Turner and Meyer, 1994). In such cases LULC category assigned to the mapping 
unit (pixel) does not change, but the proportions of land cover fractions inside do. 
For example, despite the substantial increase in impervious areas coverage (eg. from 
10 to 30 percent), the pixel may be still classifi ed as “discontinuous built-up”.

Although other kinds of fractional coverages (eg. tree canopy) are also determined 
based on remote sensing images, the mapping of impervious surface areas (ISA) 
is probably the most frequent application of sub-pixel classifi cation techniques. 
This is because the accurate information about ISA coverage and monitoring of its 
change is necessary for different kinds of environmental studies (Dams et al., 2013; 
Shahtahmassebi et al., 2014). The spectral mixture analysis-based methods are preferred 
for ISA mapping in urbanised areas (Ridd, 1995; Lu et al., 2014a). In areas dominated 
by non-urban types of land cover, the regression-based approaches are considered as 
more appropriate (Lu et al., 2014b; Heremans and Van Orshoven, 2015).

The methodology of sub-pixel imperviousness change detection was proposed 
by Yang et al. (2003). The approach belongs to layer arithmetic change detection 
techniques (Tewkesbury, 2015). To evaluate the change of imperviousness over time, 
the results of regression-based ISA assessments for particular points in time are 
subtracted one from another. The fi nal map presents not only the location of ISA 
changes but also their intensity.

One can easily fi nd studies done according to this methodology using a wide 
spectrum of ISA mapping techniques. Their authors usually evaluate carefully the 
accuracy of ISA maps made for assessed points in time. However, it is hard to fi nd 
any studies where the accuracy of change map was determined as well. Such situation 
is not restricted to ISA mapping or other sub-pixel assessments. As reported by 
Olofsson et al. (2014), land change studies based on classifi cation of remote sensing 
data “routinely fail to assess the accuracy of the fi nal change maps”. 

It is commonly assumed that by maximizing the accuracy of individual ISA 
assessments one can obtain the best assessment of ISA change. Such assumption is 
true for post-classifi cation change detection techniques (Hussain, 2013). However, in 
case of sub-pixel assessment of fractional coverages (eg. imperviousness) when the 
change is obtained as their difference, the change assessment error depends not only 



Thorough statistical comparison of machine learning regression models 173

on the errors   of individual time point evaluations, but also on the correlation of these 
errors (Morgan and Herion, 1990; Kircher, 2001; Drzewiecki 2016b). As a result, 
the approaches most accurate for mapping ISA in individual points in time may give 
worse change assessment than less accurate ones.

Such effect was reported by Drzewiecki (2016a) and Drzewiecki (2016b). In the 
latter paper nine non-linear regression models were compared for sub-pixel impervious 
surface area mapping from Landsat images in three study areas. The imperviousness 
was evaluated for two points in time and the change in ISA coverage assessed as 
well. Root Mean Squared Error (RMSE) and Mean Absolut Error (MAE) were used 
as performance measures. For individual points in time the best results were obtained 
using the Cubist algorithm. But for ISA change evaluation the Cubist algorithm was 
outperformed by others. The best results of change assessment were achieved using 
Random Forest algorithm which also gave the most correlated errors of individual 
time point evaluations.

Drzewiecki (2016b) has also shown that when machine learning methods are used 
for ISA mapping, it is possible to improve the accuracy of sub-pixel imperviousness 
change assessment using ensembles of heterogeneous non-linear regression models. 
The best models trained using individual tested algorithms were successfully 
ensembled using backward selection schema approach (Coelho and Von Zuben, 2006) 
into models which outperformed best individual models in ISA change evaluation 
(gave lower RMSE and MAE values).

In Drzewiecki (2016a) and Drzewiecki (2016b) both cross-validation and 
independent validation datasets were used to evaluate the results. However, with 
regard to these studies one may consider several issues.

Firstly, in both studies the paired t-tests with Bonferroni correction were used for 
comparison of model performances for both cross-validation and independent dataset 
validation results. But, in case of repeated cross-validation t-test based assessment 
may lead to wrong conclusions due to high probability of Type I error, i.e. the 
rejection of the null hypothesis incorrectly (Bouckaert, 2003; Bouckaert and Frank, 
2004). This is because the independence assumption necessary for t-test is violated as 
some data are re-used in different cross-validation realisations and the train and test 
sets overlap (Bouckaert and Frank, 2004; Santafe et al., 2015). As a result we may 
consider particular algorithm as signifi cantly worse, although in fact no signifi cant 
difference exists. In Drzewiecki (2016a; 2016b) the danger of this kind was reduced 
to some extent by using very low threshold for p-values to reject the null hypothesis 
(p < 0.001) and very conservative Bonferroni approach to correction of family-wise 
error in multiple comparisons. Nevertheless, the more appropriate method might be 
used and some corrected approach to calculate t-test statistic adopted (Japkowicz and 
Shah, 2011; Santafe et al., 2015).

On the other hand, the Bonferroni correction used in both studies may result in 
the low power of the test (Santafe et al., 2015). In consequence, the null hypothesis 
might not be rejected although there actually was the difference in the performance 
of considered algorithms (Type II error). This might cause the lack of statistically 
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signifi cant differences of performance measures reported in Drzewiecki (2016b) for 
validation datasets. Again, more powerful method to adjust the signifi cance level 
values for multiple comparisons may be chosen from the approaches proposed in 
literature (Santafe et al., 2015).

Thirdly, Drzewiecki (2016b) compared for imperviousness change assessment 
performances of model ensembles and individual algorithms. But, to create the 
change map we can also use the best (in terms of RMSE or MAE) estimates for 
individual time steps, which may be obtained using different algorithms. Thus, in 
order to fully evaluate the merits of using model ensembles we should also compare 
their performance to such alternatives.

Finally, the research of Drzewiecki (2016a) and Drzewiecki (2016b) focused on 
the accuracy of ISA change intensity evaluation. However, in some applications one 
may be interested how accurate the occurrence of change may be detected rather than 
what the accuracy of change intensity estimation is. The quality of sub-pixel ISA 
change map from change detection point of view may be assessed in the same way 
as quality of change maps obtained at pixel level, i.e. based on the numbers of pixels 
correctly and incorrectly identifi ed as changed or unchanged.

Because of the issues outlined above we decided to refi ne and extend the previous 
research. Therefore, this paper present the results of the study aimed at:
1) thorough statistical re-evaluation of the sub-pixel imperviousness and 

imperviousness change intensity assessment results reported in Drzewiecki (2016b) 
using new approaches as suggested in machine learning literature (Santafe et al., 
2015);

2) comparison of selected machine learning algorithms in the context of sub-pixel 
imperviousness change detection accuracy, and

3) answering a question if by ensembling of heterogeneous non-linear regression 
models one can fi nd the approach with higher ability of ISA change detection and/
or more accurate ISA change intensity evaluation than using individual algorithms 
or the best models for individual time points assessments.

2. Methods

2.1. Study areas and datasets

The research was intended as a continuation and extension of the study presented in 
Drzewiecki (2016b). The same image datasets, comprised of Landsat images of three 
watersheds (Raba, Dunajec and Soła) located in South Poland, were used. All three 
regions are rural areas with large forest cover. Details about current land use and land 
cover in studied watersheds may be found in Wężyk et al. (2016). Urbanized areas 
covers from ca. 5 (Dunajec) to ca. 8 percent (Raba) of the area. In Soła and Dunajec 
watersheds the most (ca. 80%) of built-up areas were classifi ed as dense development. 
In Raba watershed the sparse development prevails.
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For each watershed two image datasets acquired in middle 1990s and late 2000s 
were available. Aerial orthophotomaps were used as the reference. All the details 
about preparation of calibration and validation datasets (including calculation of 
prediction variables and splitting of datasets), machine learning algorithms used, 
tuning the models (using 10-times repeated 5-fold cross-validation procedure) and 
creating model ensembles are provided in Drzewiecki (2016b). Within the research 
presented in this paper the data had not been reprocessed, but the results of ISA 
change evaluations reported in Drzewiecki (2016b) were subjected to further analysis 
(Figure 1). 

2.2. Detection of relevant changes

The results of automating change detection using remote sensing images may be used 
in different applications. Depending on application the potential user may defi ne a set 
of criteria that determine what kind of change is considered as relevant and as not 
relevant (Klaric, 2014). In case of imperviousness the users may be interested in 
detection of ISA changes of varying intensity. As a result, the relevant changes may 
be defi ned as increase (or decrease) of ISA greater than the user-defi ned threshold 
value.

In Drzewiecki (2016b) nine machine learning (ML) regression algorithms were 
tested: Cubist (Quinlan, 1993), Random Forest (RF) (Breiman, 2001), stochastic 
gradient boosting of regression trees (GBM) (Friedman, 2002), k-nearest neighbors 
(kNN), random k-nearest neighbors (rkNN) (Li et al., 2011), Multivariate Adaptive 
Regression Splines (MARS) (Friedman, 1991), averaged neural networks (avNN) 
(Ripley, 1996), support vector machines (Smola and Schölkopf, 2004) with polynomial 
(SVMp) and radial (SVMr) kernels. For every study area, each of them was used 
to predict imperviousness for both mid 1990s and late 2000s. The change maps 
were also obtained as difference maps. ISA and ISA change assessment was also 
done for model ensembles. In present study, to detect relevant changes of ISA, the 
imperviousness change maps from Drzewiecki (2016b) and additional change maps 
created by subtracting the most accurate (according to RMSE and MAE) individual 
time points predictions were thresholded. Four different threshold values were used: 
1%, 3%, 5% and 10%. These values correspond to changes of impervious surface 
area within a pixel of 9, 27, 45 and 90 squared meters, respectively. As a result pixels 
when relevant changes occurred were coded in binary form (1/0 – change/no change) 
and compared to the reference (i.e. thresholded ISA change evaluated based on high 
resolution aerial orthos). The characteristics of calibration and validation datasets 
taking into account the numbers of changes considered as relevant are presented in 
Table 1.
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Fig. 1. Framework of ISA relevant change detection accuracy assessment
(steps shown in gray done within this study – remaining ones taken from Drzewiecki 2016b)
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Table 1. Datasets characteristics

Dataset Time period No of 
predictors

calibration dataset validation dataset

No of 
pixels

Relevant changes No of 
pixels Relevant changes

1% 3% 5% 10% 1% 3% 5% 10%

Raba
mid 1990s 132

2310 579 429 329 188 578 145 102 87 48
late 2000s 66

Dunajec
mid 1990s 66

1382 266 222 206 176 346 62 53 45 40
late 2000s 165

Sola
mid 1990s 66

1507 329 273 231 165 376 68 61 54 39
late 2000s 99

2.3. Change detection accuracy assessment

When comparing the relevant changes detected based on imperviousness estimations 
to the reference, four cases are possible (Klaric, 2014):
– true positive (TP) results: relevant change is present in ground truth data and it is 

detected by the model;
– false positive (FP) results: model predicts the relevant change where there is no 

change in reference or the change is present in reference but it is not relevant;
– false negative (FN) results: relevant change is present in ground truth data, but it 

is not detected by the model;
– true negative (TN) results: there is no change in reference or the change is present 

in reference but it is not relevant and the model predicts no relevant change as 
well.

These values are often presented as a confusion matrix and several common metrics 
of model performance may be calculated based on them (Fawcett, 2006).

The most popular one in remote sensing applications is the accuracy:

Accuracy=
TP+TN

TP+FP+FN+TN
 

What accuracy level is acceptable depends on the application. However, the random 
classifi er has the overall accuracy of 0.5.

In case of imbalanced datasets accuracy alone is not suffi cient. If change is rare, 
we can easily achieve very high accuracy by predicting all cases as no change. But 
such model is completely useless.
Cohen’s kappa statistic (Cohen, 1960; Landis and Koch, 1977), often used in remote 
sensing applications for the assessment of classifi cation results, may be seen as better 
performance measure in case of imbalanced class problems. It is defi ned as:
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where pe is the expected agreement defi ned as the sum of the products of reference 
likelihood and result likelihood for each class. In case of change detection confusion 
matrix, it can be calculated as (Santafe et al., 2015):
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The usefull classifi er should have kappa values higher then zero.
Although Cohen’s kappa is more appropriate then overall accuracy for application 

as the performance measure in case of imbalanced datasets, in change detection 
studies recall, precision and F-measure are used as the standard performance measures 
(Klaric, 2014; Wieland et. al., 2016):

 

Recall=
TP

TP+FN
 

 
Precision=

TP
TP+FP

 

 
1 =

2
1 Precision+ 1 Recall

=
2 Precision Recall

Precision+Recall
=

2 TP
2 TP+FP+FN

 
 

Especially F-measure is commonly-used in evaluation as it takes into account both 
precision and recall (Klaric, 2014). In case of imbalanced datasets precision and 
F-measure are able to show differences in model performances that are not revealed 
when using accuracy (Saito and Rehmsmeier, 2015). The useful prediction model 
should have the precision value higher than precision of random classifi er (PRC) 
given by the formula (Saito and Rehmsmeier, 2015):

 PRC=
P+N

=
TP+FN

TP+FN+FP+TN
  

where P stands for the number of positive (change) and N for the number of negative 
(no change) instances in dataset (reference).

Other approach often utilized in evaluation of change detection model performances 
is based on Receiver Operating Characteristic (ROC) graphs (Fawcett, 2006; Wieland 
et. al., 2016; Aleksandrowicz et al., 2016). ROC graph is a two-dimensional graph of 
the true positive rate (recall) plotted against the false positive rate (fpr), calculated as:

 fpr=
FP

FP+TN
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ROC graphs are most often used for so called scoring classifi ers. Such classifi ers 
yield a value (probability or score) representing a degree to which classifi ed instance 
belongs to a class. Their results may be thresholded to produce discrete (binary) 
classifi ers. Plotting recall against fpr for various thresholds gives so called ROC curve 
(Fawcett, 2006).

The ROC graph may also be used to compare the performance of discrete 
classifi ers. In this case the classifi er performance is represented by one point in the 
ROC space. Two measures may be used for comparison of the discrete classifi er 
performances (Fawcett, 2006; Powers, 2011): the distance to the optimum point 
(fpr = 0 and recall = 1) and the ROC Area Under Curve (ROCAUC) which in case of 
discrete classifi er is defi ned as (Powers, 2011):

 ROCAUC =
recall fpr+1

2
  

The latter is commonly used for comparison of classifi ers (Amancio et al., 2014). The 
 ROCAUC values are between 0 and 1, but the useful prediction model should have the 
value over 0.5 (the value of random guessing).

As Amancio et al. (2014) note, it is not possible to fully compare the performance 
of classifi ers with a single metric. In this study we used the overall accuracy, F-measure 
and the ROC Area Under Curve (ROCAUC).

2.4. Comparison of machine learning models

The question if one (usually newly proposed) machine learning algorithm performs 
better than a competitor or better than the state of art algorithms is very frequent.
To answer such a question appropriate statistical tests can be used to evaluate the 
results obtained with particular models (Trawiński et al., 2012; Santafe et al., 2015). 
Different scenarios may be considered depending on the number of algorithms in 
comparison and the number of available datasets (Japkowicz and Shah, 2011; Santafe 
et al., 2015): two or many algorithms may be compared on one dataset or in several 
datasets.

When two algorithms are compared using a single dataset the dataset is usually 
resampled using cross-validation or bootstrap. For each data split the selected score (eg. 
the error of estimation) is calculated for both algorithms. Differences of the scores are 
then statistically tested to fi nd if the two algorithms of interest differ in performance 
with respect to the score or not (Santafe et al., 2015). Usually parametric tests are 
used assuming the normal distribution of score differences. However, if the number 
of estimations (resamples) is not large enough this assumption should be verifi ed with 
appropriate test. If the distribution is not normal non-parametric alternatives to t-test 
should be used such as Wilcoxon signed-rank test (Wilcoxon, 1945) or sign test.
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Application of standard paired t-test for comparison of two algorithms on one 
resampled dataset is generally considered as unsafe due to underestimation of the 
statistic variance caused by the violation of the assumption of the score values 
independence (Santafe et al., 2015). One can fi nd in literature several proposals of 
modifi ed or corrected statistical test for different resampling methods (Nadeau and 
Bengio, 2003; Bouckaert, 2004; Bouckaert and Frank, 2004; Japkowicz and Shah, 
2011; Santafe et al., 2015). Corrected resampled t-test (Nadeau and Bengio, 2003) 
and corrected t-test for repeated cross-validation (Bouckaert and Frank, 2004) are 
the most often recommended (Santafe et al., 2015). The corrected statistic for r-times 
repeated k-fold cross-validation is calculated as (Bouckaert and Frank, 2004):

 
=

1

( 1 + )
 
 

where

 

=
1

1
( ij )

j=i=

 

 

m=
1

ij
j=i=

 
 

and xij is observed difference of algorithm scores for cross-validation fold i and run j, 
n1 is the number of instances used for training, and n2 the number of instances used 
for testing.

The other possible solution is to average the results of repeated cross-validation 
over runs (Bouckaert, 2004; Japkowicz and Shah, 2011). In this approach the results 
of a k-fold cross-validation are sorted in every single run from the lowest to the 
highest one. Then averaging is done on each fold over all runs. As a result, the 
estimate for the minimum value is calculated from the minimum values in all folds, 
the one but lowest from the one but lowest results in all folds, etc.. According to 
Bouckaert (2004) such sorted runs sampling scheme should be combined with t-test 
to achieve the best results.

The independence between the score values of two algorithms may be obtained 
using independent validation dataset. Unfortunately, such approach may give 
a pessimistically biased estimation of the error. Because of that, the approaches based 
on dataset resampling are generally preferred (Santafe et al., 2015). 

Nevertheless, when the accuracy of two classifi ers is being compared using the 
same independent validation dataset McNemar’s test is usually applied (Santafe 
et al., 2015). The other possibility is to use the approach based on confi dence intervals 
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(Foody, 2009). Confi dence intervals can be calculated not only for the accuracies 
but also for some other measures. The method of confi dence intervals estimation for 
ROCAUC was proposed for example by Hanley and McNeil (1982).

The signifi cance tests cannot be applied directly to compare the performance of 
two classifi ers on validation dataset using composite metrics like F-measure, since 
they do not have any probabilistic interpretation (Joshi, 2002). However, recall and 
precision have. To compare the performance of classifi ers for rare classes Joshi 
(2002) suggested comparison of improvements of recall and precision using p-test 
proposed by Yang and Liu (1999) and direct comparison of F-measures only when 
p-test outcomes on recall and precision are not in agreement.

Comparing several machine learning algorithms using only one dataset creates 
additional problems. Both, parametric statistical tests for multiple comparisons such 
as ANOVA (Fisher, 1937) and non-parametric omnibus tests such as Friedman test 
(Friedman, 1940) should not be used with one resampled dataset due to the lack of 
independence among the obtained score values. The only possibility is to compare 
algorithms by pairs and apply multiple comparison corrections to control family-
wise error (Santafe et al., 2015). Several procedures for such corrections have been 
proposed in literature. The simplest one, but also the least powerful is the Bonferroni-
Dunn procedure (Dunn, 1961). In the case of 1:N comparisons (i.e. when the one 
algorithm is compared to the others) the Finner method (Finner, 1993) is suggested as 
a good choice (Trawiński et al., 2012; Santafe et al., 2015)

When several datasets are available the other approaches to algorithm comparison 
are possible. If two algorithms are considered Wilcoxon signed-rank test or sign test 
are usually used. The non-parametric tests are preferred as the scores obtained on 
different datasets are hardly commensurable (Santafe et al., 2015). In case of multiple 
algorithm comparisons an omnibus test is done fi rst to compare all algorithms together 
and decide if they have the same performance. If not, the algorithms are compared 
by pairs using post-hoc tests. Of course, we should apply the corrections to control 
family-wise error as well. Again, non-parametric omnibus tests are prefered (Demsar, 
2006; Trawiński et al., 2012; Santafe et al., 2015). If the number of algorithms in 
comparison is higher than fi ve the Friedman test with Iman and Davenport extension 
(Iman and Davenport, 1980) is recommended. If number of the models is lower the 
Friedman aligned ranks (Daniel, 1990; Garcia et al., 2010) or the Quade tests are 
considered as more useful (Santafe et al., 2015).

In presented study the performance of machine learning models was evaluated 
for the assessment of ISA in individual time points and assessment of ISA change. 
The latter was done both for prediction of change intensity and detection of relevant 
changes. Evaluation was done based on cross-validation results obtained for calibration 
datasets and using independent validation datasets. Two scenarios for algorithm 
comparison were used. In all comparisons the signifi cance level of α = 0.05 was 
applied to decide about the rejection of null hypotheses.
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2.4.1 Scenario 1: comparison of multiple algorithms on individual datasets

In the fi rst scenario, multiple machine learning models were compared on individual 
datasets. The 1:N approach was used, i.e. the algorithm with the best score (RMSE,MAE 
or R2 in case of ISA and ISA change intensity or accuracy, F-measure and ROCAUC 
for ISA relevant change detection) was compared to the others. As a result for each 
dataset and each performance measure the best algorithm and the algorithms with no 
statistically signifi cant difference in performance were found.

For calibration datasets the differences in scores of cross-validation realisations 
were compared directly. For all performance measures the Shapiro-Wilk normality 
test were used to check the distribution of differences. For RMSE and MAE no 
violations for normality assumption were fi nd and the paired corrected t-test for 
repeated cross-validation (Bouckert and Frank, 2004) was used. In case of R2 the 
differences were not normally distributed. Because of that the sorted runs scheme 
(Bouckaert, 2004) was applied. As there was no evidence to reject the hypothesis 
about normal distribution of obtained averaged differences, the t-test was used for 
their evaluation. For correction of family-wise error in multiple comparisons we used 
the procedure proposed by Finner (1993).

In case of ISA change detection capabilities evaluation, the performance of 
individual methods was compared to the performance of random classifi er based on 
accuracy, precision and ROCAUC scores. This check procedure was applied for every 
of 50 realisations of cross-validation in every dataset. Only algorithms which passed 
this test were analysed further. The procedure applied may be considered as very 
conservative. On the other hand, such approach may be seen as very safe as any 
underperformance eliminated the algorithm from further considerations.

In case of independent validation datesets paired t-test were used to compare 
squared errors and absolute errors for every pixel. Instead of R2, we compared the 
differences in correlation coeffi cients. Two approaches were used for this purpose 
(Diedenhofen and Musch, 2015): the test for the difference of two dependent 
correlations as proposed in Steiger (1980) and the method of Zou (2007) based 
on confi dence intervals. McNemar test was used to compare achieved accuracies. 
In case of ROCAUC measure the approaches were assessed as signifi cantly different 
only when their confi dence intervals calculated according Hanley and McNeil (1982) 
did not overlap. The performance of best model chosen according to F-measure was 
compared to others using the approach proposed by Joshi (2002).

2.4.2 Scenario 2: comparison of multiple algorithms on multiple datasets

In the second scenario multiple algorithms were compared on multiple datasets. 
This scenario was possible to implement only for single time-step evaluations of 
ISA, as two image datasets were available in every of three study areas (six datasets 
altogether). For change assessment the number of datasets (three) was too low. In this 
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scenario we used the Friedman test and then the best algorithm was compared to the 
remaining ones using post-hoc tests. Again, the family-wise error was controlled with 
the Finner procedure. Like in the fi rst scenario two comparisons were done – one 
based on cross-validation and the second for the scores obtained with independent 
validation dataset.

3. Results

3.1. Comparison of individual machine learning algorithms performances for ISA 
mapping

3.1.1 Single time points

This subsection presents the results obtained using individual machine learning 
approaches for single time-point sub-pixel ISA mapping in researched study areas. 
Table 2 presents average values of RMSE and MAE and Table 3 average values 
of R2 obtained in cross-validation procedure on calibration dataset. The RMSE and 
MAE values obtained with tested algorithms for single time points ISA assessment 
on independent validation datasets are presented in Table 4 and R2 values in Table 5. 
The best results are bolded.

The best performed algorithms were compared to the others and obtained p-values 
adjusted for multiple comparisons are presented in Table 6–9. Bolded entries indicate 
the cases when algorithms performance do not differ signifi cantly from the best one.

Table 2. Model performances (RMSE and MAE) on calibration datasets – ISA evaluation for single 
time steps (Drzewiecki, 2016b)

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

avNN 0.1149 0.0680 0.1154 0.0675 0.1623 0.1098 0.1414 0.0961 0.1338 0.0822 0.1360 0.0861

RF 0.1099 0.0653 0.1116 0.0650 0.1590 0.1089 0.1390 0.0956 0.1257 0.0787 0.1210 0.0756

Cubist 0.1074 0.0608 0.1115 0.0619 0.1609 0.1070 0.1312 0.0876 0.1213 0.0720 0.1178 0.0703

GBM 0.1073 0.0617 0.1119 0.0640 0.1594 0.1068 0.1324 0.0893 0.1205 0.0728 0.1196 0.0723

kNN 0.1080 0.0599 0.1166 0.0656 0.1668 0.1063 0.1434 0.0932 0.1289 0.0740 0.1276 0.0755

rkNN 0.1074 0.0620 0.1165 0.0664 0.1716 0.1131 0.1464 0.0979 0.1293 0.0778 0.1288 0.0799

SVMp 0.1267 0.0734 0.1132 0.0643 0.1839 0.1160 0.1462 0.0978 0.1279 0.0776 0.1254 0.0768

SVMr 0.1085 0.0613 0.1153 0.0647 0.1698 0.1062 0.1350 0.0927 0.1255 0.0762 0.1262 0.0767

MARS 0.1191 0.0731 0.1179 0.0680 0.1805 0.1245 0.1616 0.1113 0.1346 0.0836 0.1310 0.0799
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Table 3. Model performances (R2) on calibration datasets – ISA evaluation for single time steps

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

R2 R2 R2 R2 R2 R2

avNN 0.6871 0.7495 0.6917 0.8060 0.7946 0.8127

RF 0.7151 0.7670 0.7050 0.8144 0.8194 0.8519

Cubist 0.7270 0.7670 0.6969 0.8321 0.8312 0.8589

GBM 0.7266 0.7649 0.7027 0.8302 0.8332 0.8545

kNN 0.7235 0.7447 0.6747 0.8010 0.8090 0.8345

rkNN 0.7256 0.7463 0.6549 0.7928 0.8084 0.8323

SVMp 0.6459 0.7592 0.6082 0.7926 0.8118 0.8401

SVMr 0.7213 0.7504 0.6650 0.8236 0.8188 0.8378

MARS 0.6644 0.7391 0.6188 0.7470 0.7922 0.8251

Table 4. Model performances (RMSE, MAE) on validation datasets – ISA evaluation for single 
time steps (Drzewiecki, 2016b)

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

avNN 0.1218 0.0736 0.1131 0.0679 0.1496 0.1041 0.1396 0.0954 0.1156 0.0702 0.1386 0.0818

RF 0.1128 0.0678 0.1120 0.0647 0.1500 0.1051 0.1368 0.0951 0.1062 0.0645 0.1113 0.0676

Cubist 0.1086 0.0624 0.1084 0.0611 0.1538 0.1008 0.1441 0.0948 0.1074 0.0608 0.1158 0.0670

GBM 0.1117 0.0639 0.1116 0.0639 0.1509 0.1039 0.1335 0.0895 0.1002 0.0592 0.1171 0.0692

kNN 0.1117 0.0636 0.1182 0.0680 0.1670 0.1046 0.1478 0.0961 0.1203 0.0641 0.1104 0.0633

rkNN 0.1098 0.0640 0.1167 0.0684 0.1638 0.1101 0.1452 0.0977 0.1139 0.0656 0.1113 0.0670

SVMp 0.1334 0.0783 0.1091 0.0625 0.1543 0.0987 0.1384 0.0941 0.1206 0.0689 0.1104 0.0648

SVMr 0.1154 0.0665 0.1120 0.0654 0.1533 0.0962 0.1332 0.0917 0.1061 0.0617 0.1154 0.0690

MARS 0.1248 0.0768 0.1110 0.0629 0.1662 0.1176 0.1534 0.1104 0.1199 0.0736 0.1245 0.0745
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Table 5. Model performances (R2 ) on validation datasets – ISA evaluation for single time steps

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

avNN 0.6824 0.79 0.7260 0.8001 0.8540 0.8016

RF 0.7304 0.7924 0.7270 0.8091 0.8761 0.8737

Cubist 0.7477 0.8069 0.7083 0.7881 0.8696 0.8619

GBM 0.7344 0.7941 0.7210 0.8169 0.8870 0.8585

kNN 0.7334 0.7689 0.6642 0.7781 0.8342 0.8746

rkNN 0.7434 0.7768 0.6747 0.7853 0.8556 0.8741

SVMp 0.6512 0.8060 0.7072 0.8045 0.8342 0.8748

SVMr 0.7164 0.7930 0.7095 0.8177 0.8723 0.8627

MARS 0.6714 0.7960 0.6615 0.7581 0.8366 0.8404

Table 6. Model performances on calibration datasets for individual time points ISA assessments 
(p-values for H0 = performance of the algorithm does not differ from the best model) 

– RMSE and MAE

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

avNN 0.004 <0.001 0.123 <0.001 0.450 0.360 0.003 <0.001 <0.001 <0.001 <0.001 <0.001

RF 0.094 <0.001 0.988 <0.001 BEST 0.360 0.003 <0.001 0.005 <0.001 0.179 0.001

Cubist 0.962 0.246 BEST BEST 0.457 0.833 BEST BEST 0.675 BEST BEST BEST

GBM BEST 0.083 0.860 0.010 0.831 0.833 0.699 0.243 BEST 0.500 0.418 0.134

kNN 0.814 BEST 0.017 <0.001 0.056 0.974 <0.001 0.001 0.037 0.255 0.010 0.004

rkNN 0.814 <0.001 0.009 <0.001 0.001 0.025 <0.001 <0.001 0.008 <0.001 0.003 <0.001

SVMp <0.001 <0.001 0.273 0.004 <0.001 <0.001 <0.001 <0.001 0.005 <0.001 0.026 0.004

SVMr 0.758 0.185 0.123 0.007 0.006 BEST 0.320 0.015 0.025 0.007 0.015 0.001

MARS <0.001 <0.001 0.022 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 <0.001
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Table 7. Model performances on calibration datasets for individual time points ISA assessments 
(p-values for H0 = performance of the algorithm does not differ from the best model) – R2

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

avNN 0.021 0.137 0.350 0.027 0.034 0.029

RF 0.205 1.000 BEST 0.027 0.053 0.238

Cubist BEST BEST 0.350 BEST 0.664 BEST

GBM 0.940 0.768 0.681 0.682 BEST 0.391

kNN 0.716 0.104 0.086 0.018 0.071 0.067

rkNN 0.842 0.104 0.030 0.018 0.053 0.067

SVMp 0.015 0.173 0.008 0.018 0.045 0.067

SVMr 0.716 0.137 0.046 0.301 0.057 0.067

MARS 0.015 0.104 0.008 0.008 0.011 0.067

The results obtained from repeated cross-validation show that Cubist algorithm 
outperformed the others. If RMSE and R2 are considered, Cubist and GBM algorithms 
are the best or do not differ signifi cantly from the best ones. The same is true for the 
Cubist in case of MAE. The result of GBM is signifi cantly worse for one dataset only 
(Raba late 2000s).

Table 8. Model performances on validation datasets for individual time points ISA assessments 
(p-values for H0 = performance of the algorithm does not differ from the best model) – squared 

and absolute errors

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

squared 
error

absolute 
error

squared 
error

absolute 
error

squared 
error

absolute 
error

squared 
error

absolute 
error

squared 
error

absolute 
error

squared 
error

absolute 
error

avNN 0.003 <0.001 0.135 <0.001 BEST 0.068 0.287 0.141 0.111 0.002 0.015 <0.001

RF 0.178 0.141 0.392 0.009 0.912 0.049 0.426 0.009 0.192 0.024 0.759 0.324

Cubist BEST BEST BEST BEST 0.696 0.238 0.024 0.131 0.192 0.850 0.795 0.324

GBM 0.353 0.365 0.392 0.042 0.800 0.067 0.939 BEST BEST BEST 0.759 0.155

kNN 0.353 0.447 0.076 0.001 0.060 0.078 0.024 0.131 0.111 0.397 0.759 BEST

rkNN 0.543 0.274 0.076 <0.001 0.063 0.002 0.025 0.032 0.111 0.075 0.795 0.091

SVMp <0.001 <0.001 0.756 0.339 0.696 0.319 0.351 0.214 0.192 0.042 BEST 0.347

SVMr 0.307 0.062 0.316 0.007 0.696 BEST BEST 0.464 0.192 0.397 0.759 0.131

MARS <0.001 <0.001 0.552 0.339 0.060 <0.001 0.024 <0.001 0.192 <0.001 0.195 0.039
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Table 9. Evaluation of model performances on validation datasets for individual time points ISA 
assessments (p-values for H0 = performance of the algorithm does not differ from the best model) 

– correlation coeffi cients

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

avNN <0.001 0.012 0.940 0.200 <0.001 <0.001

RF 0.025* 0.005 BEST 0.432 0.021 0.954

Cubist BEST BEST 0.208 0.010 <0.001 0.300

GBM 0.083 0.012 0.578 0.940 BEST 0.195

kNN 0.113 <0.001 0.001 0.003 <0.001 0.970

rkNN 0.400 <0.001 0.001 0.011 <0.001 0.960

SVMp <0.001 0.890 0.272 0.245 <0.001 BEST

SVMr 0.004 0.044 0.306 BEST 0.023 0.260

MARS <0.001 0.108 0.001 <0.001 <0.001 0.004

* – does not differ signifi cantly from the best model according to the method of Zou (2007)

In case of squared errors obtained for control pixels of independent validation datasets 
Random Forest, GBM and SVMr algorithms are the best models or do not differ 
signifi cantly from the best ones at α = 0.05. Cubist, kNN and rkNN models gave 
results with no difference from the best one with level of signifi cance not worse 
than α = 0.01. In case of absolute errors only the Cubist algorithm was the best 
or without signifi cant difference from the best one at α = 0.05. GBM algorithm 
gave the results not different from the best scores at α = 0.01. When differences in 
correlation coeffi cients are considered we cannot fi nd any model to be constantly the 
best one or without signifi cant difference from the best one at α = 0.05. However, 
GBM model seems to be the best performer, as it is the only one which for every 
dataset gave the results not different from the best scores at α = 0.01.When all 
three measures are considered together GBM and Cubist algorithms may be pointed 
out as the best performers on validation dataset as they were in cross-validation 
approach as well.

Table 10 presents average ranks obtained by each algorithm in the Friedman 
tests done for RMSE, MAE and R2 scores calculated for different datasets in cross-
validation and independent dataset validation approaches. In both cases the Cubist 
algorithm has the highest position for Mean Absolute Error. It is also the best when 
RMSE and R2 results from cross-validation are considered. In case of validation 
datasets the GBM model has the highest average rank for RMSE and R2.
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 Table 10. Model performance for individual time points ISA assessments 
– average ranks of Friedman tests

Method Ranking (cross-validation) Ranking (validation datasets)

RMSE MAE R2 RMSE MAE R2

avNN 6.17 7.33 6.50 5.83 7.00 6.33

RF 3.67 5.33 3.08 3.67 5.50 3.5

Cubist 1.75 1.67 1.58 3.83 2.42 3.83

GBM 2.08 2.50 2.00 3.42 3.33 3.33

kNN 5.42 3.17 5.83 6.50 4.67 6.42

rkNN 5.58 6.75 6.33 5.42 6.42 5.17

SVMp 7.17 6.33 6.50 5.25 4.17 5.08

SVMr 4.67 3.33 4.67 3.92 3.83 4.00

MARS 8.5 8.58 8.5 7.17 7.67 7.33
 
The best algorithms were compared to others in 1:N post-hoc analysis. Adjusted 
p-values obtained through the application of Finner procedure are presented in Table 
11. Bolded entries indicate the cases when algorithms do not differ signifi cantly from 
the control one. According to Friedman tests done for the results from cross-validation, 
Cubist, GBM and Supprot Vector Machines with radial kernel algorithms may be 
considered as the best ones for single time-point ISA assessment. For validation 
datasets the differences between scores of individual algorithms were much lower. In 
case of RMSE and R2 no algoritm may be considered as signifi cantly different from 
the best one (p-value computed by Friedman test with Iman and Davenport correction 
are 0.149 and 0.101, respectively).

Table 11. Adjusted p-values for 1xN comparisons of algorithms for Friedman post-hoc tests

Method Adjusted p-value (cross-validation) Adjusted p-value (validation datasets)

RMSE MAE R2 RMSE MAE R2

avNN 0.013851 0.001353 0.007473 0.302581 0.014902 0.189491

RF 0.25319 0.032432 0.381032 0.874367 0.099717 0.916051

Cubist control 
algorithm

control 
algorithm

control 
algorithm 0.844045 control 

algorithm 0.796631

GBM 0.833029 0.598161 0.792147 control 
algorithm 0.562083 control 

algorithm

kNN 0.032432 0.381032 0.011478 0.189491 0.235824 0.189491

rkNN 0.030431 0.003475 0.007473 0.36941 0.030143 0.431863

SVMp 0.00245 0.006316  0.007473 0.36941 0.340756 0.431863

SVMr 0.085827 0.368789 0.067635 0.844045 0.410523 0.774982

MARS 0.000157 0.000097 0.000097 0.133174 0.007169 0.087732
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3.1.2 Estimation of ISA change intensity

This subsection presents the results obtained using individual machine learning 
approaches for sub-pixel mapping of ISA change intensities. Change intensity means 
the difference of ISA values estimated for two points in time. Table 12 presents 
average values of performance measures obtained in cross-validation procedure 
on calibration dataset. The values obtained with tested algorithms for ISA change 
intensity assessment on independent validation datasets are presented in Table 13. 
The best performed algorithms were compared to the others and obtained p-values 
adjusted for multiple comparisons using Finner procedure are presented in Table 
14 and Table 15. Bolded entries indicate the cases when algorithms do not differ 
signifi cantly from the best one. 

Table 12. ISA models performance (average valuess) on calibration datasets – change asseement

Method Raba dataset Dunajec datasets Sola datasets

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

avNN 0.1053 0.0626 0.2662 0.1467 0.1043 0.5474 0.1290 0.8340 0.2876

RF 0.0902 0.0520 0.3129 0.1286 0.0889 0.6104 0.1077 0.0667 0.3594

Cubist 0.0953 0.0531 0.2852 0.1389 0.0954 0.5881 0.1124 0.0695 0.3630

GBM 0.0947 0.0540 0.2970 0.1346 0.0923 0.5959 0.1096 0.0677 0.3628

kNN 0.0978 0.0543 0.2515 0.1516 0.1004 0.5369 0.1257 0.0760 0.2670

rkNN 0.0917 0.0505 0.2795 0.1497 0.1015 0.5333 0.1163 0.0704 0.2894

SVMp 0.1095 0.0640 0.2522 0.1538 0.1032 0.5088 0.1107 0.0685 0.3552

SVMr 0.0967 0.0575 0.3032 0.1474 0.1000 0.5410 0.1199 0.0746 0.2883

MARS 0.1081 0.0656 0.2288 0.1655 0.1158 0.4349 0.1290 0.0791 0.2905

Table 13. ISA models performance on validation datasets – change asseement

Method Raba dataset Dunajec datasets Sola datasets

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

avNN 0.0998 0.0629 0.2810 0.1383 0.0987 0.5657 0.1396 0.0856 0.2365

RF 0.0853 0.0504 0.3136 0.1316 0.0889 0.5775 0.1060 0.0632 0.3885

Cubist 0.0875 0.0505 0.2958 0.1494 0.0954 0.5237 0.1176 0.0692 0.3604

GBM 0.0873 0.0505 0.2977 0.1307 0.0873 0.5898 0.1157 0.0688 0.3540

kNN 0.0938 0.0534 0.2435 0.1493 0.0952 0.5446 0.1227 0.0687 0.3379

rkNN 0.0863 0.0486 0.2993 0.1403 0.0929 0.5724 0.1057 0.0618 0.3960

SVMp 0.1012 0.0620 0.3324 0.1366 0.0920 0.5440 0.1097 0.0634 0.4484

SVMr 0.0854 0.0522 0.3503 0.1364 0.0921 0.5736 0.1139 0.0682 0.3764

MARS 0.0915 0.0594 0.3404 0.1542 0.1069 0.4443 0.1330 0.0809 0.2786
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Table 14. ISA models performance on calibration datasets – change asseement 
(p-values for H0 = performance of the algorithm does not differ from the best model)

Method Raba dataset Dunajec datasets Sola datasets

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

avNN <0.001 <0.001 0.122 <0.001 <0.001 0.043 <0.001 <0.001 0.151

RF BEST 0.159 BEST BEST BEST BEST BEST BEST 0.888

Cubist 0.004 0.019 0.177 0.015 0.012 0.246 0.171 0.133 BEST

GBM 0.004 0.009 0.198 0.015 0.058 0.190 0.442 0.533 0.993

kNN 0.002 <0.001 0.122 <0.001 <0.001 0.025 <0.001 <0.001 0.070

rkNN 0.474 BEST 0.177 <0.001 <0.001 0.025 0.023 0.105 0.151

SVMp <0.001 <0.001 0.122 <0.001 <0.001 0.017 0.446 0.442 0.844

SVMr <0.001 <0.001 0.484 <0.001 <0.001 0.036 0.005 <0.001 0.151

MARS <0.001 <0.001 0.057 <0.001 <0.001 0.016 <0.001 <0.001 0.151

Table 15. ISA models performance on validation datasets – change asseement 
(p-values for H0 = performance of the algorithm does not differ from the best model)

Method Raba dataset Dunajec datasets Sola datasets

squared 
error

absolute 
error

correlation 
coeffi cient

squared 
error

absolute 
error

correlation 
coeffi cient

squared 
error

absolute 
error

correlation 
coeffi cient

avNN 0.002 <0.001 0.051* 0.340 0.057 0.535 <0.001 <0.001 <0.001

RF BEST 0.403 0.169 0.805 0.549 0.535 0.785 0.942 0.067

Cubist 0.590 0.403 0.051* 0.066 0.092 0.006 0.201 0.155 0.012

GBM 0.590 0.403 0.051* BEST BEST BEST 0.201 0.155 0.007

kNN 0.091 <0.001 <0.001 0.066 0.190 0.174 0.023 0.149 0.007

rkNN 0.819 BEST 0.051* 0.282 0.280 0.535 BEST BEST 0.110

SVMp 0.003 <0.001 0.588 0.414 0.333 0.174 0.519 0.591 BEST

SVMr 0.972 0.132 BEST 0.414 0.319 0.535 0.286 0.155 0.012

MARS 0.091 <0.001 0.710 0.012 <0.001 <0.001 0.104 <0.001 <0.001

* – differs signifi cantly from the best model according to the method of Zou (2007)

When looking into cross-validation results from the ISA change intensity mapping 
point of view, the Random Forest outperforms other approaches. It gave the lowest 
RMS errors in every area, the highest R2 for Raba and Dunajec catchments and the 
lowest MAE for Dunajec and Sola datasets. In case of Raba dateset, there is no 
signifi cant difference between RF and the best model for MAE score. The same is true 
for R2 in Sola area. In case of RMSE score, all other algorithms differ signifi cantly 
in at least one area.
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Random Forest and random k-nearest neighbors algorithms are also the only ones 
which are the best or not signifi cantly different from the best ones for all performance 
measures in every study area when independent validation datasets are taken into 
consideration. If differences in correlation coeffi cients are evaluated based on their 
confi dence intervals rknn algorithm performance for Raba dataset is signifi cantly 
worse then performance of radial SVM (the best one). Nevertheless, the difference 
between correlation coeffi cients of radial SVM and Random Forest models is still not 
signifi cant.

3.1.3 Estimation of ISA change detection capabilities

Analysis of accuracy scores from cross-validation revealed the fact that it is risky to 
use the differences of ISA maps for detection of subtle ISA changes. For Dunajec 
dataset the accuracies of ISA change maps created with 1% and 3% thresholds 
were not higher than the accuracy of random classifi er (Table 16). In case of 5% 
threshold the same appeared in at least one cross-validation realisation for the most 
of algorithms. Only three of them (Random Forest, Cubist and kNN) passed the test, 
but with very low results. For the change maps based on 10% change threshold the 
accuracies were much higher.

Table 16. ISA models performance on calibration datasets – change detection 
(minimal values of overall accuracy measure). Scores below 0.5 are bolded

Method Raba datasets Dunajec datasets Sola datasets

1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10%

avNN 0.459 0.571 0.652 0.749 0.238 0.336 0.422 0.606 0.331 0.452 0.538 0.679

RF 0.564 0.610 0.610 0.799 0.246 0.391 0.502 0.682 0.414 0.533 0.616 0.744

Cubist 0.591 0.608 0.682 0.794 0.274 0.394 0.502 0.664 0.430 0.515 0.565 0.711

GBM 0.543 0.623 0.681 0.786 0.249 0.386 0.480 0.663 0.419 0.542 0.621 0.748

kNN 0.615 0.634 0.671 0.784 0.319 0.397 0.502 0.663 0.465 0.526 0.585 0.708

rkNN 0.591 0.621 0.688 0.803 0.278 0.359 0.477 0.706 0.455 0.508 0.571 0.732

SVMp 0.471 0.594 0.658 0.766 0.254 0.354 0.464 0.645 0.374 0.490 0.588 0.745

SVMr 0.462 0.582 0.682 0.771 0.242 0.351 0.457 0.650 0.342 0.495 0.568 0.725

MARS 0.445 0.530 0.602 0.752 0.170 0.285 0.377 0.565 0.349 0.482 0.555 0.705

When precision scores are considered the results are a little better (Table 17). The 
similar pattern is visible in Table 18, where minimum values of ROCAUC score are 
presented (useful classifi ers should have value above 0.5).
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Table 17. ISA models performance on calibration datasets – change detection (comparison of precision 
with PRC). Bolded entries indicate performances below PRC

Number of cases with precision below PRC treshold

Method Raba datasets Dunajec datasets Sola datasets

1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10%

avNN 40 0 0 0 49 5 0 0 48 6 0 0

RF 0 0 0 0 42 2 0 0 14 0 0 0

Cubist 0 0 0 0 42 0 0 0 3 0 0 0

GBM 5 0 0 0 42 0 0 0 12 0 0 0

kNN 2 0 0 0 33 0 0 0 4 0 0 0

rkNN 0 0 0 0 38 0 0 0 8 0 0 0

SVMp 4 0 0 0 40 1 0 0 26 1 0 0

SVMr 31 0 0 0 44 2 0 0 48 0 0 0

MARS 44 1 0 0 49 17 2 0 31 0 0 0

Table 18. ISA models performance on calibration datasets – change detection (minimal values 
of ROCAUC measure). Scores below 0.5 are bolded

Method Raba datasets Dunajec datasets Sola datasets

1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10%

avNN 0.391 0.526 0.582 0.629 0.369 0.444 0.527 0.679 0.363 0.475 0.529 0.591

RF 0.502 0.568 0.605 0.610 0.385 0.490 0.582 0.721 0.436 0.537 0.573 0.648

Cubist 0.513 0.554 0.586 0.603 0.397 0.509 0.577 0.696 0.475 0.536 0.566 0.621

GBM 0.465 0.555 0.619 0.602 0.399 0.516 0.568 0.697 0.459 0.546 0.585 0.636

kNN 0.475 0.539 0.565 0.597 0.424 0.506 0.582 0.714 0.466 0.516 0.544 0.586

rkNN 0.505 0.549 0.587 0.607 0.398 0.504 0.566 0.706 0.478 0.530 0.548 0.624

SVMp 0.398 0.548 0.622 0.667 0.350 0.465 0.523 0.673 0.408 0.492 0.559 0.612

SVMr 0.425 0.548 0.598 0.655 0.367 0.475 0.556 0.679 0.367 0.500 0.531 0.618

MARS 0.391 0.498 0.555 0.608 0.312 0.386 0.478 0.583 0.390 0.510 0.541 0.578

Only these methods which performed better than random for particular threshold in 
all datasets were evaluated further. There were all algorithms for 10% threshold and 
just three approaches (Random Forest, Cubist and kNN) for 5% threshold. Average 
values of accuracy, F-measure and ROCAUC obtained for those algorithms in cross-
validation and for independent validation datasets are presented in Table 19 and 
Table 20, respectively. The highest scores are shown with bolded italics. The best 
performed algorithms were compared to the others and obtained p-values adjusted for 
multiple comparisons using Finner procedure. Bolded entries indicate the cases when 
algorithms do not differ signifi cantly from the best one.
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For change maps created based on 5% change threshold the three considered models 
performed very comparable. They gave no signifi cant differences for validation 
dataset. However, in case of cross-validation the ROCAUC score of kNN algorithm on 
Sola dataset differs signifi cantly from the Cubist one.

For 10% change maps the image is different for different measures. Most 
algorithms show no signifi cant difference from the best ones when F-measure and 
ROCAUC scores are considered. Only avNN and MARS performed worse. But, in case 
of accuracy Random Forest and random kNN algorithms outperformed the others for 
both Raba and Dunajec datasets. These two algorithms proven their good performance 
on validation dataset as well.

3.2. Performance of model ensembles

3.2.1 Single time points

Table 21 presents the best model ensembles obtained for individual time point 
assessments together with average values of performance measures from cross-
validation. Bolded values show cases when the performance of model ensemble is 
better than performance of any individual algorithm.

Table 21. Performance of model ensembles for individual time points ISA assessments
(values averaged from cross-validation on calibration dataset)

Dataset
Mid 1990s Late 2000s

Ensembled models RMSE MAE R2 Ensembled models RMSE MAE R2

Raba GBM, CUB, kNN, 
SVMr, avNN 0.1039 0.0597 0.7428 CUB,RF,GBM, avNN, 

kNN, SVMp 0.1094 0.0626 0.7759

Dunajec avNN, RF, GBM, kNN 0.1544 0.1036 0.7208 CUB, GBM, SVMr 0.1279 0.0870 0.8419

Sola GBM, CUB, SVMr, 
kNN 0.1185 0.0713 0.8387 CUB, GBM, kNN, 

SVMp 0.1167 0.0710 0.8618

Performance of ensembled models was compared to the performances of individual 
algorithms. Table 22 and Table 23 present p-values obtained for the hypothesis about 
no difference in compared performances. For three datasets (Raba mid 1990s, Dunajec 
mid 1990s and Dunajec late 2000s) ensembled models outperformed signifi cantly 
all individual algorithms when RMSE and R2 are considered. In other cases no 
statistically signifi cant differences from the best individual models were found.
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Table 22. ISA models performance (RMSE, MAE) on calibration datasets 
(p-values for H0 = performance of the algorithm does not differ from the performance 

of ensembled model)

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

avNN <0.001 <0.001 0.001 <0.001 0.005 0.002 0.007 <0.001 <0.001 <0.001 <0.001 <0.001

RF <0.001 <0.001 0.081 <0.001 0.007 <0.001 0.009 <0.001 <0.001 <0.001 0.002 <0.001

Cubist 0.001 0.065 0.010 0.179 0.001 0.021 <0.001 0.558 0.078 0.357 0.445 0.500

GBM 0.003 <0.001 0.030 0.014 0.008 0.021 0.013 0.009 0.169 0.093 0.043 0.123

kNN 0.001 0.788 <0.001 <0.001 <0.001 0.133 <0.001 <0.001 <0.001 0.047 <0.001 0.001

rkNN <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SVMp <0.001 <0.001 0.001 0.023 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SVMr 0.009 0.043 0.003 0.031 <0.001 0.178 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

MARS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 23. Model performances (R2) on calibration datasets for individual time points ISA 
assessments (p-values for H0 = performance of the algorithm does not differ from the performance 

of ensembled model)

Raba datasets Dunajec datasets Sola datasets

Method Mid 1990s Late 2000s Mid 1990s Late 2000s Mid 1990s Late 2000s

avNN 0.006 0.025 0.025 0.006 0.017 0.031

RF 0.007 0.122 0.035 0.006 0.018 0.031

Cubist 0.015 0.037 0.013 0.044 0.094 0.395

GBM 0.036 0.058 0.037 0.016 0.170 0.075

kNN 0.021 0.025 0.011 0.005 0.018 0.031

rkNN 0.015 0.025 0.004 0.005 0.017 0.031

SVMp 0.004 0.025 0.003 0.005 0.017 0.031

SVMr 0.037 0.028 0.011 0.012 0.017 0.031

MARS 0.004 0.025 0.003 0.005 0.013 0.031

Model ensembles were also used to predict imperviousness for validation datasets 
(Table 24). In this case no statistically signifi cant differences from the best individual 
models were observed.
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Table 24. Performance of model ensembles for individual time points 
ISA assessments on validation datasets

Dataset
Mid 1990s Late 2000s

RMSE MAE R2 RMSE MAE R2

Raba 0.1081 0.0630 0.7513 0.1082 0.0629 0.8085

Dunajec 0.1471 0.1007 0.7354 0.1322 0.0880 0.8207

Sola 0.1013 0.0578 0.8852 0.1068 0.0630 0.8830

Ensembled models were also included into comparison using the Friedman tests 
(Table 25). They are ranked fi rst for all performance measures in cross-validation 
and for RMSE as well as R2 calculated for independent validation. In case of MAE 
for validation datasets Cubist and GBM algorithms have higher average ranks. 
Comparison of the best algorithms to others in 1:N post-hoc analysis (Table 26) 
shows that only ensembled models and GBM do not differ signifi cantly from the best 
ones in every case.

Table 25. Model (individual algorithms and ensembles) performances for individual 
time points ISA assessments – average ranks of Friedman tests

Method Ranking (cross-validation) Ranking (validation datasets)

RMSE MAE R2 RMSE MAE R2

avNN 7.17 8.33 7.5 6.83 7.83 7.33

RF 4.5 6.33 4.08 4.67 6.17 4.5

Cubist 2.58 2.33 2.58 4.83 2.75 4.83

GBM 2.91 3.50 3 4.25 4.00 4.17

kNN 6.25 4.17 6.83 7.5 5.33 7.42

rkNN 6.42 7.75 7.33 6.42 7.08 6.17

SVMp 8.17 7.33 7.5 6.25 4.50 6.08

SVMr 5.50 4.33 5.67 4.92 4.33 5

MARS 9.50 9.58 9.5 8.17 8.67 8.33

ensemble 2.00 1.33 1 1.17 4.33 1.17
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Table 26. Adjusted p-values for 1xN comparisons of individual algorithms and model ensembles 
(Friedman post-hoc tests)

Method Adjusted p-value (cross-validation) Adjusted p-value (validation datasets)

RMSE MAE R2 RMSE MAE R2

avNN 0.009329 0.00028 0.000902 0.003559 0.016262 0.001572

RF 0.191832 0.007603 0.09883 0.050767 0.110329 0.063368

Cubist 0.738597 0.567269 0.365047 0.04751 control 
algorithm 0.045968

GBM 0.643285 0.238572 0.279268 0.077748 0.474549 0.086119

kNN 0.026915 0.132974 0.001523 0.001309 0.236862 0.001572

rkNN 0.025722 0.000725 0.000902 0.005997 0.039007 0.009495

SVMp 0.001884 0.001345 0.000902 0.006537 0.435247 0.009495

SVMr 0.067109 0.126357 0.011366 0.04751 0.442324 0.042163

MARS 0.00016 0.000021 0.00001 0.000559 0.006393 0.000372

ensemble control 
algorithm

control 
algorithm

control 
algorithm

control 
algorithm 0.442324 control 

algorithm

3.2.2 Change intensity

Table 27 presents the average values of performance measures from cross-validation 
for model ensembles and assessments based on the best models according to RMSE 
or MAE scores. Again, bolded values show cases when the model outperformed the 
others.

Table 27. Performance of model ensembles on calibration datasets – change asseement

Dataset
Model ensembles Best RMSE Best MAE

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Raba 0.0879 0.0498 0.3352 0.0936 0.0537 0.2960 0.0962 0.0535 0.2802

Dunajec 0.1275 0.0879 0.6274 0.1362 0.0941 0.5955 0.1503 0.1036 0.5427

Sola 0.1047 0.0646 0.3880 0.1115 0.0706 0.3694 0.1124 0.0695 0.3630

Model ensembles performed better than any other approaches for RMSE in Raba 
dataset (Table 28). In other cases their performances were the best, but without 
signifi cant differences to the performances of the best individual algorithms. Similar 
picture is visible for validation datasets (Table 29, Table 30).
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Table 28. ISA models performance on calibration datasets – change asseement 
(p-values for H0 = performance of the algorithm does not differ from the ensembled model)

Method Raba dataset Dunajec datasets Sola datasets

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

avNN <0.001 <0.001 0.0254 <0.001 <0.001 0.0115  <0.001 <0.001 0.0305

RF 0.038 0.001 0.0707 0.686 0.521 0.2073 0.189 0.067 0.1586

Cubist <0.001 <0.001 0.0254 <0.001 <0.001 0.0151 <0.001 <0.001 0.1177

GBM <0.001 <0.001 0.0264 0.002 0.008 0.0316 0.014 0.008 0.1609

kNN <0.001 <0.001 0.0254 <0.001 <0.001 0.0087 <0.001 <0.001 0.0128

rkNN 0.037 0.436 0.0254 <0.001 <0.001 0.0087 <0.001 0.001 0.0305

SVMp <0.001 <0.001 0.0254 <0.001 <0.001 0.0087 0.033 0.015 0.1686

SVMr <0.001 <0.001 0.0302 <0.001 <0.001 0.0087 <0.001 <0.001 0.0305

MARS <0.001 <0.001 0.0254 <0.001 <0.001 0.0087 <0.001 <0.001 0.0305

Best 
RMS <0.001 <0.001 0.0254 <0.001 <0.001 0.0151 0.031 0.033 0.5078

Best 
MAE <0.001 <0.001 0.0254 <0.001 <0.001 0.0087 <0.001 <0.001 0.1177

Table 29. Performance of model ensembles on validation datasets – change asseement

Dataset
Model ensembles Best RMSE Best MAE

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Raba 0.0799 0.0470 0.3609 0.0845 0.0486 0.3158 0.0921 0.0530 0.2650

Dunajec 0.1272 0.0841 0.6106 0.1329 0.0873 0.5767 0.1507 0.0958 0.5174

Sola 0.1025 0.0614 0.4436 0.1132 0.0678 0.3859 0.1176 0.0692 0.3604
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Table 30. ISA models performance on validation datasets – change asseement 
(p-values for H0 = performance of the algorithm does not differ from the ensembled model)

Method Raba dataset Dunajec datasets Sola datasets

squared 
error

absolute 
error

correlation 
coeffi cient

squared 
error

absolute 
error

correlation 
coeffi cient

squared 
error

absolute 
error

correlation 
coeffi cient

avNN <0.001 <0.001 <0.001 0.052 0.001 0.053* <0.001 <0.001 <0.001

RF 0.019 0.017 0.004 0.341 0.084 0.040 0.945 0.768 0.007

Cubist <0.001 0.009 <0.001 0.002 <0.001 <0.001 0.032 0.001 <0.001

GBM 0.014 0.017 <0.001 0.341 0.197 0.100 0.005 0.001 <0.001

kNN <0.001 <0.001 <0.001 0.002 0.003 0.004 0.025 0.065 <0.001

rkNN 0.031 0.301 0.001 0.022 0.010 0.053* 0.713 0.717 0.020

SVMp <0.001 <0.001 0.331 0.095 0.047 0.005 0.454 0.336 0.860

SVMr 0.036 0.001 0.570 0.046 0.015 0.053* 0.066 0.006 0.002

MARS <0.001 <0.001 0.419 0.002 <0.001 <0.001 0.032 <0.001 <0.001

Best RMS 0.052 0.258 0.005 0.233 0.261 0.040 0.042 0.009 0.001

Best MAE <0.001 <0.001 <0.001 0.002 0.001 <0.001 0.005 0.001 <0.001

* – differs signifi cantly from the best model according to the method of Zou (2007)

3.2.3 Estimation of ISA change detection capabilities

New models were also evaluated from ISA change detection point of view. First of 
all their performance was compared to the performance of random classifi er (Table 
31– 33). Like individual algorithms they do not fulfi ll the criterion of outperforming 
random classifi ers accuracy for cross-validation runs in case of 1% and 3% thresholds 
change maps. For 5% threshold the accuracy of random guessing was beaten only by 
ensembled models. For change maps indicating at least 10% change all three models 
passed the tests.

Table 31. Ensembled models performance on calibration datasets – change detection (minimal values 
of overall accuracy measure). Scores below 0.5 are bolded

Method Raba datasets Dunajec datasets Sola datasets

1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10%

ensemble 0.563 0.638 0.710 0.822 0.250 0.383 0.513 0.690 0.425 0.538 0.568 0.754

Best RMS 0.571 0.628 0.675 0.790 0.246 0.362 0.486 0.659 0.404 0.477 0.578 0.721

Best MAE 0.606 0.623 0.688 0.790 0.206 0.340 0.460 0.652 0.430 0.515 0.565 0.711
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Table 32. Ensembled models performance on calibration datasets – change detection (comparison of 
precision with PRC). Bolded entries indicate performances below PRC

Number of cases with precision below PRC treshold

Method Raba datasets Dunajec datasets Sola datasets

1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10%

ensemble 3 0 0 0 44 0 0 0 8 0 0 0

Best RMS 1 0 0 0 45 1 0 0 17 0 0 0

Best MAE 0 0 0 0 48 2 0 0 3 0 0 0

Table 33. Ensembled models performance on calibration datasets – change detection (minimal values 
of ROCAUC measure). Scores below 0.5 are bolded

Method Raba datasets Dunajec datasets Sola datasets

1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10%

ensemble 0.474 0.562 0.621 0.635 0.364 0.518 0.578 0.722 0.466 0.557 0.583 0.638

Best RMS 0.488 0.568 0.587 0.624 0.359 0.482 0.552 0.700 0.446 0.514 0.570 0.641

Best MAE 0.514 0.533 0.557 0.617 0.339 0.465 0.557 0.680 0.475 0.536 0.566 0.621

Table 34 presents the average values of accuracy, F-measure and ROCAUC from 
cross-validation. For 5% change maps model ensembles gave the highest values of 
considered measures (what is indicated by bolded italics). They also gave the highest 
values of accuracy and F-measure for 10% threshold change maps in Raba and 
Sola catchments. However, the differences to the best individual models in all these 
cases were not signifi cant. Model ensembles do not differ signifi cantly from the best 
individual algorithms in other cases neither. No signifi cant differences to the best 
models were also observed for validation using independent datasets (Table 35)
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4. Discussion

The research presented in this paper may be divided into several parts. First of all 
we compared the performances of nine non-linear regression algorithms for sub-
pixel imperviousness mapping from Landsat imagery in individual time points. 
The comparison was done across six datasets using RMSE, MAE and R2 as the 
performance measures. The Cubist algorithm seems to outperform the other methods. 
When Friedman test was applied to the results from cross-validation procedure, it had 
the highest averaged ranks for all measures. It had also the highest averaged rank for 
MAE when the results obtained for independent validation datasets were considered. 
For RMSE and R2 Cubist had the third best result. However, based on post-hoc 
analyses we cannot reject the hypotheses that two other algorithms (i.e. stochastic 
gradient boosting and support vector machines with radial kernel) performed equally 
well. When we compared the algorithms by pairs for individual datasets using cross-
validation on calibration datasets, the Cubist was also the only one constantly present 
in the group of the best models (i.e. its performance was the best or not signifi cantly 
differed from the best one), irrespectively of the dataset and the measure used for 
performance evaluation.

This fi nding is consistent with the previously reported in Drzewiecki (2016b). 
Cubist gave also better results than other machine learning algorithms in comparisons 
done by Walton (2008) and Mohapatra and Wu (2010). It should be noted however, 
that in eighteen comparisons done in actual study there is only one case (MAE for 
late 2000 Raba dataset) when GBM algorithm performance differed from the best one 
at signifi cance level of 0.05. GBM performed also a little bit better then Cubist on 
independent validation datasets.

The next step in our research was to assess the performance of selected algorithms 
for evaluation of sub-pixel imperviousness changes. When comparing individual 
algorithms for estimation of change intensity, Random Forest seems to be better than 
others. For individual time point assessments it gave accuracies signifi cantly lower 
than the best algorithms. It is true especially for MAE and visible in both Friedman 
test and by pair algorithm comparisons for cross-validation results. Despite this fact, 
RF is the only algorithm which is the best or not signifi cantly differ from the best 
when change of imperviousness is estimated. This is also in accordance with fi ndings 
of Drzewiecki (2016b). No other comparison of machine learning approaches for 
estimation of sub-pixel imperviousness change intensity has been found in literature.

Random Forest seems also to perform better than other considered algorithms 
when we assess the ability for correct detection of pixels where relevant change in 
impervious area coverage occurred. All researched approaches showed limited ability 
to reliably detect sub-pixel changes of imperviousness. To accept the method as 
a potential tool for detection of changes we wanted it to beat the performance of 
random classifi er for every considered measure (accuracy, F-measure and ROCAUC) 
in every cross-validation realisation. This is a very conservative condition, but as 
the number of datasets is quite limited we wanted to be as sure as possible that 
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the approach can be used safely. The overall accuracy turned out to be the most 
limiting factor. None method gave accuracies above 50% for change maps based on 
1% and 3% change threshold in Dunajec catchment as well as 1% threshold in Sola 
chatchment.

For change maps created using the threshold of 5% change of imperviousness in 
Dunajec study area only three methods (RF, Cubist and k-NN) gave the accuracies 
better than 50% in every cross-validation realisation. In this task the performances 
of RF and Cubist were comparable, while kNN algorithm gave signifi cantly worse 
ROCAUC values for Sola dataset. When relevant change was defi ned as an increase 
(or decrease) of imperviousness of at least 10%, Random Forest and random kNN 
algorithms may be seen as the best ones. Most of remaining approaches gave the 
performances which did not differ signifi cantly for F-measure and ROCAUC. But RF 
and random kNN outperformed them signifi cantly in overall accuracies.

The essential aim of the presented research was to compare the performance 
of single machine learning algorithms with the performance of their heterogeneous 
ensembles. When Friedman test was applied the ensembled models obtained the 
highest average ranks for all measures in cross-validation as well as for RMSE and 
R2 in validations with independent datasets. For MAEs of validation datasets the 
ensembles were ranked third after Cubist and GBM models. Post-hoc tests showed 
that only model ensembles and generalised boosted regression trees gave always 
the best results or results not signifi cantly different from the best ones. One should 
note however, that the Cubist and radial kernel SVM algorithms gave signifi cantly 
different results for RMSE and R2 obtained for independent dataset validations with 
p-values just a little below 0.05 threshold. Nevertheless, by pair comparisons using 
individual datasets showed in cross-validation case signifi cantly better performance of 
model ensembles for RMSE and R2 measures for three of six datasets.

Model ensembles gave also the lowest errors of imperviousness change intensity 
evaluation for both cross-validation and validation with independent datasets. In Raba 
catchment all other approaches performed signifi cantly worse. When the ability of 
change detection is considered, the model ensembles performances did not differ 
signifi cantly from the best of considered individual algorithms. One should note 
however, that they gave the highest values of all measures for 5% change threshold. 
For both change detection and change intensity evaluation, model ensembles 
outperformed also approaches based on the best models selected according to RMSE 
or MAE.

At least three issues should be discussed based on the achieved results. First of 
all, the research presented in this paper was designed to re-evaluate the results of 
sub-pixel imperviousness and imperviousness change intensity assessment reported in 
Drzewiecki (2016b) using the approaches suggested as more appropriate in machine 
learning literature. In general the outcomes obtained are in accordance with the 
previous ones. When individual algorithms are considered the Cubist still may be 
recommended as the most appropriate for mapping imperviousness in individual time 
points and Random Forest as the better choice for ISA change assessments. However, 
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some differences exists as well. The corrected t-test for repeated cross-validation 
applied in present study resulted in higher number of algorithms which cannot be 
considered as signifi cantly worse from the best ones in by pair comparisons for 
individual datasets. It does not change the fi nal conclusions substantially. However, in 
actual study the difference between the performances of Cubist and GBM algorithms 
for individual time point assessments in cross-validation procedure is much smaller 
than in previous evaluation. Both algorithms performed also the best for independent 
validation datasets. Moreover, in this case GBM was a little bit better. Based on these 
results, when application of single algorithm is considered, it can be recommended as 
the alternative approach to ISA evaluation for single time-point.

Secondly, in presented study two scenarios were used to compare machine 
learning approaches for individual time points ISA evaluations. Algorithms were 
assessed based on multiple datasets using Friedman tests and on individual datasets 
using by pair comparisons to the best performed algorithm. The latter approach seems 
to be more powerful, although it was more complicated and time-consuming as well. 
However, by using pair comparisons on individual datasets, we were able to fi nd 
more differences in performances than with Friedman test and post-hoc analyses. 
The reason may be searched in low number of datasets available for comparison. As 
pointed out by Trawiński et al. (2012) the power and effi ciency of nonparametric test 
of signifi cance is low with small sample sizes. In our case we had only six datasets 
available to compare.

The last but very important issue is related to the applicability of researched 
approach for change detection. We tried to detect sub-pixel changes of imperviousness 
based on comparison of two sub-pixel ISA estimations done for individual points in 
time. The research reveal the fact that such methodology is hardly applicable if we 
want to fi nd subtle ISA changes. None of considered approaches was able to assure 
satisfactory accuracy of change detection for relevant change threshold defi ned as 1 
or 3 percents. For 5% threshold the most approaches failed as well. Despite of very 
conservative rules applied in presented study (we wanted the results better than the 
result of random classifi er for all cross-validation runs), this shows some limitations 
of the researched approaches. As showed in study of Bernat and Drzewiecki (2014), 
detection of completely pervious pixels in additional step of hard (binary) classifi cation 
may result in more reliable determination of such areas and reduced classifi cation 
noise, i.e. the lower number of (usually small) errors for completely perviouse pixels. 
We may expect that it also should improve the ability for detection of ISA changes, 
especially when the more subtle changes are being searched. We plan to check this 
in future studies.

 

5. Conclusions

In this paper we presented the results of thorough statistical comparison of nine 
machine learning methods (Cubist, Random Forest, stochastic gradient boosting of 
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regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, 
Multivariate Adaptive Regression Splines, averaged neural networks, and support 
vector machines with polynomial and radial kernels) for sub-pixel imperviousness and 
imperviousness change assessment. The study is the continuation and extension of the 
research presented in Drzewiecki (2016b). In present study new methodology was 
applied for comparisons and, additionally, the applicability of selected approaches for 
detection of relevant ISA changes was taken into consideration. When performances 
of single algorithms are considered, the Cubist and GBM approaches outperformed 
the other techniques for imperviousness evaluation in single time steps. However, 
when the goal is to assess imperviousness change Random Forest would be better 
choice. Despite lower accuracies for individual time point predictions, it allowed for 
both more accurate estimation of change intensities as well as more reliable mapping 
of relevant change occurrences.

The study proven also that heterogeneous ensembles of non-linear regression 
models allow to obtain the results which are better than or at least as good as the 
best of the ones obtained with individual models. This is true for individual time 
points imperviousness assessment as well as for ISA change intensity evaluation and 
detection of relevant imperviousness changes. It is worth noting, that to construct 
such ensembles we do not need reference data for ISA change (Drzewiecki, 2016b). 
As the models are ensembled based on their performances in individual time points, 
the reference information about imperviousness in single dates is enough. This is 
very important as in many cases one faces lack of the reference areas for ISA change 
evaluation (Yang et al., 2003; Dams et al. 2013) which makes impossible to choose 
the most accurate individual models. Using the approach based on model ensembles 
one can possibly improve the sub-pixel imperviousness change assessment even 
without reference change information.

The study also revealed that the methodology of imperviousness change detection 
based on differences of sub-pixel evaluations done for individual time point has 
limited ability of reliable detection of subtle ISA changes. In our case we may rely on 
the change detection results regardless the algorithm used for ISA mapping only for 
the highest of considered thresholds, i.e. when relevant changes were defi ned as over 
10% increase or decrase of ISA. For 5% threshold model ensembles are preferable as 
for the most of approaches some risk of too low accurate results occurred.
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