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Abstract:  The determination of the accuracy of functions of measured or adjusted values 
may be a problem in geodetic computations. The general law of covariance propagation 
or in case of the uncorrelated observations the propagation of variance (or the Gaussian 
formula) are commonly used for that purpose. That approach is theoretically justifi ed 
for the linear functions. In case of the non-linear functions, the fi rst-order Taylor series 
expansion is usually used but that solution is affected by the expansion error. The aim 
of the study is to determine the applicability of the general variance propagation law in 
case of the non-linear functions used in basic geodetic computations. The paper presents 
errors which are a result of negligence of the higher-order expressions and it determines 
the range of such simplifi cation. The basis of that analysis is the comparison of the 
results obtained by the law of propagation of variance and the probabilistic approach, 
namely Monte Carlo simulations. Both methods are used to determine the accuracy of 
the following geodetic computations: the Cartesian coordinates of unknown point in the 
three-point resection problem, azimuths and distances of the Cartesian coordinates, height 
differences in the trigonometric and the geometric levelling. These simulations and the 
analysis of the results confi rm the possibility of applying the general law of variance 
propagation in basic geodetic computations even if the functions are non-linear. The only 
condition is the accuracy of observations, which cannot be too low. Generally, this is not 
a problem with using present geodetic instruments.
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1. Introduction

The accuracy of measured or adjusted values is very important in surveying. The 
accuracy of observations or their functions may be expressed as a standard deviation. 
The determination of that accuracy may be a problem in some geodetic computations. 
Generally, an application of the law of covariance propagation is the most common 
way for that purpose but for the uncorrelated variables may be used the Gaussian 
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formula (or a special case of the covariance propagation law – the law of variance 
propagation). However, applying the law of propagation of variance is valid for 
the linear functions. I n case of the non-linear functions, it may be used t he Taylor 
series expansion limited to the fi rst expression term (the linear one). That approach 
is unfortunately affected by the expansion error. On the other hand, it is possible 
to apply the Monte Carlo simulations (or in other words, the statistical sampling 
method), which can be used also for the non-linear functions. This method is very 
useful tool to solve many other problems of statistical data analysis, which may be 
applied in surveying and geodesy, e.g., to determine the accuracy of the Hodges-
Lehmann estimates (Duchnowski and Wiśniewski, 2014; 2017), the infl uence of the 
leptokurtosis of the error distribution on the accuracy of several estimates (Duchnowski 
and Wyszkowska, 2017), the values of the mean success rates (Hekimoglu and 
Berber, 2003) or the subjective breakdown points and the probabilities of breakdown 
(Xu, 2005; Wyszkowska and Duchnowski, 2017). The simulation methods are also 
used to the other engineering problems, e.g., to consider the propagation of uncertainty 
in case of the mass calibration, the comparison loss in the microwave power meter 
calibration or the Gauge block calibration (JCGM 101:2008, 2008). 

The foundation of the Monte Carlo method was Buffon’s needle problem 
by Georges Louis Leclerc in the eighteenth century (see, e.g., Ramaley, 1969). 
The Monte Carlo simulations are well known since 1940s, when Stanisław Ulam, 
Nicholas Metropolis and John von Neumann participated in the Manhattan project 
(e.g., Metropolis and Ulam, 1949; Eckhardt, 1987; Metropolis, 1987). They also 
worked on the project of the hydrogen bomb. That method was used in diffusion 
and absorption of neutrons, which was hard to consider in any analytical way. The 
development of computers allowed us to carry out more complex simulations applied 
in many branches of science (e.g. Warnock, 1987). Simulated data sets are generated 
randomly but with defi nite probability distribution. Important part of these simulations 
is statistical analysis of the results obtained with certain accuracy. The Monte Carlo 
simulations are used for too complex processes, when it is hard or impossible to 
predict results in a traditional way. The Monte Carlo method has several variants, 
e.g. the Crude Monte Carlo method (CMC) (see, e.g., Fishman, 1986), the Sequential 
Monte Carlo method (see, e.g., Del Moral et al., 2006), the Quantum Monte Carlo 
method (see, e.g., Wang, 2011). 

This paper presents using the simplest form of the Monte Carlo method  – the 
CMC method to determine the estimates of the standard deviations of the following 
functions: linear – a simulated levelling line, non-linear – a height difference in 
the trigonometric levelling, a distance and an azimuth of the Cartesian coordinates, 
the Cartesian coordinates of unknown point in the three-point resection problem. It 
is assumed that the normal distributions are the stochastic model of measurement 
errors, which is well grounded from the theoretical point of view. The estimates of the 
standard deviation from the Monte Carlo simulations are compared with the standard 
deviations obtained by applying the law of propagation of variance. All computations 
are carried out in MathCad 15.0. Thus, the main objective of the paper is to determine 
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the applicability of the CMC method and the variance propagation law in case of the 
non-linear functions of basic geodetic computations.

 

2. Propagation of variance

Let us consider a vector of random variables X = [X1  X2  ...   Xn]T and a vector of 
their functions Y = [Y1  Y2  ...   Ym]T, here Y = F(X) is a transformation of the random 
vector X. Let each Yi be linear function of X, hence all Yi are differentiable, and the 
respective derivatives create the matrix D. If the covariance matrix CX is known, then 
we can write the well-known form of the law of propagation of covariance (see, e.g., 
Mikhail and Ackermann, 1976) 

 =  (1)

If Yi are not linear, one can apply the Taylor series expansion, which is usually 
limited to the fi rst-order terms in order to obtain the linear approximation of Yi (note, 
that there are some special non-linear functions for which one can derive the direct 
expression for variance of Yi). Considering both vectors Y and X, the Taylor series 
expansion requires computation of the Jacobian matrix J, which is based on the 
approximate values X0. Taking D = J, one can apply the formula of Equation (1) to 
compute the covariance matrix CY. Note, that such an approximation (linearization 
of Yi) causes that the computed variances of Yi are biased. Such a bias depends on 
the nature of linearized functions and in some cases, it might be unacceptable high. 
For example, function logx, the natural logarithm, can be approximated with the 
expansion x + 1 only for small x. Thus, the presented linear approximation can be 
assumed as good enough only in a close neighbourhood of X0.

It is also possible to apply the variance propagation formula using the second-
order Taylor series expansion. Such an approach requires a knowledge of the higher-
order central moments. However, when the variables Xi are normally distributed, then 
the odd moments μk (k is odd) are equal to zero and we can also use the substitution 
μ4 = 3σ4. Additionally, when Y is a function of the uncorrelated variables, then the 
variance  can be assessed by the following formula (see, e.g., Anderson and 
Mattson, 2012).

 +   (2)

Another solution of the problem how to propagate the covariance in case of the 
non-linear function is to apply probabilistic approaches to the uncertainty propagation 
(see, e.g., Lee and Chen, 2009). One of the most popular and simplest methods is 
an application of the Monte Carlo simulations. In general, we should assume the 
stochastic model of X, then simulate realizations of such a random vector, by applying 
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F(X) we can obtain the set of realizations of Y, which is the basis for computing 
empirical variances and covariances.

The problem can also be solved by applying the delta method, which is classical 
technique of approximating the moments of a function of one or more random 
variables (see, e.g., Oehlert, 1992). That method is usually based on the polynomial 
approximation which is often a truncated Taylor series expansion limited to the 
fi rst-order terms and the sample moments. If one assumes that the variables are 
approximately normally distributed and their standard deviations are small, then in 
fact the delta method leads to Equation (1) (see, e.g. Kass et al., 2014).

3. Numerical examples

The Crude Monte Carlo method applied in this section is based on the simulations of 
observations in a very basic way. We simulate the observation errors by generating the 
Gaussian random numbers with the procedure rnorm of MathCad 15.0. Such simulated 
errors are then added to the assumed “true” values of observations, respectively. The 
obtained observation sets are transformed to the sets of the function values which 
are the basis for computing the CMC estimators of the function standard deviations. 
Similar simulations can also be carried out by applying other software, e.g. GoldSim, 
MatLab, Oracle Crystal Ball, @Risk, XLSTAT, MonteCarlito, ModelRisk. It is worth 
noting that quality of the random number generator can infl uence the fi nal results; 
however, such a problem is out of our interest within the paper.

In the next subsections we will apply two formulas for the variance propagation 
law (VPL), namely Equation (1) or Equation (2). For the sake clarity, such approaches 
will be denoted as VPL (I) and VPL (II), respectively.

3.1. Simulated levelling line

Let us consider a simulated levelling line, which consists of four points but 
only a height of the point A, HA, is known. There are 3 observations (the height 
differences) between points A–1, h1, 1–2, h2, and 2–3, h3. The following values of 
variances of the height differences are assumed V(h1) = 1 [mm2], V(h2) = 2 [mm2], 
V(h3) = 3 [mm2] additionally we assume that all observations are uncorrelated. 
If HA = 0 [m], the height differences are equal to the respective heights of points 1, 
2 and 3, hence

 H1 = h1 (3)

 H2 = h1 + h2 (4)

 H3 = h1 + h2 + h3 (5)
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Note that such functions are linear, so an application of the law of variance 
propagation must give the exact results. On the other hand, it is also possible to 
use the CMC method and compare the results of both approaches. Let the errors 
of the height differences in the levelling, εh1, εh2, εh3, be normally distributed with 
the expected values equal to zero and known standard deviations, σh1, σh2, σh3, i.e., 
εh1 ~N[0,σh1], εh2 ~N[0,σh2], εh3 ~N[0,σh3]. The standard deviations of the point heights, 
σH1, σH2, σH3 (from the variance propagation law) and the CMC estimates, H1, H2, 

H3 (from the Monte Carlo method for chosen number of simulations n) are given in 
Table 1. 

Table 1. Standard deviations of heights σH1, σH2, σH3 and CMC estimates H1, H2, H3  for different 
number of simulations n

Crude Monte Carlo method Variance propagation law

n H1 [mm] H2 [mm] H3 [mm] σH1 [mm] σH2 [mm] σH3 [mm]

1000 0.97542 1.69348 2.41906

1.000 1.732 2.449

10000 1.00419 1.73926 2.46086

25000 1.00103 1.74134 2.44893

50000 0.99634 1.73236 2.45045

100000 0.99578 1.73513 2.44849

Thanks to the values in Table 1, it is possible to determine the accuracy of the 
estimate of the standard deviation for the linear function. The values of the CMC 
estimates are presented with 5 decimal places on the purpose to notice the differences 
between obtained results. In case of the smallest number of simulations n = 1000  
there are the biggest differences (up to 3%) between σH1, σH2, σH3 and H1, H2, H3. 
When the number of simulations increases, the differences are smaller than 1% which 
can be assumed as the accuracy of the CMC estimates here. The values of H1, H2, 

H3  are close to σH1, σH2, σH3 for n ≥ 25000. In fact, Table 1 presents results of a single 
experiment, for other experiments we can obtain slightly different results. Because 
the simulation time is not very long, we decided to assume the biggest considered 
number of simulations, thus in the all next numerical experiments n = 100000.

3.2. Trigonometric levelling

The next example concerns a height difference in the trigonometric levelling, 
Δh, which is a non-linear function of a vertical angle, α, and a slope distance, d'. 
That test is to determine differences between the standard deviations of the height 
difference in the trigonometric levelling, σΔh, and the CMC estimates, Δh, when the 
standard deviations of a vertical angle, σα, and a slope distance, σd', are doubled in the 
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subsequent variants. The assumed expected values of the vertical angle E(α) = 10 [g] 
and the slope distance E(d') = 100 [m]; these variables are uncorrelated. The errors 
of the vertical angle, εα, and the slope distance, εd', have normal distributions, i.e., 
εα ~N[0,σα] and εd' ~N[0,σd']. For the fi rst variant: σα = 0.005 [g], σd' = 0.005 [m]. For the 
next variants, the standard deviations of the vertical angle, σα, and the slope distance,  
σd', are doubled, namely σα → 2σα and σd' → 2σd'. The computations are made for 
15 variants. Figure 1 presents the standard deviations of the height difference in the 
trigonometric levelling, σΔh, from the variance propagation law and the estimates of 
the standard deviations of the height difference in the trigonometric levelling, Δh, 
based on the Crude Monte Carlo method. 
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Fig. 1. Standard deviation of height difference in trigonometric levelling σΔh  computed by VPL (VPL 
(I) concerns the fi rst-order Taylor series expansion and VPL (II) – the second-order Taylor series 

expansion) and CMC estimate Δh  

First, let us analyse the results of VPL (I). The values of σΔh and Δh in Figure 1 
are similar for the fi rst twelve variants, their differences are up to 1%. Thus, they 
are smaller (or similar) than the accuracy of the estimate of the standard deviation 
computed by the Monte Carlo method, which is set at 1%. More signifi cant difference 
(about 3%) between σΔh and Δh occurs in variant 13, when σα ≈ 20.5 [g] and 
σd' ≈ 20.5 [m]. The differences are even bigger in the next variants. For variants 13–15 
the differences between σΔh and Δh are larger than the accuracy of the estimate (1%), 
so the values of the standard deviations computed by the propagation of variance 
are not reliable. Now, let us consider the application of VPL (II). For the fi rst ten 
variants the difference between VPL (I) and VPL (II) is lower than 0.1%. For the next 
variants it grows up to 30%. Thus generally, for the observations of high accuracy 
the difference is not signifi cant, and for the observations of low accuracy the results 
obtained by applying the Equation (2) are even worse. 
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3.3. Distance

Another example is a distance, d, calculated of the Cartesian coordinates of the points 
A and B. The assumed expected values of the coordinates of the points A and B are 
as follow: E(XA) = 0 [m], E(YA) = 0 [m] and E(XB) = 100 [m], E(YB) = 100 [m]. Let 
us consider the case of the uncorrelated coordinates. The distributions of the errors 
of these coordinates, εXA, εYA, εXB, εYB are normal, i.e., εXA ~N[0,σXA], εYA ~N[0,σYA] 
and εXB~N[0,σXB], εYB ~N[0,σYB]. The assumed values for fi rst variant: σXA = 0.01 [m], 
σYA = 0.01 [m], σXB = 0.01 [m], and σYB = 0.01 [m]; for the next variants, the standard 
deviations of the coordinates of the point B, σXB and σYB, are doubled σXB → 2σXB 
and σYB → 2σYB. The computations are made for 15 variants. In case of the correlated 
coordinates, we use the following formulas to simulate the coordinates of the points 
A, XA, YA  and B, XB, YB

 XA = E(XA) + tA + uXA (6)

 YA = E(YA) + tA + uYA (7)

 XB = E(XB) + tB + uXB (8)

 YB = E(YB) + tB + uYB (9)

where: tA – common variable for the coordinates of the point A; uXA, uYA – different 
variables for the coordinates of the point A; tB – common variable for the coordinates 
of the point B; uXB, uYB – different variables for the coordinates of the point B. These 
variables have normal distributions, i.e., tA ~N[0,σtA], uXA ~N[0,σuXA

], uYA ~N[0,σuYA
] and 

tB ~N[0,σtB], uXB ~N[0,σuXB
], uYB ~N[0,σuYB

]. The variances and the covariances of the 
coordinates of the points A and B are the functions of the variances of the common 
and different variables for the coordinates of the points A and B, for example

 V(XA) = V(tA) + V(uXA) (10)

 cov(XA,YA) = cov (YA,XA) = V(tA) (11)

The values of the fi rst variant: V(tA) = cov(XA,YA) = cov(YA,XA) = 0.00005 [m2], 
V(uXA) = V(uYA) = 0.00005 [m2], V(tB) = cov(XB,YB) = cov(YB,XB) = 0.00005 [m2], 
V(uXB) = V(uYB) = 0.00005 [m2]. For the subsequent variants, the variances of the 
variables of the point B, V(tB), V(uXB), V(uYB), increases four times, i.e. V(tB) → 
4V(tB), V(uXB) → 4V(uXB), V(uYB) → 4V (uYB). The coordinates of the points A and 
B are correlated in all variants – the correlation coeffi cient of the coordinates of the 
point A ρXA,YA = 0.5, the same as for the point B ρXB,YB = 0.5. Note, that application of 
the second-order Taylor series expansion and VPL of Equation (2) is not possible for 
the correlated variables. 
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Figure 2 presents the standard deviations of the distance, σd, obtained from the 
variance propagation law and the estimates of the standard deviations of the distance, 

d, from the CMC method for the uncorrelated coordinates, and Figure 3 – for the 
correlated coordinates (ρXA,YA = 0.5, ρXB,YB = 0.5). 
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Fig. 2. Standard deviation of distance σd computed by VPL and CMC estimate d for uncorrelated 
coordinates
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Fig. 3. Standard deviation of distance σd computed by VPL (I) and CMC estimate d 
for correlated coordinates  (ρXA,YA = 0.5, ρXB,YB = 0.5) 

Firstly, let us consider the CMC method and VPL (I). Figures 2 and 3 show that 
the differences between the fi rst twelve values of σd and d are smaller than 1%, 
which is similar relation to that in Figure 1. For the rest variants, the differences 
between σd and d are again larger than obtained accuracy of the estimate of the 
standard deviation computed by the Monte Carlo method (1%). It happens when 
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σXA = σYA = 0.01 [m] and σXB = σYB ≥ 41 [m] (the values from variant 13). Once more, 
for these variants the values of σd are not reliable. Furthermore, the differences between  
σd and d for the variants 13–15 are larger in case of the correlated coordinates. As for 
the application of VPL (II), the difference between VPL (I) and VPL (II) in Figure 2 
is lower than 0.1% for the fi rst ten variants and it increases to 30% in the last variant, 
which is analogous to the previous example. 

3.4. Azimuth

Determination of an azimuth, A, computed of the Cartesian coordinates of the 
points A and B is the next numerical example. The assumptions are the same as for 
the distance in the cases of the uncorrelated and the correlated coordinates of the 
points A and B. This time the computations are made for 18 variants in both cases. 
Figure 4 presents the standard deviations of the azimuth, σA, computed by the law of 
propagation of variance and the estimates of the standard deviations of the azimuth, 

A, by the CMC method, when the coordinates are uncorrelated; while the values for 
the correlated coordinates (ρXA,YA = 0.5, ρXB,YB = 0.5) are shown in Figure 5. 
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Fig. 4. Standard deviation of azimuth σA computed by VPL and CMC estimate A

for uncorrelated coordinates
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Fig. 5. Standard deviation of azimuth σA computed by VPL (I) and CMC estimate A 
for correlated coordinates (ρXA,YA = 0.5, ρXB,YB = 0.5)

First, let us compare results obtained by VPL (I) and the CMC method. Figures 4 
and 5 present increasing σA for all variants, but in case of A only for variants 1–15. 
The values of A are very similar for the rest of the variants. This time the differences 
between σA and A are smaller than 1% (the assumed accuracy of the estimate of the 
standard deviation computed by the Monte Carlo method) for the fi rst eleven variants in 
Figure 4 (σXB = σYB ≤ 10 [m]) or the fi rst ten variants in Figure 5 (σXB = σYB ≤ 5 [m]). 
Moreover, for variants 12–15 in Figure 4 and variants 11–16 in Figure 5 σA are too low 
in relation to A; for the next variants, the effect is opposite. Besides, the differences 
between σA and A are bigger for variants 12–15 for the correlated coordinates and for 
variants 16–18 for the uncorrelated coordinates. The results obtained from VPL (II) in 
Figure 4 are similar to the previous ones. For the ten fi rst variants the difference between 
VPL (I) and VPL (II) is negligible. For the next variants, results of VPL (II) grow more 
rapidly than results of VPL (I), thus they become more distant from the results of the 
CMC method.  

Figure 6 presents the histograms of the azimuths computed by the Crude Monte 
Carlo method (n = 100000) for the uncorrelated coordinates in case of three variants 
of the values of the standard deviations of the coordinates of the point B (the 
other assumptions are the same as earlier): variant 1 σXB = σYB = 200 [m], variant 
2 σXB = σYB = 500 [m], variant 3 σXB = σYB = 2000 [m]. Such values of σXB and  σYB 
are irrational from the practical point of view; however, they help to analyse how the 
obtained histograms change with decreasing accuracy of the coordinates.  
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Fig. 6. Histograms of azimuths computed by Crude Monte Carlo method

Figure 6 shows that the histograms of the azimuths tend to the uniform distribution. 
Note, that the CMC estimate of the standard deviation, A, (Figures 4 and 5) tends 
to the value of 115.47 [g] – which in fact is the standard deviation in the uniform 
distribution for such an interval. That fact also confi rms the correctness of the results, 
which are obtained by the Monte Carlo simulations.

3.5. Three-point resection problem

The last example is computing the Cartesian coordinates XD, YD of a point D by 
the resection solution presented by (Ligas, 2013). The assumed coordinates of the 
known points A, B and C are as follow: XA = 0 [m], YA = 0 [m], XB = -50 [m], 
YB = 50 [m]  and XC = 0 [m], YC = 100 [m]. To simplify the computations, we assume 
that the angles α = BDA and β = CDB are equal to each other and close to 50 [g], so 
the point D lies near the danger circle. Additionally, let the errors, εα, εβ, be normally 
distributed, i.e., εα ~N[0,σα] and εβ ~N[0,σβ], where σα = σβ = 0.001 [g]. We should 
realize that in surveying engineering, one should usually avoid the situation where 
the resection point lies very close to the danger circle. However, such a situation 
is plausible in navigation (especially when we have only three reference points). In 
such a case the assessment of the resection accuracy is essential and it may strongly 
infl uence the next computations, for example the prediction of the vehicle position. 
Therefore, let us assess such an accuracy by VPL (I) or the CMC method for 
n = 100000 simulations. The results are listed in Table 2.
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Table 2. Standard deviations of coordinates σXD, σYD and CMC estimates XD, YD

α = β [g]
Crude Monte Carlo method Variance propagation law

D [m] D [m] σXD [m] σYD [m]

51 1.078 · 10-3 0.069 1.077 · 10-3 0.066

50.5 1.128 · 10-3 0.139 1.094 · 10-3 0.139

50.05 0.028 1.411 1.109 · 10-3 1.412

50.005 2.819 13.728 1.111 · 10-3 14.140

50.0005 34.955 35.286 1.111 · 10-3 141.419

The results of the VPL (I) and the CMC method are almost the same for the fi rst 
variant. The difference between the methods increases signifi cantly when the point 
D approaches the danger circle. One can note that the standard deviation σXD 
remains almost the same while σYD increases rapidly when applying the variance 
propagation law. On the other hand, D and D grow with the different rapidity but 
fi nally they both stabilize close to the value 35.35 [m]. Such a value is very close to 
the theoretical value of the standard deviation of the coordinate X (or Y), when one 
considers the set of points which are spread evenly on the danger circle. On the one 
hand, we should realize the fact results from the numerical problems of the resection 
solution (high risk of the erroneous solution for the resection point lying very close 
the danger circle), but on the other, it is a reason for which the CMC method should 
be regarded as more reliable in such a context.

To apply VPL (II) one should compute the values of the second-order derivatives. 
In the present case the fi rst-order derivatives are so complex that the built-in 
procedures of MathCad 15.0 cannot deal with such a problem. One should realize 
that the solution surely exists; however, it is hard to get it. Thus, in this context 
the application of VPL (II) is just impossible. Considering results presented in the 
previous subsections, the question is whether such an effort is justifi ed.

4. Conclusions

The Monte Carlo simulations are one of the basic methods of using random numbers 
which is applied in different branches of science. The results presented in the paper 
show one of the possible applications of the Monte Carlo method in surveying. The 
Monte Carlo simulations are good alternative for assessing accuracy by the variance 
propagation law. The main aim of the paper was to examine the applicability of the 
variance propagation law for the non-linear functions of basic geodetic computations. 
It is obvious, that the law of propagation of variance always gives exact results in 
case of the linear functions, which also gives us a possibility to assess the accuracy 
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of the estimate of the standard deviation computed by the Monte Carlo method 
(here 1%). 

The results obtained by the application of the CMC method indicate that the 
variance propagation law for the non-linear functions does not yield good results 
in some special cases, for example for the low accuracy of the observations or 
numerical problems with computing correct solutions. On the other hand, the variance 
propagation law can be applied in the practice of geodetic calculations because the 
geodetic measurements have usually relatively small standard deviations. Such a high 
accuracy of the geodetic measurements means that the linear approximation by the 
Taylor series expansion is good enough in case of the basic surveying computations, 
and one can assume that D = J, hence also apply Equation (1) for the non-linear 
functions. On the other side, application of the second-order Taylor series expansion 
should generally yield better results. However, the results presented here show that 
in case of high accuracy measurements the difference between VPL (II) and VPL (I) 
is negligible. For the low accuracy of measurements, the quadratic approximation is 
even worse than the linear one. Sometimes the application of VPL (II) can be hard 
to carry out due to the complex expression of the second derivatives. Considering 
the fact that VPL (II) requires bigger effort and the results obtained in case of simple 
geodetic computations are not promising, VPL (I) seems to be a better choice. The 
other limitations of the method in question as well as pros and cons of application of 
VPL (II) can be found in (Anderson and Mattson, 2012).

The Monte Carlo method proves that it can be applied to check the traditional 
computations. Generally, the probabilistic methods for the uncertainty propagation, 
including the Monte Carlo simulations, should be applied to estimate the variance of 
the function of the measurements if the function itself is highly non-linear and/or the 
accuracy of measurements is very low.
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