
Introduction
One of the major problems occurring in wastewater is the 
extensive amount of pollution. These waters are formed by the 
leakage of snow and moisture in waste materials held in storage 
sites. High need for oxygen and heavy metal content of the 
wastewater cause the quality of the receiving environment to 
deteriorate in the long term. These problems lead to toxic and 
anaerobic conditions in the receiving environment, fi sh death or 
exposition to pollution, and deterioration in water quality when 
the receiving environment is used as a water supply. Therefore, 
wastewater must be collected before it reaches underground and 
surface water resources, and should be treated appropriately. 
The main chemical methods used for treating wastewater are 
coagulation-fl occulation, chemical deposition and chemical-
-electrochemical oxidation. Vivek et al. (2014) investigated 
the physical, chemical and biological methods that exist for 
the treatment of wastewater. It is generally diffi cult to ensure 
satisfactory treatment effi ciency and a high quality outfl ow of 
water by using only a single method. 

Nadaroglu et al. (2014) studied the removal of copper from 
aqueous solutions by using micritic limestone. They found that 
the maximum adsorption capacity was 237.05 mg/g for 1 hour 
and 1 g dosage. The experimental investigation results show 
that powdered micritic limestone has a high level of adsorption 
capacity in terms of copper ions. Adsorption data was correlated 
with the Langmuir and Freundlich isotherm models. It was 
found that the Langmuir and Freundlich isotherms fi tted well 
with the data. Consequently, it was determined that powdered 

micritic limestone can be used successfully for removing 
copper ions from aqueous solutions.

Moradi et al. studied the adsorption of ammonium ions 
onto pumice as a natural and low-cost adsorbent. They found 
the optimum conditions for maximum removal of NH4

+ (70.3%) 
were found to be 100 g, 20 mg/L, 300 rpm and 180 min, for 
pumice dosage, initial NH4

+ ion concentration, mixing rate and 
contact time.

For this, a combination of physical, chemical and biological 
methods is most commonly used. Garcia et al. (2014) explained 
that the most common physical methods used for the treatment 
of wastewater are precipitation, refi ning with air conditioning, 
adsorption and membrane fi ltration. In wastewaters containing 
heavy metals, refi ning is performed by using many different 
adsorbent materials. Malkoc et al. (2006) suggested that one such 
material is tea waste from the fi xed bed column used for removing 
Nickel (II) from an aqueous solution. Different initial nickel 
concentrations are input concentrations used in this study. The 
result obtained show that the adsorbent material obtained from 
tea factory waste is effi cient, and it is not an expensive material 
with regard to Nickel (II) removal. In addition, Erdogan et al. 
(2005) investigated the degree of nickel adsorption with activated 
carbon formed by waste peaches. The waste peaches in which the 
chemical activation with K2CO3 is performed are transformed into 
carbon. In the experimental study using this adsorbent material, 
40–100% adsorption capacities were obtained.

Alkan et al. (2001) studied the performance of a perlite 
adsorbent. Copper (II) ions in different aqueous solutions were 
studied experimentally in terms of different pH ranges, ionic 
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Abstract: This study investigates the estimated adsorption effi ciency of artifi cial Nickel (II) ions with perlite in an 
aqueous solution using artifi cial neural networks, based on 140 experimental data sets. Prediction using artifi cial 
neural networks is performed by enhancing the adsorption effi ciency with the use of Nickel (II) ions, with the 
initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and 
the varying time of effect ranging from 5 to 30 mins. This study presents an artifi cial neural network that predicts 
the adsorption effi ciency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton 
back-propagation algorithm. The performance of the artifi cial neural network is determined by coeffi cient 
determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship 
between the experimental data and the predicted values.
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strengths and temperatures. It was reported that a relatively 
high degree of effi ciency is obtained using the expanded perlite. 

The concept of artifi cial neural networks (ANN) emerged 
from using numerical computers to imitate the working 
principles of the human brain. The fi rst studies were focused on 
the mathematical estimation of neurons. Studies have shown that 
neurons exchange information with neighboring neurons. Today, 
ANN is applied to many scientifi c fi elds. As in other fi elds, this 
approach is also used to obtain constantly improved results in 
environmental engineering disciplines. Treatment in terms of 
membrane processes is composed of complex relationships 
having non-linear and complex parameters. Such problems 
can be solved by using ANN effectively. In their studies, Bui 
et al. (2016) made extensive use of a multilayered feed-forward 
network with a back propagation algorithm. Podder et al. (2016) 
explained that the fi eld referred to as ANN is a combination of 
these neurons in a certain form. ANN studies, with their non-
algorithmic, parallel and distributed computing capabilities, are 
different from conventional studies. With these different features, 
ANN can undertake complex and non-linear calculations easily 
and quickly. ANN, which is not algorithmic and cannot be used 
for very intense parallel computing, leads to new perspectives in 
computations involving learning ability and parallel distributed 
memory. Input layer neurons take the input data, transmit it 
to the next data processing layer through various links. This 
process continues until the data reaches the output layer. Sarkana 
et al. (2015) investigated the network formed involving one-
way information fl ow. This is known as a feed-forward neural 
network. Prakash et al. (2008) estimated the effi ciency of ANN 
in terms of Copper (II) biosorption. They used chips from mango 
trees as adsorbents. In this study, input concentration was used as 
input data for ANN, and 4 different inputs in terms of temperature 
and particle size were used. The effi ciency of biosorption is 
shown as an ANN output. Hammed et al. (2004) developed an 
estimation of the performance of wastewater refi ning plants in 
Cairo by using ANN. Maged et al. (2004) estimated two output 
concentrations in the form of biochemical oxygen demand 
(BOD) and suspended solid materials. For 10 months, BOD 
and suspended solid measurements were improved by training 
the experimental data every day using ANN. In addition, Bui et 
al. (2016) predicted the coagulation capacity of reactive dyed 
wastewater by applying chitosan. The ANN architecture in this 
study was formed in terms of a three-layer feed-forward ANN, 
and the coagulation processes, with a determination coeffi cient 
R2 showed a value of 0.986. 

Yesilnacar et al. (2012) studied a strong means of predicting 
the sulfate and sodium adsorption ratio (SAR) values in 24 
observation wells of the Harran Plain. This study provides the 
fi rst optimization of ANN architecture in terms of predicting 
sulfate and SAR values in groundwater. Moreover, Yesilnacar 
et al. (2008) proved that nitrate can be easily predicted with 
the help of a specifi cally designed, trained and validated 
neural network model. The developed model provided an 
acceptable fi t to the experimentally obtained nitrate data in the 
24 observation wells in the Harran Plain.

The application of neural networks for the purpose of 
estimating sorption isotherms is presented in the study described 
in the current paper. In this study, using measures of removal 
effi ciency gathered through laboratory experiments and with 
regard to related variables such as the amount of adsorption, 
and the initial concentration and contact time, the prediction 

of removal effi ciency is calculated and verifi ed using the mean 
square error (MSE) and coeffi cient determination (R2) functions 
of MATLAB artifi cial neural networks (ANN). The results of 
the study indicate a high correlation between the experimental 
data and the predicted data. In this section, a literature review 
and the aim of the study are briefl y presented. 

Materials and Methods
Materials 
In this study the following materials were used: aqueous solutions 
were prepared in different amounts by dissolving NiCl2.6H2O 
in distilled water, and HCl and NaOH solutions were used to 
adjust the pH. Distilled water was extracted from TKA-Pacifi c 
(TKA-Wasseraufbereitungssysteme). The pH meter was 
calibrated with pH 4 and pH 7 buffer solutions (Merck, Darmstadt, 
Germany). The perlite, whose physical properties are given in 
Table 1, was obtained from the region of Balikesir-Turkey.

Table 1. Physical properties of perlite

pH 6.6–8.1
Density 35–410kg/m3

Specifi c gravity 2.2–2.4
Softening point 690–1052°C
Melting point 1250–1253°C
Specifi c heat 395J/kgK

Thermal conductivity at 24°C 0.032–0.076W/mK
% Retention of water 36–55

Effect of pH
pH has an important effect on the adsorption of aqueous solutions. 
It controls the adsorption of heavy metals in the solid-liquid phase. 
It also regulates the mobility of metal ions in aqueous solutions. 
Sasha et al. (2016) studied the strong force that pushes hydrogen 
ions away from metal ions. The pH interval in this study was 2.0–
10.0. The removal of Nickel (II) ions by perlite is more effi cient 
as the pH increases. The experiments were conducted with a 
minimum pH of 2.0 and a maximum pH of 10.0. However, the 
removal effi ciency of Nickel (II) decreased in the pH interval 
6.5 to 10.0. The maximum effi ciency in terms of the removal of 
Nickel (II) occurred at pH 4.5–5. In accordance with these data, 
the study was conducted in terms of a pH interval of 4.5 to 5. The 
pH parameter was not taken as entry data in ANN.

Methods
The experiments were conducted in the Department of 
Environmental Engineering Laboratory in which ambient 
temperatures were 25°C. Single types of artifi cial aqueous 
solution were prepared in different concentrations. The details 
are explained in the section on experimental methods. 

In this ANN study, MATLAB mathematical software was 
also used to predict the adsorption effi ciency. One hundred and 
twenty experimental sets were used to develop the ANN. 

Experimental Methods
Experiments were prepared using 500 ml Erlenmeyer fl asks 
with Nickel (II) artifi cial aqueous solutions. Metal solutions 
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were prepared by dissolving appropriate amounts of 
NiCl2.6H2O in distilled water. The necessary amounts of perlite 
were added and shaken for different periods 

of time, 5–10–20–30 minutes respectively, in a shaker at 
120 rpm and an optimum pH of 4 to 5. The experiments were 
repeated for different amounts of perlite (0.1, 0.2, 0.5, 1.0, 
2.0 mg). The initial Nickel (II) concentrations were 0.1 mg/L, 
0.2 mg/L, 0.5 mg/L, 1.0 mg/L, 2.0 mg/L, 5.0 mg/L, and 
10.0 mg/L. 

At the end of the experiment, the aqueous solutions in 
the fl asks were fi ltered from the perlite with a vacuum pump 
in order to analyze the Nickel (II) concentration by using 
an Atomic Absorption Flame Emission Spectrophotometer 
(Shimadzu AA-6200). 

Artifi cial Neural Networks (ANN)
In this study, a 3-layer feed-forward neural network is shown 
in Fig. 1. 

The ANN architecture used in this study consists of input, 
hidden and output layers. Each layer is composed of many 
neurons that are connected to each other through weights. 
The connection type and neuron number in each section vary. 
No connections are allowed between the neurons in the same 
section. At the beginning of this training process, weight values 
between the connections were assigned randomly. The training 
algorithm changes the weight values of each iteration until the 
training is successfully completed. The most commonly used 
training algorithms are briefl y mentioned below:

  The Levenberg-Marquardt (LM) algorithm is 
represented as the sum of the squares of linear functions. 

It is an approximation of Newton’s method that fi nds 
the minimum of a function. LM requires a great deal of 
memory space in order to successfully train the network 
(trainlm).

  The Conjugate Gradient (CG) is considered as 
a balanced algorithm which guarantees convergence 
to a local minimum of the second-order function. It 
does not need calculation of the second derivatives. 
After a certain number of iterations, the CG algorithm 
gives close results to a local minimum of the second-
-order function. CGF (Fletcher-Powell Conjugate 
Gradient) is a particular type of this algorithm 
(traincgb, traincgf).

  The most successful Quasi-Newton method is the 
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 
algorithm. However, there is a minor difference 
between the two algorithms. The BFGS scheme updates 
an approximate Hessian matrix by Taylor expansion 
on iteration of the algorithm. The BFGS also requires 
a memory-consuming process (trainbfg).

  The Scaled-Conjugate Gradient (SCG) algorithm, 
which differs from other conjugate gradient algorithms 
given by Hagan et al. (2003), typically uses a nonlinear 
search technique. This means that the computations are 
decreased in a single epoch (trainscg).

  The Gradient Descent algorithm (GDX) is an improved 
algorithm incorporating an adaptive learning ability 
and momentum for a better performance index. The 
momentum allows the network to respond to both local 
gradients and recent trends in the error surface, while 

Fig. 1. Typical 3-layer feed-forward ANN architecture

Table 2. Comparison of algorithms for predicting output concentration (neuron number was 12)

Algorithms R2 Mean Square Error Iteration Number

Traingdm 0.893 0.17859 55

Traincgb 0.865 0.16892 28
Traincgp 0.926 0.03255 62
Trainlm 0.924 0.03944 14
Traincgf 0.894 0.19686 36
Trainbfg 0.994 0.00018 39
Trainscg 0.892 0.17543 38
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the small features in the error surface are disregarded 
(traingd, traingdm).

In order to determine the most suitable training algorithm, 
the algorithms described above were compared. For the 
training algorithms, a three layer ANN with a tangent sigmoid 
function (tansig) with 12 neurons and a linear transfer function 
as an output layer, was used.

The highest values in terms of coeffi cient determination 
(R2=0.994) were gained using the BFGS quasi-Newton 
backpropagation algorithm (trainbfg) as shown in Table 2. The 
optimal results were obtained using the traincgf and trainlm 
functions, respectively. Other functions such as the Conjugate 
Gradient algorithm, the Gradient Descent algorithm and the 
Scaled-Conjugate Gradient algorithm, were also applied 
as training algorithms. Because the BFGS Quasi-Newton 
has a number of advantages over the other algorithms, this 
algorithm is used as a training function (trainbfg). 

Results and Discussion 
Extraction of Data
Experiments were conducted by obtaining output 
concentrations using Atomic Absorption Spectrophotometry 
in laboratory conditions by forming artifi cial wastewater in 
various concentrations for different contact times and different 
adsorbent dosages. The wastewater input concentrations 

were 0.1 mg Ni/L, 0.2 mg Ni/L – 0.5 mg Ni/L – 1.0 mg Ni/L 
– 5 mg Ni/L – 10 mg Ni/L. Each input concentration was 
shaken for 5–10–20–30 minutes. As a result of these 
experiments, the following fi gures and results were obtained. 
As can be seen in Figures 2, 3, 4 and 5, the adsorption 
effi ciency of perlite was increased by escalating the amount 
of initial concentration. It can be seen from Figure 2 and 
Figure 5 that although the amount of adsorbent changed, 
each initial concentration and adsorption effi ciency did not 
change. In addition, the effi ciency of the adsorption was not 
affected by the contact time. 

As can be seen from Figure 2, in the 0.1 mg Ni/L 
initial concentration the amount of adsorbent does not 
make signifi cant diffi rence in the percentage of effi ciency 
for 5 minutes’ contact time. Even with the low amounts of 
adsorbent and high initial concentration of nickel, the highest 
effi ciency rate is obtained. 

It can be seen that, with regard to the 0.1 mg Ni/L initial 
concentration, the amount of adsorbent is signifi cantly different 
in terms of the percentage of effi ciency for 10 minutes’ contact 
time compared with 5 minutes’ contact time. Figure 3 shows 
a 30% effi ciency difference between the 0.1 mg perlite and the 
2 mg perlite adsorbents.

As can be seen from Figure 4, the increase in contact time 
has a greater impact, particularly for low amounts of initial 
concentrations. 

Fig. 2. Adsorbent effi ciency fi gures showing variation based 
on 5 minutes’ contact time
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Fig. 3. Effi ciency adsorbent fi gure showing variation in terms 
of 10 minutes’ contact time

0
10
20
30
40
50
60
70
80
90

100

0,1 0,2 0,5 1 2 5 10

E
ff

ic
ie

nc
y 

(%
) 0,1 mg Perlite

0,2 mg Perlite

0,5 mg Perlite

1 mg Perlite

2 mg Perlite

Fig. 4. Adsorbent effi ciency fi gures showing variation based 
on 20 minutes’ contact time
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Fig. 5. Adsorbent effi ciency fi gures showing variation based 
on 30 minutes’ contact time
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By the time it reaches 30 minutes, not just in terms of low 
amounts of initial concentrations, the contact time has also an 
increasing impact on effi ciency rates, for even high amounts of 
initial concentrations.

Optimum ANN Architecture
Once the iteration process achieves a result, the connection 
weights obtain and store the current information in the tests 
used during the training process. When a new input group is 
introduced to the network, an output group is obtained with 
the help of learned and stored feed-forward information in 
the connection forces. Therefore, ANN studies are formed 
by taking the input value as 3, the output value as 1, and the 

hidden layer values being processed as 3, 7, 12, 17 and 25, 
as can be seen in Figure 6. As is the case in a related ASCE 
study (ASCE, 2000), the sigmoid function is applied as the 
transfer function. A back propagation algorithm is also used as 
a generalized delta rule for ANN training.

Conclusions 
ANN architecture gives the best results in terms of those 
obtained by trial and error. The trials for determination of 
the ANN architecture are given in Table 3. MSE and R2 
performance values are used to determine the optimum ANN 
architecture. In this study, after various trials, several neurons 

Fig. 7. Training data with ANN 3-12-1 effi ciencies

0

20

40

60

80

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69Ef
fic

ie
nc

y 
of

 N
ic

ke
l A

ds
or

pt
io

n 
(%

)

Data Number

Experimental Data

Predicted Data

y = 0.9711x + 1.3441
R² = 0.9828

0

20

40

60

80

100

0 20 40 60 80 100

A
N

N
 P

re
di

ct
io

n

Experimental Data

Fig. 8. Test data with ANN-3-12-1 effi ciencies
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in the hidden layers were obtained from a set of test values. As 
seen in Table 3, the optimum test set value is the ANN (3-12-1) 
architecture.

The impact of all the ANN architectures were also calculated 
by comparing the predicted values with the experimental data by 
a test evaluation of the Mean Square Error (MSE) and Coeffi cient 
Determination (R2). In this study, the prediction of nickel 
adsorption with a perlite adsorbent can be used to estimate the 
adsorption effi ciency with an ANN by using experimental data. 
Wastewater polluted with nickel is created and the estimation 
ability of the prediction is tested. In Figures 2, 3, 4 and 5 perlite 
treatment in low concentrations of Nickel (II) wastewater does 
not give good results. When the contact time is taken into 
consideration, lower effi ciency is obtained for 5 minutes’ contact 
time as well as low initial concentrations. By increasing the 
contact time, the highest effi ciency rates are obtained in terms of 
both low and high initial concentrations. Nickel (II) adsorption 

effi ciency in wastewater with a high concentration is about 
80–90% for all contact times. Based on these results, the optimum 
ANN architecture is found using a trial and error method to be 
ANN (3-12-1) (Table 3). The determination coeffi cient is 0.9445 
in the ANN. Determining the data experimentally is both costly 
and time consuming. 

As a result, nickel adsorption estimation can be done 
using the ANN developed in this study, when the nickel 
concentration of the wastewater, contact time and the 
amount of adsorbent are known, according to a Mean 
Square Error (MSE) of 1.9110 in Table 3, and a Coeffi cient 
Determination (R2) of 0.9443 in Figure 9. Experimental data 
and ANN predictions were interrelated in the training, test 
and validation data in Figures 7, 8 and 9. It is clear that the 
ANN prediction data are close to the experimental data in 
Figure 10. Thus, both the costs and the required time for the 
necessary experiments can be minimized. 
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Fig. 10. Comparison between ANN and Experimental Data (3-12-1 ANN Architect)
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Table 3. Determination of the optimal ANN architecture

ANN architecture
(Neuron number in the layers)

Number of iterations
(Epoch)

Coeffi cient Determination 
(R2 )

Mean Square Error 
(MSE)

ANN(3, 12, 1) 1000 0.9445 1.9110

ANN(3, 3, 1) 1000 0.996 3.6233

ANN(3, 7, 1) 1000  0.987 16.576

ANN(3,17, 1) 1000 0.972 21.154

ANN(3, 25, 1) 1000 0.997 7.551
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