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Exposure of green algae Chlorella vulgaris to short-term UV-B radiation (280 nm – 315 nm) induced several 
changes in the function of photosystem II (PS II) studied by means of chlorophyll fluorescence (FL) and oxygen 
evolving. The intensity of photosynthetic oxygen evolving intensity of algae suspension decreased in a similar 
way to the FL parameter values in proportion to the applied dose of UV-B radiation (0.0, 3.2, 6.4, 12.8 kJ·m-2). 
The correlation between photosynthetic oxygen evolving intensity and FV/FO ratio was better than that between 
photosynthetic oxygen evolving intensity and FV/FM. The vitality index (Rfd) in the UV-B irradiated algae strongly 
decreased, compared to the control, which indicates inhibition of potential CO2 fixation and cooperation between 
light and dark reactions of photosynthesis. It may indicate damage of Rubisco.
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Abbreviations: Chl – chlorophyll; ETR – photosynthetic electron transport rate; FL – Chl fluores-
cence; FO – initial Chl fluorescence in the dark-adapted state; FM – maximal Chl fluorescence at 
a saturating radiation pulse in the dark-adapted state; FS – steady state Chl fluorescence; FV = FM – FO 
– variable fluorescence in the dark-adapted state, FV/FM – maximal quantum yield of PSII; FV/FO – 
maximal quantum yield of water photolysis system of the donor side of PSII; PPFD − photosynthetic 
photon flux density; PS II − photosystem II; Rfd – vitality index, potential activity of photosynthesis 
process; Rubisco – ribulose-1,5-bisphosphate carboxylase; UV-B – ultraviolet radiation in the range 
of 280 nm – 315 nm.
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PHOTOSYNTHETIC RESPONSES OF CHLORELLA VULGARIS L. 
TO SHORT-TERM UV-B RADIATION EXPOSURE

INTRODUCTION

UV-B radiation is a ubiquitous component of solar 
radiation in the biosphere, but its level varies 
quite considerably, both spatially and temporally 
(Caldwell et al., 2007; Jansen et al., 2008). The 
UV-screening stratospheric ozone layer is relatively 
thin at low latitudes, which – in combination with 
a steep solar angle – results in relatively high UV-B 
levels in the tropics, compared to mid and high 
latitudes. UV-B measurements in Central Europe 
showed increase of 5% per decade (McKenzie et 
al., 2007; UNEP, 2016). Current global terrestrial 
UV-B radiation levels are somewhere between 
0 and 12 kJ m-2 per day on the Earth’s surface 
(Lidon et al., 2012). Phytoplankton is the 
most important biomass producer in aquatic 
ecosystems that produces more than half of 
biomass on our planet and incorporates at least 

the same amount of atmospheric carbon dioxide 
as terrestrial ecosystems (Gao et al., 2007; Häder 
et al., 2011). Exposure of phytoplankton cells 
to increased UV-B radiation may considerably 
inhibit the process of carbon dioxide assimilation 
and consequently decrease its total efficiency in 
the oceans as well as in the land water (Harrison 
and Smith, 2009; Häder et al., 2015). Studies of 
phytoplankton in water around Antarctica under 
the ozone hole conditions showed a reduction 
in primary productivity ranging from 4% to 13% 
as a result of elevated UV-B (UNEP, 2018). UV-B 
radiation damages phytoplankton by affecting 
growth, metabolism, orientation, reproduction, 
photosynthetic enzymes, photosynthetic pigments 
and photosynthesis process (Prasad et al., 1998; 
Garcia-Corral et al., 2015). There is a wide diversity 
of UV-B tolerances among phytoplankton species 
(Herrmann et al., 1996; Holzinger and Lütz, 
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2006). One of the most important phytoplankton 
species living both in seawater and freshwater is 
Chlorella vulgaris (Lewis and McCourt, 2004, 
Safi et al., 2014). Chlorophyll fluorescence is 
an increasingly popular method of assessing 
photosynthetic apparatus for stress factors of the 
environment (Kalaji et al., 2012; Porcar-Castell et 
al., 2014; Lazar, 2015). UV-B radiation is just one of 
these factors (Hollosy, 2002; Caldwell et al., 2007). 
The purpose of this paper was to investigate 
the response of this green algae suspensions to 
three values of UV-B radiation dose (0.0, 3.2, 
6.4, 12.8 kJ m-2) using chlorophyll fluorescence 
parameters and the corresponding photosynthetic 
oxygen decreasing concentration.

MATERIAL AND METHODS

Inoculum culture of Chlorella vulgaris obtained 
from the Department of Hydrobiology of Adam 
Mickiewicz University in Poznań was cultured 
photoautotrophically on growth medium L5m 
(Jankowski, 1964) at 22oC in white fluorescent 
light (PPFD 80 μmol m-2s-1), photoperiod 12 h/12 h 
(day/night) and continuously inflation of air. In 
the phase of logarithmic growth at chlorophyll 
content of 180 mg m-3 the suspension of Chlorella 
vulgaris it was used for measurements. A single 
sample was 100 cm3 of suspension in a glass, 
and one series – six samples. All 24 samples 
were divided into four groups, one of which was 
the control, and three others were subjected 
to UV-B irradiation with the broadband lamp 
VL-115 M (emission spectrum presented by 
Skórska and Murkowski, 2012) for 20, 40 and 
80 minutes respectively, and the equivalent values 
of UV-B doses were 3.2, 6.4 and 12.8 kJ m-2. The 
measurements of UVB radiation were performed 
using an IL 1403 radiometer with a SEL 240-UVB1 
calibrated detector (International Light Inc., USA). 
After irradiation the samples were incubated 
for 15 minutes in weak light of a tungsten lamp, 
PPFD 8 μmol m-2s-1. The intensity of oxygen evolving 
in each sample was measured using a LDO HQD40 
Portable Luminescence Oxygen Meter (Hach 
LANGE, Dublin, Ireland). The measurements 
were carried out in a thermostatic (21±1.5)ºC 
cylindrical cuvette with a magnetic stirrer. The 
intensity of photosynthetic flux density (PPFD) on 
the front wall of the cuvette was 1200 μmol m-2s-1, 
and on the back wall ca. 500 μmol m-2s-1. According 
to the described procedure, the samples, the 
control and UV-B irradiated ones, were prepared 
for FL measurements. Then all samples were 
infiltrated through a Whatman GF/A filter 
(12 mm diameter disks) and after 20 minutes of 
dark adaptation initial chlorophyll fluorescence 

(FO) was recorded using a pulse-amplitude-
modulated fluorescence-based method (PAM 200 
fluorometer - Walz, Effeltrich, Germany), where 
variable fluorescence at 665 nm is monitored 
(Schreiber et al., 1994; Van Kooten, 1990). The 
maximum fluorescence (FM) was performed after 
0.8 s saturation pulse of PPFD 3200 μmol m-2s-1, 
then actinic light PPFD 120 μmol m-2s-1 was turned 
on. After 4 minutes of chlorophyll fluorescence 
recording (to the stationary level, FS), the quenching 
coefficient, qP, and electron transport rate, ETR, 
were measured. The vitality index, Rfd, was 
calculated as a ratio of (FM – FS)/FS, according to 
Lichtenthaler (2005). After the measurements, the 
chlorophyll was extracted from the biofilter with 
90% acetone, and the absorbance of the clear extract 
was measured at 663.2 nm and 664.8 nm for total 
chlorophyll measurement in a spectrophotometer 
using the formula of Lichtenthaler (1987). All 
measurements were performed in 6 biological 
replications. The results are expressed as mean 
values ± standard deviations. The data were 
subjected to one way analysis of variance by ANOVA 
(Statistica 13 software). A post-hoc analysis allowed 
the separation of homogenous groups by means 
of Newman-Keuls test (p < 0.05), which are 
marked with the same letters. A regression line 
and a coefficient of determination, R2, at significance 
level a < 0.05 were prepared using Excel software.

RESULTS 

The applied UV-B radiation caused a decrease 
of the intensity of oxygen evolving in the algae 
suspension, from 3.83 mg dm-3 s-1 for the control 
(non irradiated) samples to 0.88 mg dm-3 s-1, 
depending on the irradiation time corresponding 
to the applied dose (Fig. 1). Particularly at the 
medium dose of UV-B radiation (6.4 kJ m-2) the 
concentration of diluted oxygen was reduced to 
60% of the control value, and at the highest dose 
(12.8 kJ m-2) – to 23% of the control value.

A similar pattern was observed in the case 
of chlorophyll fluorescence parameters (Fig. 2, 
Table 1). It should be noticed that UV-B radiation 
at a dose of 6.4 kJ m-2 moderately decreased FV/FM 
(by 29%) values, while FV/FO was reduced to 48%, 
in comparison with the control value (Fig. 2a).  
The observed decrease of both parameters was 
a result of increase of the initial fluorescence, FO, 
more than decrease of maximal fluorescence, FM. 
At the medium applied dose of UV-B radiation FM 
was reduced by 11%, while FO increased by 32%, 
compared to the control values. At the highest dose 
it was even more noticeable, because FM was lower 
by 26% and FO was higher by 58%, compared to 
the control values (Table 1). Electron transport 
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efficiency in the photosystems, ETR, at the dose 
of 6.4 kJ m-2 decreased by 55% compared to the 
control, and by as much as 80% at the highest 
applied dose of 12.8 kJ m-2 (Fig. 2c). The vitality 
index, Rfd, informing about the interaction of the 
light phase reactions with biochemical dark reactions 
of photosynthesis and considered also as an index 
of potential activity of all process of photosynthesis 
(Lichtenthaler et al., 2005), at the doses of 
6.4 kJ m-2 and 12.8 kJ m-2  decreased by 60% 
and 95% respectively, in comparison to the control 
(Fig. 2d). A significant correlation between FV/FO 
parameter and the intensity of oxygen evolving in the 
investigated green algae suspension was observed 
(Fig. 3a). A similar correlation was found between 
FV/FM parameter and the intensity of oxygen evolving 
(Fig. 3b), but the determination coefficient was lower. 

The quenching coefficient, qP, at the medium 
and highest doses of UV-B decreased by 25% and 
50% respectively, compared to the control (Table 1). 
The chlorophyll content in the samples subjected to 
the highest dose (12.8 kJ m-2) of UV-B irradiation 
decreased by 17%, compared to the control, while 
in the samples irradiated with smaller doses (3.2 
and 6.4 kJ m-2) the observed changes were not 
statistically significant (Table 1).

Fig. 1. Intensity of oxygen evolving in green algae Chlorella 
vulgaris suspension subjected to UV-B radiation at various 
doses; the columns marked with the same letters are not 
significantly different at p ≤ 0.05 according to Newman-
Keuls test, n = 6.

Fig. 2. Chlorella vulgaris suspension subjected to UV-B radiation at various doses. (a) Chlorophyll fluorescence FV/FO 
parameter. (b) Chlorophyll fluorescence FV/FM parameter. (c) Electron transport rate (ETR) in photosystem II. (d) Vitality 
index, Rfd. The columns marked with the same letters are not significantly different at p ≤ 0.05 according to Newman-
Keuls test, n = 6.
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DISCUSSION

The results described above confirmed that UV-B 
radiation damages the oxygen evolving complex 
(OEC) on the PSII donor side (Hideg et al., 1993; 
Masi and Melis, 1997; Gao et al., 2007; Szilárd et 
al., 2007, Kantaria et al., 2014). Like other stress 
factors interfering with the flow of electrons from 
the manganese complex to the PSII reaction centre, 
UV-B radiation decreases FM – the maximum 
chlorophyll fluorescence, caused by lower number 
of reduced primary acceptors QA (Govindjee, 1995; 
Maxwell and Johnson, 2000). 

In our experiment on algae of Chlorella 
vulgaris under the influence of UV-B radiation 
in the doses used, we also observed a regular 
increase in the initial fluorescence (FO) level due to 
the increase of losses when transferring excitation 
energy from energy antennas to the PSII reaction 
center (Baker and Rosenquist, 2004) and to the 
decrease of the number of reduced QB acceptors 

due to UV-B radiation (Van Rensen et al., 2007). 
Both the decrease in the FM value and the increase 
in the FO level result in a significant decrease in the 
value of the FV/FO parameter, and to a lesser extent 
also the FV/FM parameter defining the potential 
PSII efficiency (Govindjee, 1995; Maxwell and 
Johnson, 2000; Lichtenthaler et al., 2005). In our 
experiment at UV-B dose of 6.4 kJ m-2, the FV/FM 
value decreased by 29%, and the FV/FO value by 
as much as 52%, compared to the control. The 
values of the FV/FM parameter are frequently 
determined in articles on the effects of UV-B 
radiation on PSII, although this parameter is less 
sensitive than the FV/FO quotient (Lichtenthaler et 
al., 2005). Unfortunately, the FV/FO parameter is 
rarely presented in articles, perhaps because it is 
not displayed on the screens of popular chlorophyll 
fluorescence measurement kits (Kalaji et al., 2017).

The reduction of FV/FM in various species of 
algae exposed to short-term UV-B radiation was 
demonstrated by Kristoffersen et al. (2016) on 

TABLE 1. The values of chlorophyll initial (FO) and maximal fluorescence (FM), quenching coefficient (qP), and chlorophyll 
content of Chlorella vulgaris suspension subjected to UV-B radiation at various doses. Values in the column marked with 
the same letters are not significantly different at p ≤ 0.05 according to Newman-Keuls test, n = 6.

Parameter
UV-B dose [kJ m-2]

0.0 3.2 6.4 12.8

FO 224 ± 10 a 240 ± 15 b 295 ± 6 c 355 ± 16 d

FM 611 ± 32 a 566 ± 43 b 542 ± 12 b 454 ± 12 c

qP 0.83 ± 0.03 a 0.80 ± 0.05 a 0.62 ± 0.02 b 0.41 ± 0.08 c

Chl [mg m-3] 1.28 ± 0.15 a 1.25 ± 0.14 a 1.21 ± 0.14 a 1.05 ± 0.15 b

Fig. 3. Chlorella vulgaris suspension subjected to UV-B radiation at various doses. (a) Relationship between values of 
FV/FO parameter and intensity of oxygen evolving in Chlorella cells. (b) Relationship between values of FV/FM parameter 
and intensity of oxygen evolving in Chlorella cells. Each point is the mean of six values; R2 denotes determination 
coefficient and a – significance level.
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Tetraselmis, Herrmann et al. (1996) on Dunaliella 
salina, Hughes (2006) on Stichococcus bacillaris. 
Similarly, Heraud and Beardall (2000) observed 
a reduction of FV/FM to 50% of the control in 
Dunaliella tertiolecta algae subjected to 40 min 
UV-B irradiation of 6.7 kJ m-2.

Apostolova et al. (2014) showed that UV-B 
at 7.5 W m-2 within 30 minutes (equivalent 
to 13.5 kJ m-2) resulted in a reduction of 
photosynthetic oxygen emission to 60%, and FV/FM 
to 76% of the control in mesophilic Chlorella. These 
values coincide with the results obtained in our 
research, and they are also in accordance with the 
ones described by El Khachia et al. (2008), who 
compared their results using a similar measuring 
instrument with the parameters of fluorescence 
induction of freshwater algae of Chlorella emersonii. 
The correlation between the values of FV/FO quotient 
and oxygen emission intensity (Fig. 3a), which we 
have demonstrated, allows us to use both measuring 
methods to assess the harmful effects of UV-B 
radiation on photosynthetic reactions in algae cells.

Using the direct fluorescence measurement 
method (after sample adaptation to the dark), the 
values of FV, FM and FV/FM, FV/FO and some other 
parameters were obtained after just 2 seconds of 
measurement, and the Rfd value after extending 
the measurement time to about 4 minutes, when 
fluorescence reached the stationary level FS. After 
this time, the equilibrium in the production of ATP 
and NADPH reducing factor in the light phase was 
achieved in chloroplasts, with the demand of these 
important photoproducts in dark reactions (Murchi 
and Lawson, 2013; Lazar, 2015). In order to 
simultaneously measure ETR and qP parameters, 
chlorophyll fluorescence measurements should 
be performed using a PAM fluorimeter (Schreiber, 
1994; Murkowski, 2002; Kalaji et al., 2017).

The ETR parameter determines the speed of 
electron flow through photosystems, which is often 
reduced due to stress factors, one of them being UV 
radiation (Murkowski and Skórska, 2010; Murchi 
and Lawson, 2013). In our experiment, the ETR 
values were significantly reduced at all UV-B doses 
used, like it was shown for plants (Skórska, 2011). 
On the other hand, the unchanged ETR level of 
freshwater green algae Zygnema subjected to UV-B 
radiation at the dose of 36.3 kJ m-2 was attributed 
to high tolerance of the photosynthetic apparatus of 
this species (Holzinger et al., 2008).

The photochemical quenching coefficient, 
qP, determines the proportion of light energy 
used in the photochemical reaction by PSII to the 
total light energy absorbed by this photosystem 
(Schreiber et al., 1994). Reduction in the value of 
qP indicates the increased use of excitation energy 
in photochemical reactions (Maxwell and Johnson, 
2000; Lazar, 2015).

The Rfd parameter that specifies the potential 
ability of the photosynthetic apparatus to convert light 
energy into chemical energy in photosynthesis has 
also been called the index of vitality by Lichtenthaler 
et al. (1986). By measuring the relative reduction 
of the FL value from the maximum to the FS level, 
the efficiency of cooperation of light reactions of 
photosynthesis with dark enzymatic reactions is 
determined. Under the influence of various stress 
factors, the Rfd value decreases (Lichtenthaler et 
al., 1986; Murkowski and Skórska, 1997; Lazar, 
2015). The Rfd values in our experiment, under the 
influence of the applied doses, decreased significantly, 
and at the highest dose of 12.8 kJ m-2 the value of 
the vitality index dropped below 5% of the control 
value, which can be considered almost complete 
blocking of photosynthetic production. We believe 
that the measurement of the Rfd value can be used 
for the integral evaluation of the entire photosynthesis 
process, especially in the assessment of the effects of 
abiotic stress such as photoinhibition, UV-B, drought, 
frost, heat, heavy metals and others (Skórska, 2000; 
Murkowski, 2002; Murkowski and Skórska, 2010).

The slight reduction in the chlorophyll content, 
even under the influence of the highest UV-B dose, is 
consistent with the results of Thomas et al. (2009) 
regarding freshwater algae.

Our results indicate high sensitivity of 
Chlorella algae to the applied doses of UV-B 
radiation. This is consistent with the work of 
Prasad et al. (1998) who showed that UV-B dose of 
9.0 kJ m-2 (2.5 W m-2 over 60 min) resulted in the 
loss of vital functions of Chlorella vulgaris algae.

The results of our experiment confirm the 
findings of other researchers that UV-B radiation 
causes damage to the photosynthetic apparatus of 
Chlorella vulgaris in the oxygen emission complex, 
D2 and D1 proteins associated with primary QA and 
QB acceptors and other PSII components (Szilárd et 
al., 2007; Lidon et al., 2012; Van Rensen et 
al., 2007; Dobrikova et al., 2013). It should be noted 
that a significant decrease in the Rfd parameter 
under the influence of UV-B may indicate that this 
short-wave radiation has a particularly strong 
effect on the photosynthetic reduction of carbon 
dioxide in chloroplasts. This can be explained by 
the direct effect of UV-B on reducing the activity of 
Rubisco, a key enzyme that controls the process of 
CO2 assimilation (Takeuchi et al., 2002; Lidon et 
al., 2012; Kataria et al., 2014; Rastogi et al., 2014; 
Dotto and Casati, 2017).

CONCLUSIONS

UV-B radiation reduced photosynthetic oxygen 
evolving intensity of Chlorella vulgaris suspension 
inversely proportionally to the dose of radiation. 
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There is a high correlation between FV/FO 
parameter and the intensity of oxygen evolving in 
the investigated green algae cells. The vitality index 
– Rfd of the irradiated UV-B algae significantly 
decreased compared to the control, which indicates 
a strong inhibition of CO2 assimilation process and 
cooperation between light and dark reactions of 
photosynthesis. These properties of Rfd should 
encourage researchers to use its measurements 
more often to assess the integral UV-B influence 
on the reduction of the efficiency of photosynthesis 
reactions, and the potential productivity of whole 
phytoplankton assemblies.
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