
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 1, PP. 91-94

Manuscript received August 30, 2017; revised January, 2018. DOI: 10.24425/118151

Abstract—This article is devoted to the development of the

scrambler circuit. Nowadays, new WiFi standard IEEE 802.11 is

being put into operation, so that there is a huge need in modern,

energy-efficient algorithms, which will be used in the data

transmission. Consequently, some of the scrambler circuits, which

could be implemented for the IEEE 802.11 standard are described

with its comparison. In addition, an example in Python is given for

readers to use it in their researches.

Keywords— scrambler, sequential circuit, parallel circuit.

I. INTRODUCTION

N digital wireless communication systems, scrambling of the

transmitted digital data stream is often used. This operation

is performed to exclude long sequences of zeros and ones from

the transmitted data stream, which has a beneficial effect on the

energy characteristics of the transmission channel [1].

At present, when building systems, much attention is paid to

their energy efficiency, which forces their developers to seek

ways to reduce the power consumed by digital processing units.

Despite the progress in the optimization algorithms

implemented in the logic synthesis tools of digital circuits, the

structure of the original description of the circuit in high-level

languages (VHDL or Verilog) has a significant effect on the

parameters of the circuit obtained from such a description.

We will consider the options for building a scrambler scheme,

designed to work as part of a micro-consuming digital data

transmission system. Accordingly, one of the main criteria for

estimating the scheme was the power consumed by it.

II. SEQUENTIAL CIRCUIT

Figure 1 shows a block diagram of the scrambler used in the

IEEE 802.11 wireless data transmission standards family [2].

Fig. 1. Scrambler scheme used in the data transfer protocol family IEEE

802.11.

The Russian Ministry of Education and Science funded the works on

RFMEFI57815X0136 under the agreement №14.578.21.0136 of October 27

2015.

Authors are with Ural Federal University named after the first president of
Russia Boris Yeltsin, Yekaterinburg, Russia (e-mail: alexey.kudinov@urfu.ru).

The basis of this scrambler is a 7-bit shift register X. Outputs

of cells X4 and X7 of the shift register are summed modulo 2 and

fed back to its input, thus the bit sequence generator is made by

the generating polynomial:

 𝑆(𝑥) = 𝑥7 + 𝑥4 + 1 (1)

The next (i-th) bit of this sequence is summed modulo 2 with

a bit of input data ui, forming the next bit yi of the scrambled

sequence.

Since in this form the scrambler circuit processes all data bits

in series, then, at significant information exchange speeds, it

will become necessary to organize the operation of this circuit

at sufficiently high frequencies, which may be undesirable or

even impossible. Therefore, in many cases it is advisable to go

from sequential processing of the data stream to a parallel group

of w bits. Next, we consider several ways to implement a

parallel form of the scrambler.

III. "COMBINATORIAL" PARALLEL CIRCUIT

As it is known, the state of a discrete time linear system can

be described as follows: [3, 4]

 {
𝑋(𝑖 + 1) = 𝐹𝑋(𝑖) + 𝐺𝑈(𝑖)

𝑌(𝑖) = 𝐻𝑋(𝑖) + 𝐽𝑈(𝑖)
 (2)

where X is the system state, U is the input, and Y is the system

output.

One possible way to implement the "parallel" form of the

scrambler is shown in Fig. 2.

Fig. 2. "Combinatorial" parallel scrambler circuit.

The Implementation of the Parallel Scrambler

Scheme for the IEEE 802.11 Standard

Alexey Kudinov, Yaroslav Antimirov, Igor Tyshchenko, Mariia Popova, and Alexander Cherepanov

I

92 A. KUDINOV, Y. ANTIMIROV, I. TYSHCHENKO, M. POPOVA, A. CHEREPANOV

Here, from the initial state X(i) stored in the register, using a

chain of identical combinatorial circuits, a series of states

X(i+1), X(i+2), … X(i+w-1) is generated, the lowest bits of

which are taken for addition modulo 2 with bits u0, u1, … uw-1

and obtaining a set of output bits y0, y1, … yw-1. The last

combinatorial transformation generates a state X(i+w) that is

stored in register and is the initial one for scrambling the next

w-bit data set.

An obvious drawback of such a scheme is the formation of

combinatorial chains, the length of which increases rapidly with

the increase in the width of the input data bus, which limits the

maximum achievable operating frequency of the circuit, and, as

can be easily seen, introduces a noticeable combinatorial delay

in the propagation of data from the input to the output of the

circuit.

IV. "MATRIX" PARALLEL CIRCUIT

Another implementation of the parallel scrambler scheme can

be synthesized using the approach described in [5].

It is known [5, 6] that the set of values of 0 and 1 with

operations of logical multiplication · ("AND") and addition of

modulo 2 ("exclusive OR") form a Galois field:

 {{0,1},⊕,∙} = 𝐺𝐹(2) (3)

Thus, in the calculation of matrices, one can replace the

operations of scalar multiplication and addition by operations

of logical multiplication and addition modulo 2, respectively;

and the matrix multiplication operation can be realized using a

circuit containing the «AND» and «XOR» logical elements.

Then, in the case of the sequential circuit depicted in Fig. 1,

U(i), Y(i) and J respectively are scalars (scalar quantities are

denoted by small letters u(i), y(i) and j); G, H and X are columns

with a height of 7 elements, and F is a square matrix with 7×7

size. Then these elements have the following values:

𝐺 = 0
𝑗 = 1

 (4)

 𝐻 = (0 0 0 1 0 0 1) (5)

 𝐹 =

(

0 0 0 1 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0)

 (6)

From (2) it is not difficult to calculate the state of the system

at any step, for example:

 𝑋(𝑖 + 𝑤) = 𝐹𝑤𝑋(𝑖) (7)

We get the scheme of the parallel scrambler, depicted in Fig.

3. The main task in the construction of this scheme is the

synthesis of the combinatorial region that realizes the matrix

multiplication, for which it is necessary to calculate the matrix

Fw. The iteration method is most straightforward:

 𝐹𝑖+1 = 𝐹𝐹𝑖 (3)

Analysing equations (4) and (5), it is easy to see that the

matrix F has the following structure:

Fig. 3. "Matrix" parallel scrambler circuit.

 𝐹 =

(

𝐻

𝐼𝑤−1 |

0
0
⋮
0)

 (9)

So that we have:

 (
𝐻𝐹𝑖

𝐹𝑖) (10)

where Fi has first m-1 rows.

Thus, having a generating polynomial S (1), it is possible to

construct the original matrices H (5) and F (6), and then,

successively applying (10), to obtain the desired transformation

matrix Fw. Having a transformation matrix it is easy to

synthesize the circuit implementation.

It should also be noted that in cases where the width of the

input word is greater than the degree of the generating

polynomial, the vector H (5) must be complemented by the

corresponding number of zeros on the right (which is equivalent

to adding the triggers to the shift register shown in Fig. 1, to the

left).

To generate a combinatorial scheme that computes X(i-w)

from X(i), a generator was written in Python. The circuit

description is generated in Verilog language.

Generator in Python:

import numpy

t = numpy.dtype('i1')

Datapath width

w = 64

#The generator polynomial

S(x) = x^7 + x^4 + 1

S = numpy.asarray([0, 0, 0, 1, 0, 0, 1, 0], t)

lS = len(S)

Matrix H derived from the generator polynomial by extending

with zeroes

zH = numpy.zeros((w - lS,),t)

H = numpy.concatenate((S,zH))

Zero column for F matrix construction

Z = numpy.zeros((w-1,1), t)

Identity matrix for F matrix construction

I = numpy.identity(w-1, t)

THE IMPLEMENTATION OF THE PARALLEL SCRAMBLER SCHEME FOR THE IEEE 802.11 STANDARD 93

Assemble the F matrix

F0 = numpy.hstack((I,Z))

F = numpy.vstack((H,F0))

F1 = numpy.empty((w,w), t)

print(F)

Calculate the F^w matrix iteratively

for it in xrange (1, w) :

 print('F^%d:' % (it+1))

 for j in xrange (1, w) :

 F1[j,:] = F[(j-1),:]

 for i in xrange (0, w) :

 v = 0

 for j in xrange (0, w-1) :

 v = v ^ (H[j] & F[j,i])

 F1[(0,i)] = v

 numpy.copyto(F, F1, casting='no')

 print(F)

print ('Verilog:')

for i in xrange (0, w) :

 l = ['X%d[%2d] =' % (w,i)]

 v = F[i,:]

 c = 0

 for j in xrange (0, w) :

 if v[j] == 1 :

 if c > 0:

 l.append('^');

 l.append('X[%2d]' % (j))

 c = c+1

 s = ' '.join(l) + ';'

 print(s)

Test

print ('Test:')

x = numpy.ones(w, t)

x1 = numpy.empty(w, t)

for it in xrange (0, 10) :

 l = []

 cnt = 0

 for i in xrange (0, w) :

 v = F[i,:]

 xi= 0

 for j in xrange (0, w) :

 if v[j] == 1 :

 xi = xi ^ x[j]

 x1[i] = xi

 l.insert(0, '%d' % xi)

 cnt = cnt + 1

 if cnt == 8 :

 l.insert(0, ' ')

 cnt = 0

 numpy.copyto(x, x1, casting='no')

 print ('%2d: ' % (it) + ''.join(l))

V. EXPERIMENTAL RESULTS

To evaluate the solutions obtained in different ways, a

synthesis of the scrambler unit with a bit width of the input bus

of 64 bits in the basis of standard cells with a supply voltage of

1.8 V of the 180 nm process (CL180G) of the TSMC factory

was carried out. To assess the approaches to implementing the

scrambler described in this article, three versions of the

description in the language of System Verilog were prepared:

1. block with a long combinatorial structure (Fig. 2), with a

register at the output;

2. block with the proposed matrix structure (Fig. 3);

3. block with a long combinatorial structure (Fig. 2), without

a register at the output;

4. block with the proposed matrix structure (Fig. 3), in which

the register stores only the lowest 7 status bits, and all other bits

are computed combinatorically.

The presence of an output register in the block makes it

possible to isolate the delay created by combinatorial circuits,

but introduces a "synchronous" delay of 1 clock cycle.

For the synthesis, three sets of time parameter constraints

were prepared:

where τ is the period of the clock signal, and Δτ is the instability

of the edges of the clock signal.

The main parameters of the circuits obtained as a result of the

synthesis of four variants of scrambler circuits are given in

Table II.

Analysing the data shown in the table, we can note the

following:

1. The achieved parameters of circuit variants, in the

Verilog-descriptions of which there are long combinatorial

chains (variants 1 and 3), are close to the parameters of the

circuit, in the description of which these chains are much

shorter (variants 2 and 4), which indicates a very good degree

of optimization of combinatorial circuit which is executed

automatically at the stage of logical synthesis;

2. The time parameters achieved in the "Med" and "Fast" sets

are the limits for these schemes;

3. All four variants are workable only in conditions "Slow",

i.e. clock frequency is about 500 MHz;

4. "Combinatorial" scheme with output register (option 1) is

the worst in all parameters;

5. The proposed "matrix" structure with a reduced status

register (option 4) is most preferable in terms of the occupied

area of the crystal and the power consumption in cases where

the speed requirements are relatively low. However, this

version has a delay in the distribution of data before the release,

which can not be optimized and is 1.5 ns;

6. The proposed "matrix" structure with a full state register

(option 2) introduces a smaller delay in the distribution of data

from the input to the output as compared to options 3 and 4, but

with greater power consumption and a larger crystal area.

TABLE I

PARAMETERS

Slow Med Fast

τ, ns 2.00 1.50 1.00

Δ τ, ns 0.20 0.15 0.10

94 A. KUDINOV, Y. ANTIMIROV, I. TYSHCHENKO, M. POPOVA, A. CHEREPANOV

VI. CONCLUSION

There is a huge need in modern, energy-efficient algorithms,

which could be implemented for new standards of WiFi,

proposed in the beginning of 2017. In this article some

scrambler circuits, which are widely used in data trancmission

protocols are described with the example in Verilog.

The proposed variant of the IEEE 802.11 scrambler scheme

construction, based on matrix transformations, allows,

depending on the requirements, to synthesize more efficient or

more rapid variants of parallel schemes, which could be used as

a part of a transmit-receive systems in the various types of

industries with the development of Internet of Everything (from

the monitoring of the appliances in factories to the usage in

medicine).

In addition, there is a need in a future work, as it is important

to check if the proposed algorithm works well in a various

circumstances and to improve it further.

REFERENCES

[1] W. Stallings, “Data and Computer Communications, 8th Edition”. Upper
Saddle River: Pearson Prentice Hall, 2007 pp. 146-151.

[2] 802.11ah-2016 - IEEE Standard for Information technology--

Telecommunications and information exchange between systems - Local
and metropolitan area networks - Specific requirements - Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications Amendment 2: Sub 1 GHz License Exempt
Operation

[3] Lotfi A. Zadeh and Charles A. Desoer, “Linear System Theory: The State
Space Approach”. N.Y.: McGraw-Hill Book Company, 1963, 628 p.

[4] G. Albertengo, R. Sisto, “Parallel CRC Generation,” IEEE Micro, vol. 10,

no. 5, pp. 63-71, Oct. 1990. DOI: 10.1109/40.60527
[5] Giuseppe Campobello, Giuseppe Patane, Marco Russo, “Parallel CRC

Realization,” IEEE Transactions on Computers, vol. 52, no. 10, рр. 1312-

1319, Oct. 2003. DOI: 10.1109/TC.2003.1234528
[6] J.Borges and J.Rifa, “А Characterization of 1-Perfect Additive Codes,”

IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1688 - 1697,

Jul. 1999. DOI: 10.1109/18.771247

TABLE II

SYNTHESIS RESULTS

 Slow Med Fast

1 2 3 4 1 2 3 4 1 2 3 4

Synthesis time, s 11 8 8 10 60 36 65 122 60 58 128 113

Area, μm2 8056 7420 5679 5556 11755 10721 11908 13083 16225 12368 14572 12464

Power, μW 16086 14801 11360 10681 26484 24253 23478 24136 47798 34723 37903 32392

Number of triggers 71 63 7 7 71 63 7 7 71 63 7 7

Number of valves 253 243 234 215 320 338 465 487 489 349 596 476

Δt C2C, ps
1716

(1717)

1694

(1696)

1447

(1697)

1386

(1660)

1401

(1257)

1367

(1259)

1236

(1237)

1276

(1256)

1433

(827)

1350

(770)

1188

(808)

1193

(782)

Δt I2O, ps -
673

(1800)

1043

(1800)

1020

(1800)
-

659

(1350)

1026

(1350)

954

(1350)
-

703

(900)

924

(900)

900

(900)

Δt C2O, ps -
1707

(1800)

1800

(1800)

1799

(1800)
-

1349

(1350)

1586

(1350)

1466

(1350)
-

1133

(900)

1595

(900)

1616

(900)

where Δt С2С - signal passage from the synchronous element to the synchronous element (clock-to-clock); Δt I2O - the signal propagation from the input of the

circuit to its output (input-to-output), in the first variant of the circuit the input data passes through the register, because of which the estimation of I2O has no

meaning for it; Δt C2O - the delay of the passage of the signal from the synchronous element to the output of the circuit. In parentheses there are the maximum

permissible values calculated by the synthesizer taking into account the period of the clock signal, the instability of its fronts, the time for presetting the signals at

the inputs of synchronous elements, and so on. When calculating the block area, only the area occupied by the logical cells was taken into account.

