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Abstract—Singular network condition is proposed to study 

oscillators. It states that a circuit is a potential oscillator if and only 

if the rank of the network matrix of size n X n is (n -1) at the 

frequency of oscillations. The dual (if it exists) and adjoint circuit 

of an oscillator are also oscillators. Limitations of Barkhausen’s 

approach are pointed out. It is explained that there are many ways 

to generate oscillations other than Barkhausen’s positive feedback 

configuration. The new approach emphasizes that appropriate D C 

inputs / initial conditions are important. 

Keywords—sinusoidal oscillators, Barkhausen’s criterion, 

analog circuits, feedback circuits 

I. INTRODUCTION 

A sinusoidal oscillator is an important building block of 

electronic circuits. It is so fundamental that it is widely taught to 

undergraduate students in basic electronics courses. At present 

Barkhausen’s criterion [1 - 6] is widely used to understand / 

design oscillators. It uses the concept of positive feedback in an 

amplifier.  Let A (β) denote the complex gain of the amplifier     

(feedback network). The output (input) of   A is input (output) 

of β network (Fig.1). According to Barkhausen’s criterion such 

a configuration generates sinusoidal oscillations at a frequency  

ω 0 if  A β  =  1  at ω 0.This equation in complex numbers gives 

two equations in real numbers. One of them is used to calculate  

ω 0.  The other is used to decide the gain of the amplifier required 

for oscillations. This approach has the following problems. (i) 

This criterion is only for positive feedback configuration of A 

and β blocks.  It cannot be used to decide whether oscillations 

are possible in an arbitrary network or not. But this ability is 

important to suppress oscillations in some circuits to improve 

stability. Further it enables us to explore new oscillator circuits. 

(ii) It requires identification of the amplifier and feedback 

blocks correctly. (iii) A and β values have to be calculated 

carefully taking appropriate loading and other effects into 

account.        (iv) We need to ensure that the reverse flow of 

signal in A and β blocks is negligible. Thus lot of attention is 

required to use the method correctly. In this communication 

singular network condition is presented which overcomes these 

problems as there are no A and β blocks in it. Further it shows 

that (i) every oscillator circuit is a singular network at the 

frequency of oscillation, (ii) other configurations of A and β 

blocks can also generate oscillations. In fact Barkhausen’s 

configuration can be looked upon as a parallel configuration if 

the direction of the signal in the β block is opposite to that in 

positive loop configuration (Fig.1) (iii) the adjoint and dual 

networks of an oscillator are also oscillators. 
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Singular network condition is presented in Section II. It is 

compared with Barkhausen’s criterion in Section III. Some new  

configurations are also suggested in this section. Finally 

contributions of this paper are summarized in Section IV.  

II. SINGULAR NETWORK CONDITION 

Let N be a linear time invariant network. All linear elements 

like R, L, C, M, linear controlled sources, linear ideal 

operational amplifiers, independent D C voltage and current 

sources are allowed. Reactive elements can have initial 

conditions. Voltages and currents in N are functions of time.  

Assume that the network N is solvable.  Let N s be N in the 

complex frequency (s) domain. Equations of  N s are of the form  

  M (s) X (s)   =  
1

s
  b   (1) 

Where X (s) is a vector of network variables like voltage and / 

or   currents of   N s. They can be linear combinations of voltages 

and currents. They can be mesh currents (node voltages) if mesh 

(node) analysis is used. Any network analysis method can be 

used. So X (s) will depend upon the method used. After deriving 

equations some variables can be eliminated if one thinks that 

there are too many equations. In other words there are no 

restrictions on the nature of the equations (1). Consequently 

elements of  M (s) can be ratios of polynomials in s  in the 

general case. Let  M be a square matrix of order  n.  Then X is a 

vector of  n variables.  b is a vector of  n  real numbers. Their 

values depend upon the D C sources and initial conditions in N. 

Let  N be a stable network. i.e., poles of all   variables of  X lie 

in the left half of the  s plane  and poles on  jω axis, if any, are 

simple. This implies that x (t) can have sinusoidal components 

and / or D C components only under steady state. Since the 

network is solvable x (t) cannot be zero unless b is zero.   In 

principle, x (t) can have sinusoidal components at several 

frequencies. But we restrict to one frequency only. Let ω 0 be 

this frequency. There is no loss of generality in this assumption 

because the arguments of the paper can be applied to each 
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frequency if several frequencies exist. Thus we want to 

determine the sinusoidal components of x (t) at ω 0, if they exist.  

Let ∆ (s) denote the determinant of   M (s).  Then 

      ∆ (s)  =   
P (s)

Q (s)
  (2) 

 where  P (s) and Q (s) are polynomials  in s. Cancel any 

common factors of P (s) and Q (s) by using, say, continued 

fraction expansion  technique[7 ]. Assume that   
d P (s)

ds
  ≠ 0 at s  

= j ω 0. It is clear that (s 2 + ω0
2)  is not a factor of  Q (s). This 

also means that ∆ (s) is not a constant. 

           Let  N ' be  N under steady state. Consider a KCL of  N '. 

It is of the form  i 1 (t)  +  i 2 (t)  +  …        +  i p (t)  =  0   where  

i k (t) is of the form  a k  +  b k Sin ( ω 0 t  +  θ k ) for all  k = 1,2, 

…, p. Since a D C (sinusoidal) component cannot cancel a 

sinusoidal (D C) component for all t, KCL must hold for D C 

components and A C components separately. Similarly the D C 

components and A C components of voltages must satisfy KVL 

separately. D C voltages and     D C currents satisfy D C 

equations of components (Inductor is a short and capacitor is 

open for D C, V = I R for a resistor etc). Similarly  A C voltages 

and A C currents satisfy A C equations of the components ( V =  

jωL I, I =  jωC V,  V = I R etc ).This is so even if the A C voltage 

or A C current of a component is zero. i.e., an inductor 

(capacitor) need not be seen as a short (open) even if it’s A C 

current (A C voltage) is zero.  In view of this construct a network   

N ac from N as follows:  N ac and N have same elements 

connected in the same way in both networks except that all 

independent sources and all initial conditions are killed in N ac. 

i.e., all independent current sources are open circuited and all 

initial currents of inductors are made zero so that they do not 

appear in KCL equations. Similarly all independent voltages 

sources are short circuited and all initial voltages of capacitors 

are made zero so that they do not appear in KVL equations. The 

sinusoidal components of voltages and currents of N are retained 

in N ac. This is done even if some of them are zero. Therefore 

voltages and currents of  N ac satisfy  KVL and KCL equations.  

L in N ac  is  L in N with impedance  jωL. Similarly C in N ac is 

C in N with admittance jωC. Other components have same 

values as in N. The A C voltages and currents satisfy the 

component equations in   N ac. It is clear from this description 

that the equations of   N ac  are  

        M(jω)X'(jω)=0  (3) 

where  X '( jω )  is complex number representation of the 

sinusoidal components of x (t). If  N ac  has  cut vertices  [8] split  

the network  into its biconnected components [8]. In addition to 

that  N ac may itself be broken into several connected 

components because of open circuited elements, if any. Each 

connected component of  N ac  will have an equation of the form 

(3).   

N is said to satisfy  singular network condition  if the rank of  

the network matrix  M (j ω 0)  of   at least one connected 

component  of  N ac  derived from  N  is ( n – 1) where  M  is of 

size  n  X  n.                     

 

Referring to equation (1) N is said to be a potential oscillator if 

there exists a vector b of real numbers such that at least one 

component of the vector x (t) has a sinusoidal component under 

steady state. Note that every element of the network need not 

have sinusoidal current and / or voltage even if N is an oscillator.   

Theorem:  N is a potential oscillator if and only if it satisfies 

singular network condition.  

Proof:   Necessity:  N is a potential oscillator. i.e., appropriate 

initial conditions and  / or independent  D C inputs exist in  N so 

that at least one component of the vector  x (t) has sinusoidal 

components at  ω = ω 0.To simplify notation  let  N ac   denote 

that component in which oscillations are present.  We want to 

prove that the rank of the matrix M (j ω 0) of this component is 

( n – 1).  x 'i ( j ω )  = 0  if  x i (t) has no  A C component. Since 

all voltages and currents of  N ac   are linear combinations of the 

variables of the vector  X '( jω), they will all be zero if  X '( jω)  

= 0.   Therefore   X '( jω )  cannot be a null vector if  N is an 

oscillator.  So the rank of M cannot be n at ω = ω 0. 

      Consider M -1 (s) =  
1

∆ (s)
  Adj M (s). Since the network is 

solvable, this matrix exists. Let  m 'i  j be the  (i, j) th element of  

Adj M (s).  Let m 'i  j  =  P 1(s) /  Q 1(s)  where P 1(s) and   Q 1(s) 

are polynomials in  s. Eliminate common factors of these 

polynomials, if any. Then a nonzero (i,  j) th element of  M -1 is    
Q (s)

P (s)
 

P1 (s)

Q1(s)
 . If (  s2  + ω 0

 2 ) q,  q ≥  1, is a factor of  P1(s) for all  

elements, then  ( s2  + ω 0
 2 ) of    P (s) cancels off . In this case x 

(t) cannot have sinusoidal components. This is a violation. 

Therefore (s2 + ω 0
 2) cannot be a factor of P 1 (s) for at least one 

i and one j.  i.e., the rank of   M ( jω 0) must be     (n – 1).        (s2 

+ ω 0
 2) is a simple factor of  P(s). It is not a factor of Q (s) and 

P 1(s).  It cannot be a factor of Q 1 (s) because no element of X 

(s) can have a double pole at s = jω 0 as the network is stable. 

This shows that    (s2 + ω 0
 2) cannot be a factor of numerator or 

denominator of every element of    Adj M  (s). It is a factor of ∆ 

(s) only.   

Sufficiency:  We are given that the rank of the matrix M ( jω 0) 

of a connected component   of   N ac  is  (n – 1). We need to prove 

that N is a potential oscillator. Let  ∆ (s)  = ( s 2  +  ω 0 
2 ) p (s) 

where  p (s) is a polynomial in  s and   p ( jω 0 )  ≠  0. Since the 

rank of M ( jω 0) is  (n – 1), at least one cofactor of  M (s) is 

nonzero for   s  =   jω 0. Therefore let (i, j) th element of  M -1 be 

nonzero. Choose  b j = 1  and  b i  = 0 for  all   i  ≠  j. Then         X 

i (s) is of the form, 

   Xi(s)  =    
  k (s+ z1)(s+ z2)…….

s ( s2+ ω0
2 ) p (s)

  (4) 

Where k is a constant. s =  jω 0  is a simple pole as the network 

is stable. p (s) is the remaining polynomial  of the denominator.  

It is one if there are no other powers of s. Using partial fractions 

X i (s) can be written as                                       

   Xi(s) = A0 +  Ains +  
A1

s
 +   

A2 s +  A3

( s2 +  ω0
2)

 +    
Yi  (s)

p (s)
  (5) 

where  Y i (s) is a polynomial in s which depends on X i (s) and  

p (s)  and  A 0, A in, A 1, A 2, A 3 are constants. Some of them 

can be zero.   
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This gives 

k ( s +  z1 )( s +  z2) … … ..  =    [ (A0 s +
 A in s2)  A1 ] ( s2 +  ω0

2 ) p (s)   

  + ( A2 s +  A3) s  p (s) +  Yi(s) s ( s2 +  ω0
2 )   (6) 

The left hand side is not zero for s = jω 0  Therefore the right 

hand side cannot be zero for         s =  jω 0. This implies that at 

least one of   A 2 and A 3 must be nonzero. i. e.,  x i (t) has a 

sinusoidal component  under steady state showing that  N is a 

potential oscillator. 

Example 1 (Wien bridge Oscillator):  Consider the Wien bridge 

oscillator shown in Fig.2 (a) [1, 2].  The method based on 

Barkahusen’s criterion requires identifying A and β blocks, 

calculate their gains and use the equation A β = 1 to determine 

the conditions for oscillations. We will use the singular network 

condition. N ac network of the oscillator is shown in Fig.2 (b). 

Since the operational amplifier is an open circuit and a short 

circuit simultaneously on the input side, the equations of  N ac  

are  

   [
R1 −Z2

R2 −Z1
 ] [

I1

I2
]  =   [

0
0

]  (7) 

Where   Z 1  =  R  + 
1

j ω C
    and   Z 2  =  R ║ 

1

j ω C
  . Equating the 

determinant of the matrix to zero we get   ω0   =   
1

R C
    and   R 

2 = 2 R 1. The rank of the matrix is one. Thus the singular 

network condition is satisfied and the network is a potential 

oscillator. The equations of the Wien bridge oscillator in   s – 

domain are  

  [
R1

− R

RCs+1

2R1 − (R +  
1

C s
)

] [
I1

I2
]   =   

1

s
  [

b1

b2
]   (8) 

Where b1 and b2 are real constants decided by the D.C. inputs 

and initial conditions of the network. Let R = R 1 = 1, R2 = 2, 
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Fig. 2   (a) Wien bridge oscillator           (b) Its  N     network
ac

 

C = 1, b1 = 1 and b2 = 2.  Solving the equations we get   I1 (s) =

  
1

s
    and   I 2 (s) = 0. This shows that oscillations may not exist 

unless appropriate D.C. inputs and initial conditions are 

provided. But a slight change in the values of  b1 and b2 will 

solve the problem. 

Example 2 (An arbitrary Oscillator circuit): Consider the circuit 

shown in Fig.3 (a). Its N ac is shown in Fig. 3(b).The equations 

of  N ac   are 

( R1 +  R3 +  jωL −  
j

ω C1
 ) I1 −   R3 I2 +  

j

ω C1
 I3   =    0  (9a) 

     α  I1  −   I2   −   α I3   =   0   (9b) 

  
j

ω C1
  I1 −   R2 I2+ {R2  −   j ( 

1

ω C1
 +   

1

ω C2
 )} I3 =   0 

 (9c) 

Choose  R2  =  0 for simplicity. Equating the determinant of the 

matrix to zero, Real part gives  

   ω0   =    
1

√L ( C1 +  C2 )
  (10a)  

Imaginary part gives α  =    
( R1 +  R3 ) ( C1 +  C2 )

R3 C1
  (10b)  

The rank of the matrix is two. There are no A and β blocks in 

this network.  Therefore Barkhausen’s criterion cannot be used. 

Yet it is a potential oscillator. Thus singular network condition 

allows us to try new circuits for oscillations. 

Singular network condition allows interaction between A 

and β blocks. For example, let A block contain a current 

controlled voltage source of  K I volts where  I is a current of  β 

block. 

Then A block depends on the β block.  Barkhausen’s criterion 

does not consider such possibilities. 

R

R R

C

C

1

2

( a )

R

R

R

I

I

1

1 2

2

1
____

1
_____

J ω C

J ω C

V

V

( b )

Fig. 3   (a)  Network  N          (b) Its  N     networkac

3

1

2

E

I

L

I

V

V

1 2

3

V

V

V

I I

I

α I

α I

J ω L

 



80 V. C. PRASAD 

 

Example 3 (One port network):  This example shows that a 

linear one port can oscillate under appropriate conditions.  

Consider a linear one port containing   R, L, C, M, controlled 

sources and linear ideal operational amplifiers but no 

independent source. Its driving point impedance is of the form   

Z   =  R (ω)   +  j X (ω) in the frequency domain.  Connect a D 

C voltage source E, a negative resistance    -  R neg  and the one 

port to form a loop. Let I be the loop current. Then  the equation 

of its  N ac  is  [ { R (ω)  -  R neg }  +  j X (ω) ] I   =  0. Since  n = 

1, the theorem requires that    R (ω 0)  =  R neg  and X ( ω 0 )  = 

0. The second equation can be used to determine the frequency 

of oscillation and the first equation can be used to decide the 

value of the negative resistance.   

Consider a special case of this in which the one port is a series 

R L C circuit connected to a one volt D C source. Assume zero 

initial conditions.  Then the theorem requires that R neg = R and 

ω 0 =  
1

√L C
. Oscillations exist in the network at this frequency 

[1 –3].   

(i)  Next consider the same circuit but with an initial voltage of 

-1 volt across the capacitor.  The net excitation is zero and hence 

oscillations do not exist. This shows that appropriate initial 

conditions are important to establish oscillations. 

(ii)  Consider the same series R L C circuit with a D C current 

excitation and zero initial conditions. The equation of its    N ac  

is  I = 0.  Det M  ≠ 0. Therefore this network will not oscillate.  

It is clear that if a general one port oscillates with a D C voltage 

source input, it may not oscillate with a D C  current source 

input. This shows that appropriate inputs are important to 

generate oscillations. 

(iii)  The negative resistance oscillator of series R L C elements 

is generally explained without using Barkahusen’s criterion. But 

it is possible to use Barkhausen’s approach. Take an external 

ground.  Let  R neg and R in series constitute the  A block. Let V 

x (V y) be the input (output) voltage of the A block measured 

with respect to ground. L and C in series constitute the β block. 

The output (x) of the β block is connected to input of A block. 

This completes the loop of the negative resistance oscillator.  If 

R  = │R neg│ , the voltage gain of  A block is  one. Similarly if  

ωL −  
1

ω C
 = 0   the voltage gain of β block is also one. Since 

loop current flows in one direction only, reverse signals do not 

exist in A and β blocks.  This satisfies  A β  = 1.    

III. BARKHAUSEN’S CRITERION 

Singular network condition is compared with Barkhausen’s 

criterion in this section.   

Barkhausen gave a simple explanation of the possibility of 

oscillations in a positive feedback configuration. 

Mathematically it can be understood as follows: Let  x be the 

input (output) of the  block A ( β ) and  y be the output (input ) 

of the block  A ( β ) in the closed loop configuration. Let A and 

β be nonzero and finite.  y = A x and x = β y are the equations 

of the A and β blocks. Therefore x = A β x and y = A β y. This 

implies that      A β  =  1  if  x ≠  0  and  A β  = 1  if  y ≠ 0. If 

there are oscillations in the network then x ≠ 0 and / or  y  ≠  0. 

Therefore A β = 1 is a necessary condition for oscillations. But 

A β = k where k is a constant or a function of frequency,  x = 0 

and y = 0 also satisfy the equations. This suggests that   A β = 1 

is not a sufficient condition. (i) A β = 1 and (ii) x ≠ 0 and / or  y 

≠ 0 are sufficient conditions. But we cannot assume condition 

(ii) because that is what we want to prove. Thus  A β = 1 is a 

necessary but not a sufficient condition for oscillations when  A 

and  β are nonzero and finite. Some recent examples of circuits 

also suggest this [4 – 6]. Let us study this using singular network 

condition. Let N ac derived from N be a single connected 

component. Then the equations of   N ac  comprising  A and β 

blocks can be written as 

   [
A − 1
1 − β 

] [
x
y]  =   [

0
0

]   (11)  

follows from the theorem that   A β = 1 is both necessary and 

sufficient for potential oscillations. In other words sinusoidal 

oscillations will be observed in at least one component or a 

group of components of the network if  (i)  N ac  derived from N 

is a single connected component  (ii) A β = 1where A and β are 

nonzero and finite  and (iii) appropriate D C inputs and / or initial 

conditions are present in N. Often, it is a simple task to satisfy 

condition (iii). 

    Barkhausen’s arguments explain the possibility of 

oscillations when A and  β are nonzero and finite. But there are 

other possibilities. A positive feedback loop can have 

oscillations even when A β ≠ 1. Consider a situation in which A 

is an ideal linear operational amplifier.  Its gain is infinity 

implying that its input x is zero. i.e., x = 0 is the equation of the  

A block. y can be nonzero if  β  is zero in the equation   x = β y 

at the frequency of oscillation. This gives  

  [
1 0
1 −β 

] [
x
y]  =   [

0
0

] (12) 

 

This does not satisfy A β = 1 condition.  But singular network 

condition is satisfied if  β = 0 showing that the feedback loop is 

a potential oscillator. Similarly the feedback loop can oscillate 

when  β is infinity and  A is zero at the frequency of oscillation. 

These are only three cases of  A and β. But there are nine 

possible cases in all as A and β can take any one of the three 

values   0, ∞ and finite. In general A and β are ratios of 

polynomials. Therefore if (s 2 + ω 0 
2) is a factor of the numerator 

polynomial of A or β then it will be zero for s =        j ω 0. If it is 

a factor of the denominator then it will be infinity for s = jω 0. It 

can be infinity because of a linear operational amplifier also. In 

all other cases A and β will be finite for s =    j ω 0. If A and β 

are both zero, the determinant of the matrix  in equation (5) is 

nonzero. So oscillations are not possible.  If both A and β are 

infinity, x = 0 and y = 0 are the equations. This gives a unit 

matrix. Since it is nonsingular oscillations are not possible. If A 

is infinity and β is finite the equations are x = 0 and x – β y = 0. 

This gives a nonsingular matrix. So oscillations are not possible. 

Similarly oscillations are not possible in other cases also. 

Conversely let there be oscillations in the network. If x and y are 

both nonzero, A and β must be finite from the equations y = A x 

and x = β y. Further A β = 1 from the theorem.   If x = 0 and y 

is nonzero then A is infinity and  β = 0 from the theorem. If y = 

0 and x is nonzero then β is infinity and A = 0 from the 

theorem.This proves the following statement. Oscillations are 

possible in a positive feedback loop if and only if (a) A and  β  

are nonzero and finite  and A β = 1  or  (b) A is zero and β  is 



SINUSOIDAL OSCILLATOR CIRCUITS REEXAMINED 81 

 

infinity  or   (c)  A is infinity and β  is zero.This analysis shows 

that  A β = 1 is neither necessary nor sufficient if we restrict to 

Barkhausen’s arguments. 

Remarks: 

1. Barkhausen’s arguments cannot be used on an arbitrary 

network where A and β blocks do not exist or they cannot be 

easily identified. But an arbitrary network can oscillate.  The 

capability to test a network for oscillations is useful. This 

allows us to think of new oscillator circuits. Further such 

information is important to understand the stability of 

circuits particularly at high frequencies where parasitic 

elements come into play. 

2.  In the general case Barkhausen’s criterion is tedious even 

when it works. Amplifier and feedback blocks have to be 

determined correctly. Their gains have to be calculated 

carefully taking appropriate loading into account.  We need 

to verify whether reverse flow of signal in A and β blocks is 

negligible or not. Compared to this testing singular network 

condition is straight forward. 

3. Let N be a planar network.  Let N d be its dual. Since the 

mesh equations of one network are node equations of the 

other, N d satisfies singular network condition if N satisfies 

singular network condition. Therefore the dual of an 

oscillator is also an oscillator.  A parallel  R L C circuit is 

one such example. 

4. Let Na be the adjoint network [9] of an oscillator network  N.  

The node admittance matrix of  N a is transpose of the node 

admittance matrix of  N. Therefore  Na is a potential 

oscillator if  N is a potential oscillator. 

5 It is generally believed that electrical noise plays a role in 

starting oscillations. But the mathematical analysis 

presented above does not require this point of view. Instead 

it emphasizes appropriate D C inputs and initial conditions.  

6 Consider a two port network. All linear elements, D.C. 

independent sources and initial conditions are allowed inside 

the black box.  Let its equations be of the form  

   [

 
I1

I2

]  =   [
y11 y12

y21 y22
] [

V1

V2
]   +    [

k1

k2
]  (14) 

where  k 1  and  k2 are  real constants decided by the D C 

sources and initial conditions.  Leave the ports open. i.e.,  I1 

= 0  and I2 = 0.Then the two port is a potential oscillator if   

y11 y22  -  y12  y21  =  0 at the frequency of oscillation. If the 

ports are shorted, the two port is a potential oscillator if the 

Z parameter matrix is singular. Similarly two ports 

characterized by other parameters like hybrid and 

transmission parameters can also give rise to oscillations 

with appropriate terminations. A series R L C circuit with R 

neg can be looked upon as a two port with   D C voltage source 

connected to one port and the output taken across the 

capacitor. Then V1 = 0 and I 2 = 0 in N ac. It can be shown to 

be an oscillator using hybrid parameters. 

7 Consider a cascade connection of two two ports. The overall 

parameters of the resulting two port can be determined. 

Hence the above arguments can be applied. This implies that 

a cascade of A and β blocks can give rise to oscillations 

under appropriate conditions. 

8 Next consider a parallel connection of A and β blocks 

(Fig.1). If  x (y) is the input (output) of these blocks, the 

equations of the configuration are   y =  A x,  y  = β x. 

Singular network condition tells us that the network 

oscillates if  and only if  A = β. As a special case let A be an 

ideal operational amplifier with infinite gain then β must 

have a pole at the frequency of oscillation. 

9 Let A be a difference amplifier. Let x and z be its inputs and 

y be its output. x and z are outputs and y is input of the β 

block.  Let  y  =  A (x – z) and  x  =  β1 y  and          z  =  β 2 

y. According to the theorem this configuration is a potential 

oscillator if and only if A (β1 - β 2) = 1.  

10 Let N be any network. Let x and y be any two network 

variables, say, voltages of two nodes. Write the equations of 

the network and eliminate all variables except x and y. Then 

equations of  N ac involving  x and y  will be of the form  

  [
a11 a12

a21 a22
] [

x
y]  =   [

0
0

]  (15) 

N will oscillate for all values of the complex constants  a 11, a22, 

a 12  and a 21  satisfying      a 11 a22  -  a 12 a 21  =  0. Consider a 

special case of this in which a 11 = A, a22 = - β, a12 =  -1 and a 21 

= 1.Positive feedback loop configuration of Barkhausen belongs 

to this category. Thus it is clear that positive feedback loop is 

one of the many possibilities to generate oscillations.  
 

IV CONCLUSIONS 
 

It is shown that a network generates sinusoidal oscillations 

if and only if (i) the rank of the matrix of the equations of the 

steady state part of the network is one less than its size at the 

frequency of oscillation and (ii) appropriate D C inputs / initial 

conditions exist. This allows us to think of oscillators without 

using positive feedback. Barkhausen’s criterion, when 

applicable, is a special case of this.     
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