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Abstract
Finding an acceptable compromise between various objectives is a necessity in the design of contemporary
microwave components and circuits. A primary reason is that most objectives are at least partially con-
flicting. For compact microwave structures, the design trade-offs are normally related to the circuit size
and its electrical performance. In order to obtain comprehensive information about the best possible trade-
offs, multi-objective optimization is necessary that leads to identifying a Pareto set. Here, a framework
for fast multi-objective design of compact micro-strip couplers is discussed. We use a sequential domain
patching (SDP) algorithm for numerically efficient handling of the structure bandwidth and the footprint
area. Low cost of the process is ensured by executing SDP at the low-fidelity model level. Due to its bi-
objective implementation, SDP cannot control the power split error of the coupler, the value of which may
become unacceptably high along the initial Pareto set. Here, we propose a procedure for correction of the
S-parameters’ characteristics of Pareto designs. The method exploits gradients of power split and bandwidth
estimated using finite differentiation at the patch centres. The gradient data are used to correct the power
split ratio while leaving the operational bandwidth of the structure at hand intact. The correction does not
affect the computational cost of the design process because perturbations are pre-generated by SDP. The
final Pareto set is obtained upon refining the corrected designs to the high-fidelity EM model level. The pro-
posed technique is demonstrated using two compact microstrip rat-race couplers. Experimental validation
is also provided.
Keywords: computer-aided design, compact circuits, microwave couplers, multi-objective optimization, do-
main patching, surrogate modelling, response correction.
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1. Introduction

Circuit miniaturization, and, consequently, development of techniques for size reduction of
structures and systems, has become an important topic in microwave and antenna design [1–
6]. The main motivation is the practical necessity, specifically, increasing the number of space-
limited applications such as in mobile communication and wearable devices [7, 8], as well as,
recently, internet of things [9, 10]. One of the fundamental difficulties pertinent to compact mi-
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crowave circuit design is that attempts to reduce the size of the structure normally lead to degra-
dation of its electrical performance. In other words, these objectives are conflicting. Any practical
design is a compromise between geometry- and electrical performance-related criteria [11, 12].

In terms of geometry modification, the most popular size reduction methods include bending
and meandering of conventional transmission lines (TLs), as well as replacing them by compact
slow-wave resonant cells that feature similar electrical characteristics as TLs (within a reduced
frequency range) and shortened length [13, 14]. An important problem that arises here is that the
aforementioned topological modifications increase electromagnetic (EM) cross-couplings within
the structure. As a result, equivalent circuit models commonly used in the design process be-
come unreliable. As a matter of fact, the only way of obtaining accurate evaluation of a compact
circuit is its full-wave EM simulation. At the same time, accurate high-fidelity EM analysis is
computationally expensive. Needless to say, a high evaluation cost is a serious bottleneck for
simulation-driven design closure otherwise indispensable for tuning of the circuit parameters.
Another practical problem is that size reduction by geometry modification increases the num-
ber of design variables that need to be adjusted: a typical compact cell is described by four to six
parameters compared with only two needed for a TL. Both the aforementioned factors (high sim-
ulation cost and increased number of parameters) hinder the usage of conventional optimization
techniques. As a workaround, the EM-driven design process of compact structures is commonly
carried out by parameter sweeping. Such an interactive approach incorporates engineering ex-
perience and enables to find a reasonable (although not optimal) design solution. It should also
be mentioned that an experience-driven design is virtually unable of explicit control of the cir-
cuit size. Typically, size reduction is achieved by appropriate selection of the circuit topology
(e.g. [1–3, 13, 16]), whereas the design closure process itself only aims at achieving acceptable
electrical performance.

Computationally-efficient optimization can be performed using surrogate-assisted techniques
[17–19], by exploiting adjoints sensitivities [20, 21], or by a combination of both approaches
(e.g. [22, 23]).

In practical design, it is useful to acquire comprehensive information about the best possible
trade-offs between conflicting design criteria. In the case of compact circuits, these would be
their structure size and electrical performance figures. Such information can be obtained through
multi-objective optimization the result of which is typically in the form of a set of alternative de-
signs representing a so-called Pareto front [24]. Among available methods, the most commonly
used ones are undoubtedly population-based metaheuristics such as genetic algorithms [25, 26],
particle swarm optimizers (PSO) [27, 28], or modified algorithms for constrained problems [38,
39]. Their popularity is mostly due to the capability of yielding the entire Pareto front repre-
sentation in a single algorithm run. Nevertheless, due to their high cost (thousands and tens of
thousands of objective function evaluations [30]) such methods are not practical for handling
expensive EM simulation models. Modelling methods for constrained multi-objective optimiza-
tion aimed at identification of a feasible region of search space have been introduced in [40–42].
However, curse of dimensionality limits usefulness of these techniques to problems with a small
number of design variables. Efficient surrogate-assisted multi-objective design methods have
been proposed in the context of antenna design [31, 32]. The key ideas employed in these meth-
ods include design space reduction and setting up a fast data-driven surrogate that can be directly
optimized using metaheuristic algorithms so as to identify the initial Pareto set. Response cor-
rection methods are subsequently applied to fine tuning of a selected Pareto-optimal design [33].

The purpose of this work is to develop and demonstrate a technique for accelerated bi-
objective design optimization of compact micro-strip couplers. Our approach exploits a sequen-
tial domain patching (SDP) technique [34, 43]. It creates a path connecting the two extreme
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Pareto-optimal designs obtained by single-objective SBO processes (one oriented towards size
reduction, the other aiming at bandwidth maximization). Unfortunately, in the case of coupler
structures, it is also necessary to account for other circuit characteristics, specifically, to ensure
equal power split. The approach discussed here is based on [44]. However, here, we focus on
comprehensive description of the correction step for precise control of power split error of the
initial Pareto-optimal designs generated by SDP. At the same time, a response refinement algo-
rithm enables to control the coupler bandwidth so that it is not degraded while correcting the
power split. Our approach is illustrated using two miniaturized rat-race couplers operating at
1 GHz. Experimental verification is also provided.

2. Two-Objective Optimization Using Sequential Domain Patching

In this section, in order to make the paper self-contained, a basic formulation of the sequential
domain patching (SDP) algorithm is briefly recalled. A corrected SDP (CSDP) algorithm for bi-
objective optimization (here, of micro-strip couplers) is presented in Section 3.

2.1. Multi-Objective Optimization Problem

We begin by formulating the multi-objective design optimization problem. Let Fk(x), k = 1,
. . . , Nobj, be the kth objective. For Nobj > 1, the designs x and y can be compared using the Pareto
dominance relation: x≺ y (x dominates y) if Fk(x)≤ Fk(y) for all k and Fk(x)< Fk(y) for at least
one k [25]. The aim of the optimization process is to find a representation of a Pareto front XP
of the design space X , such that for any x ∈ XP, there is no y ∈ X for which y ≺ x [25]. Clearly,
without loss of generality, maximization of Fk(x) can be formulated as minimization of −Fk(x).

The main focus of this work is the design of microwave couplers, which are a representative
example of structures with multiple design criteria. We consider two (explicit) objectives: (i) the
circuit area F1(x) = A(x) and (ii) the coupler bandwidth F2(x) = B(x). The bandwidth is defined
as a range of frequencies for which both |S11| and |S41| are below −20 dB. Thus, an implicit
design criterion is to design the circuit for a given operating frequency f0. Furthermore, a power
split error ds = |S21|− |S31| should be between −0.2 dB and +0.2 dB at f0.

2.2. Sequential Domain Patching Algorithm

Our main optimization engine is the bi-objective sequential domain patching (SDP) algo-
rithm. The initial stage of the SDP process is to identify the “extreme” Pareto designs x∗k , k = 1,
. . . , Nobj. These designs are obtained by solving single-objective optimization problems of the
form [31]:

x∗k = arg min
x

Fk(Rc(x)). (1)

It should be noted that the extreme Pareto-optimal designs are being found at the level of a
low-fidelity model Rc (which in our case is a coarse-discretization version of the high-fidelity
EM model). This enables to reduce the cost of the algorithm.

The next step of the optimization process is to find a path connecting the designs x∗k , which is
created by using the algorithm outlined below [34] (the design space dimensionality is denoted
as n):

1. Set the patch size p = [p1 . . . pn]T (cf. Section 2.3);
2. Set the current points xc1 = x∗1 and xc2 = x∗2;
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3. Evaluate n perturbations of size p around x∗c1 (towards x∗c2 only) and select the best one
with respect to F2;

4. Centre the patch at the point selected in Step 3; update xc1;
5. Evaluate n perturbations of size p around x∗c2 (towards x∗c1 only) and select the best one

with respect to F1.
6. Centre the patch at the point selected in Step 5; update xc2;
7. If the path between x∗1 and x∗2 is not complete, go to 3;
Figure 1 graphically illustrates the algorithm operation in the case of a three-dimensional

design space. The non-dominated designs selected from the patch centres constitute the initial
approximation of the Pareto front. It is interesting to note that the computational cost of the
SDP algorithm depends only on the design space dimensionality n and on the total number of
patches. More specifically, it can be bounded from above (excluding the cost of solving (1)) as
(M− 1) · (n− 1), where M = ∑ j=1,...n m j, and m j is the number of intervals in the direction j.
Another and perhaps even more important advantage of SDP over other bi-objective optimization
techniques (including the recent surrogate-assisted methods [31–33]) is that there is no need for
constructing of an auxiliary global response surface approximation model (i.e. a model valid over
the entire design space considered) nor using population-based metaheuristics.

a)

b)

Fig. 1. A conceptual illustration of the SDP algorithm for the design problem with n = 3 variables:
a) “extreme” Pareto optimal designs obtained through sequential single-objective optimizations
(•); b) Pareto-optimal solutions obtained using the discussed procedure (◦). The left panel figures

represent the domain space; the right panel figures represent the feature space.

2.3. Patch Size Determination

The numbers of intervals m j between x∗1 and x∗2 in each direction have to be integers. At
the same time, the numbers m j should be determined so that the changes of the model response
(within a patch) are comparable for all dimensions. In this work, the vector of intervals M is
obtained as follows (we use the notation x∗1 = [x∗1.1 . . . x∗1.n]

T , similarly for x∗2):
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1. Evaluate Rc at n points x( j)
1−2 = [x∗1.1 . . . x∗1. j−1x∗2. jx

∗
1. j+1 . . . x∗1.n]

T and calculate E1. j =

∥Rc(x
( j)
1−2)−Rc(x∗1)∥/∥Rc(x∗1)∥;

2. Evaluate Rc at n points x( j)
2−1 = [x∗2.1 . . . x∗2. j−1x∗1. jx

∗
2. j+1 . . . x∗2.n]

T and calculate E2. j =

∥Rc(x
( j)
2−1)−Rc(x∗2)∥/∥Rc(x∗2);

3. Set E j = (E1. j +E2. j)/2;
4. Normalize E j = E j/max{E j : j = 1, . . . ,n};
5. Set m j = max

{
2,⌈mmax ·E j⌉

}
.

In the above procedure, the relative changes of the system responses are represented by E1. j,
j = 1, . . . , n, obtained by varying the jth component of x∗1 towards x∗2 (definition of E2. j is
similar); E j are their average values and represent large-scale sensitivities of the circuit. Using
these, the number of intervals along the jth axis is set proportional to E j. The minimum number
of intervals is 2; the maximum number of intervals is mmax and it is the only control parameter
that needs to be set by the user.

2.4. Pareto Set Refinement

The initial Pareto set is obtained at the level of a low-fidelity model Rc. Thus, the last stage
of the optimization process is to yield Pareto-optimal designs for the high-fidelity model R f . In
order to do so, the following refinement process is executed for the designs x(k)c , k = 1, . . . , K,
selected from the initial front (here, x(k)f = x(k)c [34]:

x(k)f ← arg min
x,F2(x)≤F2(x

(k)
j )

F1

(
Rs(x)+dR(k)

)
, (2)

where dR(k) = R f (x
(k)
f )−Rs(x

(k)
f ). This correction term ensures perfect agreement between the

surrogate and the high-fidelity model at the beginning of the refinement iteration. The purpose of
the refinement process is to improve the first objective as much as possible without compromising
the second objective. In practice, up to two iterations of (2) – three evaluations of the R f model
– are sufficient. The surrogate Rs is a second-order polynomial approximation (without mixed
terms) of Rc, constructed using evaluations of Rc at x(k)c and 2n perturbations around it. Note that
half of the necessary perturbations are already available as they were evaluated during the SDP
algorithm run.

3. Corrected SDP for Two-Objective Optimization of Miniaturized Couplers

The SDP algorithm as formulated in Section 2 handles two primary objectives, the circuit
area and its bandwidth. However, the power split error ds may be degraded along the path found
by SDP, even though it is acceptable at the extreme Pareto-optimal designs. This is because
ds is not explicitly controlled during the optimization process. The design refinement (2) that
follows SDP may not be able to move ds back to the acceptable level. As a way of handling
this problem, a correction procedure is proposed here which is applied to all designs selected
from the Pareto front, x(k)c , k = 1, . . . , K, but before executing the refinement procedure (2). The
correction process has to be arranged in such a way that it does not lead to significant degradation
of the coupler bandwidth.
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We will use ds(x
(k)
c ) to denote the power split error at the design x(k)c . Let ∇s(x

(k)
c ) be the

estimated gradient of ds at x(k)c with respect to the geometry parameters of the coupler. The
gradient is obtained using finite differentiation based on the design perturbations within the patch
corresponding to x(k)c . It should be emphasized that the gradient estimation does not incur any
computational overhead because the perturbations are already available: they were evaluated
during the execution of the SDP algorithm. Similarly, we denote by B(x(k)c ) the coupler bandwidth
at the design x(k)c , and by ∇B(x

(k)
c ) the gradient of B at x(k)c estimated in the same way as for the

power split error gradient.
The corrected design x(k)c.corr that brings the power split error to a required value dt , and, at the

same time, does not affect the coupler bandwidth, can be found by solving the following system
of equations: ds(x

(k)
c )+∇T

s (x
(k)
c ) · (x(k)c.corr−x(k)c )

B(x(k)c )+∇T
B(x

(k)
c ) · (x(k)c.corr−x(k)c )

=

[
dt

B(x(k)c )

]
. (3)

Assuming that dimensionality of the design space is larger than two (which is the case for
any practical compact coupler structure), the equation (3) is an underdetermined system with
infinitely many solutions. We look for a solution that satisfies

x(k)c.corr = min

∥y∥ :

∇T
s (x

(k)
c ) · (y−x(k)c )

∇T
B(x

(k)
c ) · (y−x(k)c )

=

[
−ds(x

(k)
c )+dt

0

], (4)

i.e. reduces the power split error and does not change the coupler bandwidth while introducing
the minimum (in the least-square sense) modification to the current design. This solution can be
found as

x(k)c.corr = x(k)c −AT (AAT ) ·

[
ds(x

(k)
c )−dt

0

]
(5)

where

A =

∇T
s (x

(k)
c )

∇T
B(x

(k)
c )

. (6)

Note that, in principle, the value of dt could be set to zero to achieve a perfect power split.
In practice, other values, e.g. dt = 0.1 dB, can be used to reduce the amount of correction (recall
that the maximum absolute error according to design specifications is 0.2 dB). The reason is
that requesting dt = 0 might result in a larger correction (in terms of the norm-wise distance
between the corrected and uncorrected design) and, consequently, potential degradation of the
primary objectives. At the same time, the amount of correction is additionally controlled by the
requirement of maintaining the circuit bandwidth (the second equation in (3)).

There are two practical issues that have to be addressed in practical implementation of the
method. The first is that the coupler bandwidth is determined by four frequencies corresponding
to−20 dB level of |S11| and |S41| response. In any particular situation, the bandwidth may depend
either on |S11| or on |S41|, yet when only looking at B(x(k)c ) it is impossible to tell which one is
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limiting factor. For the same reason, B(x) is, in general, not differentiable with respect to x.
Therefore, in practical realization of the correction, it is better to replace (3) byds(x

(k)
c )+∇T

s (x
(k)
c ) · (x(k)c.corr−x(k)c )

B(x(k)c )+∇T
FB
(x(k)c ) · (x(k)c.corr−x(k)c )

=

[
dt

FBx(k)c )

]
(7)

where FB(x
(k)
c ) = [ fB1(x

(k)
c ) fB2(x

(k)
c ) fB3(x

(k)
c ) fB4(x

(k)
c )]T , with fBk(x

(k)
c ), k = 1, . . . , 4, being

the four aforementioned frequencies. Keeping them fixed in the correction process ensures main-
taining of the circuit bandwidth.

Replacing (3) by (7) results in reformulating the correction problem as

x(k)c.corr = min


∥y∥ :

∇T
s (x

(k)
c ) · (y−x(k)c )

∇T
FB
(x(k)c ) · (y−x(k)c )

=


−ds(x

(k)
c )+dt

0
0
0
0




. (8)

The analytical solution is

x(k)c.corr = x(k)c −AT
F(AF AT

F) ·


ds(x

(k)
c )−dt

0
0
0
0

, (9)

where

AF =

∇T
s (x

(k)
c )

∇T
FB
(x(k)c )

. (10)

The second issue is that analytical solution to (8) given by (10) does not ensure that the
corrected solution is located within the patch, the centre of which is the initial design (to be
refined) x(k)c . This can be ensured by solving (8) as a constrained nonlinear optimization problem
with the constraint ly ≤ y≤ uy, where ly and uy are the lower and upper bounds for y defined as
ly = x(k)c −p, and uy = x(k)c +p (p is the patch size).

It should be mentioned that, in principle, a similar methodology as presented in this section
could be applied to correct other types of figures of merit (not only the power split error). For
example, in the case of couplers, this could be the operating frequency of a phase response.
Clearly, the “amount” of correction is limited by the usage of first-order Taylor models, which is
a trade-off between the correction reliability and the computational cost of it.

4. Case Study I: Folded Rat-Race Coupler

The purpose of this section is to demonstrate the corrected SDP algorithm. We consider bi-
objective optimization of a rat-race micro-strip coupler miniaturized by folding its transmission
line sections. We also examine the influence of a selected correction type on the algorithm perfor-
mance, specifically, the quality of the final coupler designs obtained in the process. The selected
high-fidelity Pareto designs are validated experimentally.
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4.1. Coupler Structure

Consider a miniaturized rat-race coupler (RRC) circuit shown in Fig. 2 [12]. Small dimen-
sions of the structure with respect to a conventional coupler [35] have been achieved by folding
its quarter-wavelength sections. The RRC is implemented on a 0.762 mm thick Taconic RF-35
substrate (εr = 3.5, tanδ = 0.018). An operating frequency is 1 GHz. A vector of design vari-
ables is x= [l1 l2 l3 d w]T . Dimensions w0 = 1.7, l0 = 15 remain fixed (all in mm). A high-fidelity
EM model of the structure R f is prepared in CST Microwave Studio [36]. It consists of about
220,000 mesh cells and its average simulation time on a dual Xeon E5540 machine is 15 minutes.
A low-fidelity model Rc is also implemented in CST Studio. It consists of ∼ 26,000 cells (sim-
ulation time: 84 seconds). The structure size is given as A(x) = 15w+ 12d + l1 + l2 + l3 + 2w0.
The search space is defined by the following lower and upper bounds: l = [1 5 10 0.2 0.2]T and
u = [8 15 30 1.2 1.2]T .

4.2. Results

In the first step of the design process, the sequential single-objective optimizations (cf. Sec-
tion 2.2) have been performed to find the extreme Pareto-optimal designs: x∗1 = [4.21 11.65
24.66 0.27 0.90]T (the smallest footprint) and x∗2 = [3.86 12.14 20.14 1.05 0.86]T (the broadest
bandwidth). Then, the procedure of Section 2.3 has been used to obtain a vector of intervals
M = [2213153] and the patching algorithm has been executed. The initial Pareto set identified
using SDP is shown in Fig. 3.

Fig. 2. Geometry of the compact folded rat-race coupler [12].

Fig. 3. A low-fidelity Pareto set obtained using the SDP algorithm. Crosses and
grey squares represent the dominated and non-dominated designs, respectively,

whereas the designs selected for correction are marked with black squares.
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It should be reiterated that the SDP algorithm can handle only two objectives at a time and
thus there is no direct control in the optimization process over the power split between the coupler
ports. At the same time, the power split error is supposed to be maintained within an acceptable
bound (e.g.±0.2 dB). In order to handle this issue, the method of Section 3 is used for correction
of the obtained Pareto designs. It should be emphasized that the correction step does not require
any additional model simulations because all the data required for solving (8) were obtained
by SDP. In this work, we have considered four variants of gradient-based correction (GC). The
specific setups are as follows: (i) coupling threshold dt = 0 dB, (ii) coupling threshold dt = 0 dB
and fixed bandwidth B; (iii) dt = 0.1 dB; and (iv) dt = 0.1 dB and fixed B. Note that imposing
constraints on bandwidth (as in (ii) and (iv)) is expected to lead to some degradation of the power
split error control.

Table 1 compares the results obtained for each correction variant with the responses of non-
corrected (NC) coupler designs. The results indicate that each correction type has a different ef-
fect on the coupler responses. Although all the methods limit the 3 dB coupling error with respect
to the reference designs, using the correction (i) and (iii) also results in narrowing the structure
bandwidth with respect to all reference designs. On the other hand, this effect can be reduced
when correction is performed using the method (ii) or (iv). At the same time, the approach (iv)
produces designs that violate the imposed design specifications. Thus, in this work, the RRC
correction is performed using the variant (ii). The influence of the gradient-based correction on
the coupler responses on selected low-fidelity Pareto optimal designs is shown in Fig. 4.

Table 1. A folded RRC: Comparison of the Coupler Response Correction Methods.

Correction type

NC GC (i) GC (ii) – selected GC (iii) GC (iv)

B ds B ds B ds B ds B ds

x(1)c 33.8 0.13 16.2 −0.01 34.4 −0.03 29.4 0.10 34.9 0.10

x(2)c 37.9 0.04 32.3 0.01 39.4 −0.01 32.3 0.01 39.4 −0.01

x(3)c 68.0 0.29 49.4 0.03 54.9 0.04 55.5 0.13 62.6 0.14

x(4)c 81.7 0.40 66.1 0.09 66.1 0.09 66.1 0.09 70.0 0.10

x(5)c 129.2 0.18 123.0 0.02 120.7 0.03 123.0 0.12 126.4 0.12

x(6)c 140.8 0.24 135.2 0.12 135.2 0.12 135.2 0.12 139.1 0.13

x(7)c 175.8 0.22 177.4 0.13 177.4 0.13 177.4 0.13 177.4 0.13

x(8)c 221.2 0.15 224.3 0.08 224.3 0.08 221.5 0.09 222.2 0.10

x(9)c 269.3 0.26 270.0 0.20 270.0 0.20 270.0 0.21 270.0 0.21

x(10)
c 271.2 0.24 271.5 0.20 275.1 0.20 271.5 0.22 275.6 0.22

In the next step, the corrected low-fidelity designs have been refined to the high-fidelity model
level using the method of Section 2.4. The dimensions of the high-fidelity Pareto designs are
given in Table 2. The results indicate that miniaturization of the coupler designs with respect to a
conventional rectangular RRC [35] vary from 87.8% to 92.2% along the Pareto front. The coupler
with the smallest size of 354 mm2 features a bandwidth of 68.3 MHz, whereas a bandwidth of
the largest coupler design (553 mm2) is 275 MHz. It should be noted that the power split error
of the high-fidelity designs is within a −0.18 dB to 0.2 dB range, which is low – having in mind
that the refinement process was performed without constraints imposed on ds.
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a) b)

c)

Fig. 4. A folded RRC: comparison of coupler responses for various correction methods (see Table 1) at the design:
a) x(1)c ; b) x(5)c ; and c) x(8)c .

Table 2. High-Fidelity Designs of the Optimized Folded RRC.

Coupler designs

x(1)f x(2)f x(3)f x(4)f x(5)f x(6)f x(7)f x(8)f x(9)f x(10)
f

Pa
ra

m
et

er
s

l1 3.62 3.88 3.95 3.95 3.45 3.45 3.95 3.95 3.45 3.95

l2 12.8 12.1 12.0 12.0 13.0 13.0 12.0 12.0 12.5 12.0

l3 24.1 23.1 23.2 23.1 21.9 20.9 21.4 20.7 20.2 20.7

d 0.29 0.39 0.40 0.45 0.61 0.76 0.71 0.82 1.00 0.97

w 0.86 0.86 0.87 0.87 0.83 0.83 0.88 0.87 0.85 0.87

Size reduction∗ (%) 92.2 91.6 91.5 91.2 90.5 89.6 89.5 89.0 88.0 87.8

∗With respect to conventional rectangular RRC (size: 47.5×95.5≈ 4536 mm2).

For the sake of comparison, the method of Section 2.4 was also used for refinement of the
non-corrected low-fidelity Pareto designs. The results of Table 3 indicate that their power split
errors vary from−0.04 dB to 0.39 dB which significantly violates the specification (ds≤ 0.2 dB).
In other words, for the considered design case, the gradient-based correction noticeably improves
3 dB coupling of the Pareto designs. The frequency characteristics of selected gradient-corrected
and non-corrected high-fidelity model designs are compared in Fig. 5.
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Table 3. RRC Optimization: High-Fidelity Model Responses.

Corrected Pareto designs Non-corrected Pareto designs
F1 F2 ds F1 F2 ds

x(1)f 68.3 354 −0.18 67.0 365 0.39

x(2)f 132.0 380 0.13 92.9 374 −0.04

x(3)f 135.3 384 0.19 99.4 384 0.38

x(4)f 147.9 400 0.20 143.0 395 0.29

x(5)f 185.8 430 −0.07 189.3 441 0.31

x(6)f 236.9 473 −0.04 233.1 481 0.06

x(7)f 241.2 476 0.20 238.6 483 0.27

x(8)f 268.7 499 0.12 258.3 508 0.18

x(9)f 269.6 546 0.12 274.3 552 0.15

x(10)
f 275.0 553 0.19 270.5 542 0.23

a) b)

c)

Fig. 5. A folded RRC: high-fidelity responses of the gradient-corrected (black lines) and non-corrected (grey lines)
designs after the refinement process: a) x(1)f , b) x(5)f , and c) x(9)f .

The cost of bi-objective optimization corresponds to ~68 simulations of the high-fidelity cou-
pler model R f (~17 hours of CPU-time), including 195 evaluations of the low-fidelity model Rc
required to obtain the extreme Pareto-optimal designs, 10 Rc evaluations for determining the
patch sizes for the SDP algorithm, 96 Rc simulations for determining the initial Pareto set us-
ing the SDP method, 10 Rc simulations for verification of the corrected low-fidelity designs,
as well as 110 Rc and 30 R f simulations to refine selected designs. Benchmarking of the pro-
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posed approach is not provided because comprehensive tests already reported in the literature
(e.g. [34, 43]) indicate superiority of SDP over other state-of-the-art algorithms in terms of nu-
merical cost (even for problems with over ten design variables), whereas the correction stage
does not incur any extra computational overhead, as already discussed. Also, the cost of our
optimization-correction-refinement method is low compared to approaches dedicated for con-
strained optimization (population-based algorithms [38, 39] and methods for modelling feasible
regions of the search space [40–42]), which require hundreds to thousands of model simulations
for solving two-dimensional design problems.

4.3. Experimental Validation

The high-fidelity designs x(1)f , x(5)f , and x(9)f have been fabricated and measured. Photographs
of the manufactured coupler prototypes are shown in Fig. 6, whereas the simulated and measured
characteristics of the structure are compared in Fig. 7. The results are in good agreement. The
simulated and measured bandwidths are 269 MHz and 270 MHz for x(1)f , 186 MHz and 200 MHz

for x(5)f , as well as 68 MHz and 60 MHz for x(9)f . At the same time, the power split errors are

0.19 dB and 0.20 dB for x(1)f , 0.1 dB and 0.18 dB for x(5)f , as well as 0.12 and 0.05 for x(9)f .
It should be noted that increased losses for the measured designs are introduced by the SMA
connectors which were not included in the computational EM model of the coupler.

a) b) c)

Fig. 6. Photographs of the manufactured designs of folded rat-race coupler: a) x(1)f , b) x(5)f , and c) x(9)f .

a) b)

c)

Fig. 7. A folded RRC: comparison of the simulated (grey lines) and measured (black lines) reflection characteristics.
Designs: a) x(1)f , b) x(5)f , and c) x(9)f .
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5. Case Study II: Miniaturized Rat–Race Coupler

Our second design case is a miniaturized rat-race coupler composed of compact micro-
strip resonant cells (CMRC). Two-objective optimization of the structure is performed using
a gradient-corrected SDP algorithm. The numerical results are validated by measurements of the
fabricated coupler prototypes.

5.1. Coupler Structure

Consider an RRC coupler shown in Fig. 8 [37]. The structure is miniaturized using six CMRC
sections with shunt stubs. The substrate parameters are the same as for the coupler of Section 4.
The centre frequency is set to 1 GHz. The design variables are: x= [w d1 d2 l2 l3r l4r l5r]

T . The rel-
ative parameters are: l1 = 2d1 +d2 +2.5w, l3 = 0.1l3r l2, l4 = 0.1l4r l3, and l5 = 0.1l5rl2, whereas
the dimension w0 = 1.7 remains fixed to ensure 50 ohm input impedance (all dimensions are in
mm). Both, the high- (∼ 350,000 mesh cells; 23 min simulation) and low-fidelity (∼ 128,000
mesh cells; 230 s simulation) models of the structure are implemented in CST Microwave Studio
[36]. The coupler area is defined as A(x) = 35w+ 24d1 + 8d2 + l2. The search space is defined
by the following bounds: l = [0.2 0.2 0.2 5 0.5 0.5 0.5]T and u = [1.2 3.2 3.2 15 10 10 10]T .

Fig. 8. Geometry of a compact CMRC-based rat-race
coupler [37].

5.2. Results

The extreme Pareto-optimal designs with respect to size, x∗1 = [0.21 0.5 1.02 13.32 10 9
2.61]T , and bandwidth, x∗2 = [0.55 0.98 2.9 10.47 9.99 1.74 0.53]T , have been obtained using
the sequential optimization algorithm of Section 2.2. Subsequently, the vector of intervals M =
[10 15 8 13 3 12 10] has been obtained and the SDP algorithm has been executed. The initial
(low-fidelity) Pareto-optimal set is shown in Fig. 9. The ranges of the initial Pareto front along
objectives F1 and F2 are 211 MHz and 525 mm2, respectively.

In the next step, the responses of selected Pareto-optimal designs have been corrected using
the method of Section 3 (correction setup: coupling threshold dt = 0 dB and fixed bandwidth
B). Table 4 provides comparison of the coupler responses for the gradient-corrected and non-
corrected designs. The results indicate that the corrected designs maintain the requirement with
respect to the acceptable power split error (dt ≤ 0.2 dB), which is not the case for a few of
non-corrected designs. An average improvement of dt for GC with respect to NC is 0.09 dB.
At the same time, the bandwidth of the corrected designs is preserved within a 40-MHz margin
with respect to the non-corrected ones. The frequency responses of selected GC and NC Pareto
designs are compared in Fig. 10.

Finally, the selected Pareto designs have been refined using the method of Section 2.4. De-
tailed dimensions and performance parameters of the obtained high-fidelity Pareto set are gath-
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Fig. 9. A low-fidelity Pareto set obtained using the SDP algorithm:
non-dominated (2), dominated (×), and selected (■) designs.

Table 4. A CMRC-Based RRC: Performance Comparison of Corrected (GC) and Non-Corrected (NC) Pareto Designs.

Selected Pareto optimal designs
x(1)c x(2)c x(3)c x(4)c x(5)c x(6)c x(7)c x(8)c x(9)c x(10)

c

NC
B

264.1 227.3 216.3 212.2 202.4 187.1 146.7 118.9 63.5 53.3

GC 266.5 265.2 218.9 238.7 234.7 185.9 140.0 123.3 68.3 47.9

NC
ds

−0.1 −0.09 −0.06 −0.1 −0.07 −0.13 −0.24 −0.21 −0.06 −0.07

GC −0.01 0.01 −0.04 −0.08 −0.07 −0.12 −0.13 −0.19 −0.06 −0.04

a) b)

c)

Fig. 10. The frequency responses of a CMRC-based coupler for the corrected and non-corrected Pareto designs:
a) x(2)c ; b) x(7)c ; and c) x(10)

c .
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ered in Table 5. It should be noted that the variability of the coupler performance figures along
the Pareto front are 234 MHz and 530 mm2, with respect to F1 and F2, respectively. Moreover,
the power split error ds for the obtained designs varies from−0.08 dB to−0.16 dB. Also, minia-
turization of the obtained Pareto designs with respect to a conventional RRC is 91.5% for the
smallest structure (size: 387 mm2, bandwidth: 38 MHz) and 80.3% for the design with the broad-
est bandwidth (size: 917 mm2, bandwidth: 272 MHz). The frequency characteristics of selected
high-fidelity Pareto designs are shown in Fig. 11.

Table 5. A CMRC-Based RRC: Optimized Designs.

Coupler designs

x(1)f x(2)f x(3)f x(4)f x(5)f x(6)f x(7)f x(8)f x(9)f x(10)
f

F1 (MHz) 38.1 62.9 126.2 141.1 155.1 180.1 198.5 232.9 247.9 272.2
F2 (mm2) 387 397 465 508 563 585 736 848 896 917
ds (dB) −0.08 −0.16 −0.12 −0.14 −0.13 −0.11 −0.13 −0.08 −0.08 −0.08

Pa
ra

m
et

er
s

w 0.20 0.20 0.30 0.29 0.29 0.33 0.50 0.50 0.53 0.53
d1 0.52 0.54 0.52 0.58 0.68 0.71 0.70 0.75 0.87 0.96
d2 1.01 1.04 1.32 1.48 1.91 1.84 2.31 3.14 3.02 3.02
l2 13.43 13.31 12.65 12.77 11.65 11.68 11.24 10.55 10.58 10.36
l3r 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99
l4r 8.99 8.99 7.97 7.49 6.71 6.88 3.49 2.84 1.78 1.69
l5r 2.51 2.61 1.55 1.67 1.50 1.67 1.67 1.57 1.38 0.72

Reduction of size∗ (%) 91.5 91.5 91.2 89.8 88.8 87.6 87.1 83.8 81.3 80.3

∗With respect to conventional rectangular RRC (size: 47.5×95.5≈ 4536 mm2).

a) b)

c)

Fig. 11. The simulated (grey lines) and measured (black lines) reflection characteristics of a CMRC-based RRC:
a) x(1)f , b) x(6)f , and c) x(10)

f .
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5.3. Experimental Validation

The designs x(1)f , x(6)f , and x(10)
f have been manufactured and measured. Photographs of the

fabricated structures are shown in Fig. 12, whereas comparisons of their simulated and mea-
sured S-parameters’ characteristics are given in Fig. 11. The results are in good agreement. The
simulated and measured power split errors are −0.08 dB and −0.15 dB for x(1)f , −0.11 dB and

−0.17 dB for x(6)f , as well as−0.08 and−0.11 for x(10)
f . The simulated and measured bandwidths

are 272 MHz and 270 MHz for x(1)f , 180 MHz and 190 MHz for x(6)f , as well as 38 MHz and

30 MHz for x(10)
f . Similarly to the previous design case, the increased losses for the measure-

ments are due to the SMA connectors (not included in the EM model, thus not accounted for in
the design process). The discrepancies between simulation and measurement responses are also
a result of fabrication tolerances.

a) b) c)

Fig. 12. Photographs of the manufactured CMRC-based coupler designs: a) x(1)f , b) bmrx(5)f , and (c) x(10)
f .

6. Conclusion

In this paper, a reliable and deterministic procedure for accelerated bi-objective design opti-
mization of miniaturized microwave couplers has been presented. The main optimization engine
is a sequential domain patching algorithm (SDP). In order to achieve better control over the sec-
ondary objectives, specifically, the power split error and the coupler bandwidth, a procedure for
correcting responses of the initial Pareto designs has been proposed. The key idea is to find a
minimum-distance modification of the design that leaves the operational bandwidth intact while
correcting the power split error by solving an appropriately formulated constrained optimiza-
tion sub-problem. The response gradients required by underlying linear expansion models are
estimated using finite differentiation (FD). The correction procedure incurs a negligible compu-
tational overhead because perturbations for FD are already obtained during execution of the SDP
algorithm.

As demonstrated using two examples of miniaturized rat-race couplers, a set of Pareto-
optimal designs can be obtained at a cost corresponding to a few dozens of high-fidelity model
simulations and with good control of the power split ratio even though only two primary objec-
tives (size minimization and bandwidth maximization) are handled directly. Comparison of the
refined corrected and uncorrected designs indicates that the correction scheme has an important
effect on the power split error and maintaining the desired structure bandwidth. The numerical
results are validated by measurements of the fabricated coupler prototypes.

Possible directions for the future research include application of extending the correction
mechanism to control other performance characteristics of microwave structures such as phase
shift, or bandwidth determined in terms of frequency range for which the power split error is
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below a specified threshold. The technique could be also used for two-objective optimization of
other structures with multiple performance characteristics, such as power dividers, multiplexers,
or Butler matrices.

It should be noted that the proposed correction scheme constitutes a significant enhance-
ment of the SDP framework that extends its applicability to problems that require handling more
than two design requirements at a time. From this perspective, a direction for the future work is
implementation of constraint handling capability directly into the SDP algorithm.
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