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Abstract. In the safety assessment of hydro-technical objects, it is necessary to combine different measurement techniques, calculations and 
experience of specialists in various fields of engineering. That is possible due to the current development of surveying technology. Undoubt-
edly, the integration of measurements, including technical assessment as well as object behaviour modelling, makes it possible to perform more 
comprehensive assessment of objects. Nevertheless, in order to obtain a multidimensional overview of an examined object – especially water 
dam – it is necessary to know all the possible errors that appear along the “observer-instrument-object” path. In this paper, the authors intended 
to investigate the influence of atmospheric conditions on the results of geodetic deformation measurements and attempted to consider surface 
deformation analysis, which is part of obligatory inspections of hydro-technical objects. The study was based on the geometry assessment of 
the vent wall of Rożnów water dam located within the borders of the South-Polish Protected Landscape Area. The measurements took place 
in the years 2013‒2015 and were performed using Z + F Imager 5010 laser scanner equipped with an integrated thermal camera. Surveying 
results and analyses based on archival data and forecasts of atmospheric conditions at the location of the hydro-technical facility can be applied 
while elaborating the rules for a control date selection. The proper definition of a measurement cycle will make it possible to avoid errors of 
interpretation for those facilities important from the flood protection, recreation and nature perspectives.
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gross errors and reduces costs. As a consequence, it provides 
a more reliable assessment of the technical condition and safety 
of hydroelectric facilities. Integrating measurements, incorpo-
rating numerical modeling of object behavior and assessing the 
technical condition of a variety of qualitative data ensures the as-
sessment of an object in a more comprehensive and transparent 
way. However, one should remember that the results of geodetic 
measurements are error-vulnerable due to the observer’s imper-
fections and changing atmospheric or environmental conditions. 
Nowadays, many automated measuring systems are produced 
with instrumental corrections automatically applied to surveying 
results but, unfortunately, factors affecting the observed object 
are usually not considered. It is common that the examined ob-
ject has impact on the natural environment causing long-term 
changes, which in consequence affects the behavior of the object 
itself. The impact of hydro-technical structures on the adjacent 
environment is examined in numerous publications [2, 3].

According to the Water Law [4] and guidelines for carrying 
out assessments of the health of hydro-technical objects [5], 
the technical condition of the dams should be checked twice 
a year and not less than once. The good practice is to perform 
these measurements annually in the same period each year, e.g. 
fall (late September to early November), spring (April-May) 
and by the same surveying team. Owners (users) of hydraulic 
structures often sign long-term contracts in which the deadlines 
for follow-up inspections are strictly defined. Land surveyors 
perform the inspections by measuring horizontal and vertical 

1.	 Introduction

Each hydro-technical building is exposed to many internal and 
external impacts that can influence its geometric and physical 
changes, especially including its material or – respectively to the 
topic of this work – surface properties of the materials it was 
made from. In order to obtain information about the condition 
of the object, geodetic deformation measurements need to be 
performed. During measurement, a discrete model is obtained 
representing the current state (shape) of the object of measure-
ment. With cyclically conducted measurements, it is possible to 
develop a deformation model [1]. The construction interpretation 
of the results of the measurements allows for the assessment of 
its technical condition and, in emergency cases, to commence 
intervention in order to prevent the risk of human life and often 
irreversible changes in the natural environment. In order to per-
form a correct interpretation of the measurement results, it is 
essential that the data of the analyzed model is obtained with 
possibly highest accuracy and contains no instrumental or envi-
ronmental errors. The development of measurement technology 
has made it possible to monitor continuous changes of an en-
gineering object state. It also accelerates surveying, minimizes 
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displacements of the object. Such measurements are made using 
precise total-stations equipped with electro-optical distance 
meters (EDM), taking measurements to the exposed parts of 
concrete structures. Recently, high-performance laser scanners 
have also become popular. Their surveying accuracy is strongly 
influenced by the ambient temperature and the temperature of 
the examined structure. The next part of the paper presents the 
influence of temperature changes on the geometry of the dam 
vent wall in Rożnów (near Nowy Sącz – the municipality of 
Gródek nad Dunajcem, Southern Poland). The measurements 
were made between 2013‒2015 by using both Z + F Imager 
5010 laser scanner equipped with a T-Cam integrated thermal 
camera and Leica Nova MS50 scanning total station. As a result 
of laser scanning performed on a selected surface, we obtained 
a point cloud characterized by point coordinates (X, Y), the 
intensity of a laser beam reflected from the measured surface 
as well as the local temperature of test surface measured in the 
window (0.15£0.15°C). The captured data indicate the correct 
selection of the surveying date depending on the short-term 
local meteorological forecasts and not only on the correspon-
dence of calendar dates.

2.	 Purpose and scope of analysis

The aim of the study was to demonstrate that the inclusion of 
atmospheric variability in the planning and implementation of 
geodetic control surveying is a factor influencing the reliability 
of research and the performed analysis. Atmospheric conditions, 
including temperature, sunlight and humidity, clearly affect 
the surface properties of the structure. The examined object 
is a heavy-concrete dam with a height of 49 m and a length of 
550 m. It was commissioned in 1943. Currently, it is subject to 
geodetic control surveying once a year – in autumn.

The location of the dam is significant in relation to the 
areas of nature protection. The dam itself is situated within 
the South-Małopolska Protected Landscape Area (Fig. 1) and 
is only about 1.7 km away from a Natura 2000 site. This site of 
nature protection – located west of the dam – is named Łososina 
(PLH120087) and covers the left bank of the Dunajec river. It 

Fig. 1. Location of the examined object in relation to protected areas

Fig. 2. Factors determining the quality of geodetic measurements
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The aim of the study was to demonstrate that the inclusion 
of atmospheric variability in the planning and 
implementation of geodetic control surveying is a factor 
influencing the reliability of research and the performed 
analysis. Atmospheric conditions, including temperature, 
sunlight and humidity, clearly affect the surface properties 
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dam with a height of 49 m and a length  
of 550 m. It was commissioned in 1943. Currently, it is 
covered by geodetic control surveying once a year - in the 
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The location of the dam is significant in relation to the areas 
protected by nature. The dam itself is situated between the 
borders of the South-Małopolska Protected Landscape 
Area (Figure 1) and is only about 1.7 km away from the 
Natura 2000 site. This form of nature protection - placed in 
the West of the dam - is named Łososina (PLH120087) and 
constitutes the left bank of the Dunajec River. The Natura 
2000 site has been designated for the protection of fish. Due 
to the characteristic location of the research facility and 
considering its function of flood protection, the importance 
for recreation and energy production, it has a great impact 
on the development of the fauna and flora of the 
surrounding natural environment - especially in the case of 
an emergency or structural disaster. 

 
Fig. 1. Location of the research facility in relation to protected areas (own 
elaboration) 
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Regarding the expected high control surveying accuracy, 
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presents a schematic view of different identifiable error 
sources. 
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has been designated for the protection of fish. Due to the char-
acteristic location of the dam and considering its function of 
preventing floods, the importance for recreation and energy pro-
duction, it has a great impact on the development of the fauna 
and flora of the surrounding natural environment – especially 
in the case of an emergency or structural disaster.

3.	 The effect of atmospheric factors  on geodetic 
measurements

Regarding the expected high control surveying accuracy, the 
weather conditions that influence measurements, as well as the 
temporal effects on the examined structure, should be consid-
ered while operating the instrument. Fig. 2 presents a schematic 
view of different identifiable error sources.

The error sources related to the measurement conditions, 
instrument characteristics, the local parameters of the plumb 
line (the Earth curvature), the observer’s experiences or the 
object properties are so important that during deciding (above 
all – precise) measurements they have to be considered. Per-
forming a reliable accuracy test (validation of the manufactur-
er’s assumptions) can be performed, among others, by using 
the procedures included in the ISO standards (in Poland: 
PN-ISO). According to surveying equipment, these belong to 
the series ISO 17123.

When validating the operation of surveying instruments ac-
cording to the above mentioned standards, it should be kept in 
mind that the results of performed tests show only so called 
“raw” tolerances (standard deviations) obtained without con-
sidering other factors affecting the measurements. It is directly 
linked with systematic errors and the influence of environmental 
factors affecting the results of land surveying. Both error-genera-
tion groups are the dominant source for real field measurements, 
so in addition to the ISO test, it is advisable to conduct field ac-
curacy checks examining the impact of field and environmental 
conditions. That considered, one can assume that the surveying 
accuracy obtained as a result of carrying out ISO tests can be 
even several times greater than the actual accuracy of geodetic 
works determined while their post-processing in the office.
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The measurement results are often influenced by the po-
sition of the local plumb line [6] – but this factor will be 
more significant in precision geodetic networks, or wherever 
the distances exceed at least a few hundred meters. So-called 
“personal errors” are generally minimized by using robotic 
total-stations (RTS) equipped with the modules of automatic 
target recognition (the Swiss manufacturer of geodetic instru-
ments – Leica Geosystems AG names this technology “ATR”). 
Placed on pillars (forced centering) or on industrial tripods, 
electronic tacheometers (total-stations) supported by classical 
servomotors, rotating mechanisms using the piezoelectric effect 
or electromagnets are able to practically eliminate personal er-
rors. The only significant factor that cannot be overlooked is the 
ambient refraction characterized by the changing path of a sur-
veying medium (laser beam) while passing through air layers 
and meeting different meteorological parameters. Regarding 
that, we can consider here both the influence of local atmo-
sphere as well as holistic climate factors with their variability 
– observed especially in recent years. The global warming 
process is gaining in importance, which is mainly due to the 
progressive changes in the local microclimate. The atmospheric 
factors directly impacting the results of geodetic measurements 
in the form of disturbances in the measurement medium – in-
frared beam (used in older types of electronic totals) or laser 
(newer generations of total stations and laser scanners). These 
distortions have different origins and, therefore, are worth to 
be discussed.

The influence of refractive factors on the beam pattern may 
be horizontal (lateral refraction) or vertical. In typical engi-
neering geodesy, target distances do not usually exceed several 
hundred meters. Due to the required accuracy of the positioning 
of control points, geodetic structural monitoring has a number 
of recommendations regarding technological aspects. In the 
case of using smaller prisms, it is advisable that the distances 
are not shorter than 10 m but not longer than 150 m. This 
limitation results from the fact that, at distances of less than 
10‒20 m, there is sometimes considerable ambiguity in the au-
tomatic target recognition. In the case of distances greater than 
150 m, with the presence of disturbing factors such as variable 
lighting, haze and dustiness, and with less favorable network 
geometry, the point positioning accuracy may fall below the 
industry requirements. Nevertheless, it is often necessary to 
measure distances longer than 150 meters. In such case, there 
should be more control points deployed in the particular test 
area, increased measurement frequency (surveying interval), or 
more precise reflectors with a larger prism diameter. Despite 
this fact, it is not advisable to use target distances of more than 
400‒500 m, which in the case of measuring water dams can be 
quite challenging for surveyors.

For control measurements or continuous monitoring per-
formed on objects by means of precision electronic total-sta-
tions, the correction is usually subjected to the principal dis-
tance [7] as shown in Fig. 4. The measured “raw data” is cor-
rected directly by the instrument firmware by executing one of 
the following procedures:
–	 automatic distance correction taking into account atmo-

spheric parameters – pressure, temperature and humidity;

–	 automatic correction of each measured distance, taking into 
account the current readings from the meteo-sensor,

–	 automatic distance correction based on the comparison of 
the currently measured distance with its reference value 
– in this case, no meteorological parameters are taken into 
account.
Each of the presented procedures has a set of advantages 

and disadvantages and is intended for a variety of specific field 
applications.

Fig. 3. Graph of atmospheric correction of atmospheric pressure and 
humidity (source: Technical Reference Manual MS50, Leica Geosys-

tems AG)
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Entering meteorological parameters at the beginning of 
measurement and their subsequent verification at the end does 
not take into account the variability during the entire measure-
ment cycle. It is only a generalized value, which can lead to er-
rors. However, this approach will be sufficient when surveying 
under constant conditions – especially indoor [8]. Using the 
meteo-sensor introduces to the control system another element 
that has to be managed in terms of IT. Therefore, it is necessary 
to provide additional power supply and a transmission module. 
In addition, the sensor measures the atmospheric parameters at 
their location and does not take into account their variability 
along the entire distance. Moreover, there is a danger of intro-
ducing erroneous corrections when the sensor stays in sunlight 
or in the shade while the condition of the object is quite dif-
ferent. The use of meteo-sensor, however, provides current at-
mospheric parameters, which, with a large amount of collected 
data, is a solution that facilitates the proper functioning of the 
system. In many cases, several meteo-sensors are used on the 
site, which significantly improves the reliability of the moni-
toring, but – in the meantime – generates significant costs and 
requires increased IT support. Determining distance corrections 
for the reference base may seem to be the simplest solution but 
in the case of multiple error sources occurring at the same time, 
the displacement of the control points will be subject to high 
uncertainty and ambiguity. It will lead to so-called data peaks 
– difficult to interpret and, when using monitoring systems, gen-
erating false alarms. Each approach, therefore, requires case 
studies and use of the observer’s expertise. In recent years, the 
use of thermography is also of great importance. Thermal im-



90

J. Zaczek-Peplinska, K. Podawca, and K. Karsznia

Bull.  Pol.  Ac.:  Tech.  66(1)  2018

aging provides additional information about the exact tempera-
ture distribution on the object as well as in its near surrounding, 
which completes the current model of the studied structure.

For example, in Leica Geosystems precise total-stations, 
distance correction is based on functional dependency [7]:

	

∆D = 286,34 ¡ 

¡ 


0,29525 p
(1 + α ∙ t)

 ¡  4,126 ∙ 10–4

(1 + α ∙ t)
 ∙ 10(7,5 ∙  t

(237,3 + t)  + 0,7857)



� (1)

where:
	 ∆D	 –	 atmospheric correction [ppm],
	 p	 –	 atmospheric pressure,
	 t	 –	 air temperature [°C],
	 h	 –	 relative humidity [%],
	 α	 –	 coefficient equal 1/273.15.

This formula applies to air humidity not exceeding 60%. In 
case this value is exceeded, a generalized atmospheric correc-
tion of 2 ppm (2 mm/km) is usually assumed.

In the case of measurements carried out by scanning total 
stations or laser scanners, except the refraction influences, at-
mospheric parameters can also influence beam intensity [9].

For instruments using the impulse measurement principle, 
the correction for distance measurement can be determined 
from the equation [10]:

	 D = 
C0

2 ∙ n
 ∙ tl + K0� (2)

where:
	 n	 –	 coefficient of atmospheric refraction,
	 C0	 –	 light speed in vacuum,
	 t l	 –	 double-run time of laser beam (impulse),
	 K0	 –	 correction coefficient of a null-place in EDM.

For phase instruments, this relationship will take the form:

	 D = N ∙  
C0

2 ∙ n ∙ f
 + R + K0� (3)

where:
	 f	 –	 modulation frequency of a bearing beam
	 N	 –	 full amount of phase cycles
	 R	 –	 the rest from establishing a full value of phase cycles.

On the basis of these formulas, different refraction models 
have been developed, later used by manufacturers of geodetic 
instruments.

4.	 Changeability of atmospheric-environmental 
conditions

For many years the climate or its variability has been the sub-
ject of interdisciplinary research. In Poland, such studies are 
conducted within the framework of the European projects [11] 
or university analyses [12‒15].

Considering the analysed geodetic survey problems, the 
authors focused on presenting changes in environmental con-
ditions understood as the state of atmospheric parameters in par-
ticular time and place. It was assumed that changes in weather 
conditions objectively reflecting the meteorological condition 
of the research area will be based on the values recorded at 
Nowy Sącz station, due to its proximity to the objects located in 
Rożnów. Archival studies unequivocally confirm that the vari-
ability of thermal characteristics in Nowy Sącz is consistent 
with the trends observed in more general spatial scales, but in 
some periods the effects of local factors are evident (Fig. 4).

By examining the multi-annual variations in the mean values 
of minimum and maximum temperatures, it was found that the 
minimum and maximum temperatures show a statistically sig-

Fig. 4. Variability of maximum and minimum temperatures in the period 1951‒2000 at Nowy Sącz station, a) maximum temperatures  
b) minimum temperatures [16]
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Fig. 4. Variability of maximum and minimum temperatures in the period 1951-2000 at Nowy Sącz station, a) max. 
temperatures b) min. temperatures [16]. 
 
By examining the multi-annual variations in the mean 
values of minimum and maximum temperatures, it was 
found that the minimum and maximum temperatures show 
a statistically significant upward trend (p <0.05). Extreme 
temperatures over 50 years - the highest of 36.7oC and 
20.5oC, and the lowest -17.8oC and -33.5oC [16] show how 
the weather conditions were uneven in different years. 
 
In general, the climate of Poland is characterized by high 
variability of weather and significant variation of the 
seasons in successive years (average annual air temperature 
values range from slightly above 5°C to nearly 9°C). 
Unfortunately, in recent years we can observe a number of 
deviations from the expected weather variations, such as 
the first half of May 2017. Large variations in average daily 

and monthly temperatures are confirmed by the Polish 
Institute of Meteorology and Water Resources (IMGW). 
Therefore, trying to determine optimal periods of geodetic 
surveys, we should take into account not only average, 
annual or maximum-annual temperatures but daily or even 
hourly conditions as well (Table 1). The significance of this 
approach can be illustrated by graphs of temperature and 
humidity for Nowy Sącz stations for September 2003 and 
2010. It can be clearly seen that with very close daily 
averages there can be significantly large differences 
between the maximum and minimum temperatures of  
a given day. At the same time, very large temperature 
variations are visible between 18. and 24. September 
(Figure 5). 

 

 
Fig. 5. Variability of average, maximum and minimum temperatures in September 2003 and 2010 at Nowy Sącz station (own elaboration based on IMGW 
data) 

 
 
 

a) b) 
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nificant upward trend (p < 0.05). Extreme temperatures over 
50 years – the highest of 36.7°C and 20.5°C, and the lowest 
–17.8°C and –33.5°C [16] show how the weather conditions 
were uneven in different years.

In general, the climate of Poland is characterized by high 
variability of weather and significant variation of the seasons in 
successive years (average annual air temperature values range 
from slightly above 5°C to nearly 9°C). Unfortunately, in re-

cent years we can observe a number of deviations from the 
expected weather variations, such as the first half of May 2017. 
Large variations in average daily and monthly temperatures are 
confirmed by the Polish Institute of Meteorology and Water 
Resources (IMGW). Therefore, trying to determine optimal pe-
riods of geodetic surveys, we should take into account not only 
average, annual or maximum-annual temperatures but daily or 
even hourly conditions as well (Table 1). The significance of 

Table 1 
Long–term averages from 2001‒2016 for the city of Nowy Sącz, compiled for September and October, when the most common control 

measurements of hydro–technical objects are performed [based on IMGW data]

Ye
ar Month

Average 
monthly air 
temperature 

(°C)

Absolute 
maximum of daily 
temperature (°C)

Absolute 
minimum daily 

temperature (°C)

Average 
humidity 

(%)

Absolute maximum 
of humidity  

(%)

Absolute minimum 
of humidity  

(%)
max data min date max date min date

19
86 September 12.4 27.8 16.09.86 –0.7 26.09.86 79.4 97 10.09.86 62 20.09.86

October 8.5 26.7 02.10.86 –3.1 25.10.86 74.4 94 10.10.86 49 19.10.86

19
87 September 14.4 27.7 13.09.87 0.8 29.09.87 78.4 95 30.09.87 67 01.09.87

October 10 23.1 19.09.87 –4.9 30.10.87 75.3 96 24.10.87 38 06.10.87

19
88 September 13.8 26.9 01.09.88 6.5 04.09.88 80.1 92 21.09.88 67 24.09.88

October 8.4 25.5 13.10.88 –5.3 26.10.88 74.5 88 31.10.88 46 27.10.88

19
89 September 14 27.9 19.09.89 1.5 30.09.89 83.9 97 04.09.89 71 13.09.89

October 10.1 24.6 23.10.89 1.6 14.10.89 81.6 97 09.10.89 70 12.10.89

20
01 September 12.8 21.3 21.09.01 1.5 28.09.01 82.7 97 24‒25.09.01 59 10.09.01

October 12 26.6 03.10.01 –5.2 25.10.01 82.3 95 17.10.01 61 31.10.01

20
03

September 13.8 30.9 21.09.03 1.1 26.09.03 74.6 96 12.09.03 48 23.09.03

October 6.4 20.3 02.10.03 –8.3 25.10.03 
28.10.03 79.5 93 04.10.03 

27.10.03 57 29.10.03

20
04 September 13.1 26.2 14.09.04 2.1 18.09.04 75.5 87 25‒27.09.04 58 12.09.04

October 10.9 23.7 06.10.04 –2.9 13.10.04 76.8 95 09.10.04 55 14.10.04

20
06 September 15.6 27.6 07.09.06 5 10.09.06 71.5 92 20.09.06 61 05‒06.09.06 

13‒14.09.06
October 11 25.4 03.09.06 –5.4 31.10.06 72.2 92 14.10.06 40 19.10.06

20
07 September 12.4 25.7 17.09.07 1.1 21.09.07 75.4 58 29.09.07 94 05.09.07

October 7.8 22.1 01.10.07 –2.5 15.10.07 85.5 100 24.10.07 64 16.10.07

20
08 September 12.7 32.2 07.09.08 3 28.09.08 82.2 95 16‒17.09.08 

20‒21.09.08 62 04.09.08

October 10.2 21.5 14.10.08 0.5 06.10.08 82 96 03‒04.10.08 61 31.10.08

20
09 September 15.1 28.9 03.09.09 4.3 30.09.09 78.8 92 13.09.09 65 01.09.09

October 8.1 24.9 08.10.09 –1.6 22.10.09 83.2 94 11.10.09 63 04.10.09

20
10 September 12.4 22.5 23.09.10 3.9 20.09.10 83.7 96 11.09.10 59 25.09.10

October 6 19.3 31.10.10 –4.2 28.10.10 79.5 99 18.10.10 47 31.10.10

20
11

September 15.7 30.8 05.09.11 3.7 25.09.11 76.6 96 21.09.11 58 05.09.11

October 8.5 24.4 04.10.11 –2.9 18.10.11 81.2 94 07.10.11 
22.10.11 59 19.10.11

20
12

September 14.9 29.6 11.09.12 1.9 22.09.12 77.1 97 20.09.12 59 11.09.12

October 9.3 24.3 06.10.12 –1.6 12.10.12 80.6 95 02‒03.10.12 
23.10.12 61 06.10.12

20
13 September 12.1 24.4 08.09.13 0.7 28.09.13 75.8 92 17.09.13 61 08.09.13

October 10.7 24.4 13.10.13 –2.9 05.10.13 75.5 95 16.10.13 55 28.10.13

20
14 September 14.8 26.4 12.09.14 3.4 29.09.14 82.6 95 27.09.14 68 19.09.14

October 10.1 24.4 11.10.14 –4.3 29.10.14 85 99 23.10.14 67 08.10.14

20
16 September 15.5 27.8 12.09.16 4.5 27.09.16 76.9 94 19.09.16 64 29.09.16

October 8.2 24.0 01.10.16 –1.7 28.10.16 79 90 22.10.16 64 31.10.16
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this approach can be illustrated by graphs of temperature and 
humidity for Nowy Sącz stations for September 2003 and 2010. 
It can be clearly seen that with very close daily averages there 
can be significantly large differences between the maximum 
and minimum temperatures of a given day. At the same time, 
very large temperature variations are visible between 18 and 
24 September (Fig. 5).

Presenting the selected climate parameters on a statistical 
basis underlines the changes that have taken place over the 
years. Nevertheless, it should be noted that the presence of 
a large water surface also locally influences the temperature 
or humidity. Generally, the authors are inclined towards a fa-
vorable forecast of the influence of the Rożnów reservoir on 
the microclimate of its surroundings which can result in the 
development of agriculture [17]. Similar opinions are given for 
the local climate of other water reservoirs in Southern Poland 
[18]. It should be mentioned, however, that in the context of 
choosing dates for control measurements, future simulations of 
changes in thermal conditions need to be taken into account. 
They were developed for the entire 21st century with particular 
emphasis on the period 2011‒2030 and 2081‒2100.

It follows that for the fall season the temperature changes 
in the period 2011‒2030 will not exceed 0.1°C, similarly to the 
emission scenarios for the years 2081‒2100 [19].

5.	 Thermal influence on laser scanning  
of a water dam

Data from laser scanning is used in geomorphology [20], hy-
drology [21], forestry [22], archaeology [23, 24], hydraulic 
engineering and geodetic engineering [25], glaciology [26] 
and many other fields. Laser scanning technology can be dis-
tinguished into terrestrial laser scanning (TLS) and airborne 

laser scanning (ALS). The appropriate technique is chosen 
depending on the type of reports and research, however, each 
of them has its use in surface research, landslide research and 
engineering object measurements. Due to the different natures 
of data in TLS and ALS, this article concentrates on using data 
from terrestrial laser scanning. Terrestrial laser scanners are 
also combined with external sensors, so that, apart from geo-
metric data and intensity values, a thermal or colour informa-
tion as RBG values can be obtained. Applications of a thermal 
camera integrated with a terrestrial laser scanner can be found 
in the construction industry as a device to detect and eval-
uate thermal leakage of a building. For many years, thermal 
imaging has been widely used in road building, construction, 
spatial planning or in natural studies [27‒31]. The influence 
of ambient temperature on the tested structure as well as on 
particular geodetic observations can be determined using the 
same instrument while controlling the object in different pe-
riods. As an example, the authors have studied the surveying 
results obtained from laser scanner in September-October, 2013 
and 2015. The measurements relied on a laser scanning of the 
vented section of blind elements of the water dam in Rożnów, 
Southern Poland. They intended to perform the analysis of 
the scanning data due to the universal character of executing 
distance measurements by laser distance meters integrated with 
scanners and total-stations. Unlike discrete angle-linear mea-
surements, the quasi-continuous character of laser scanning 
(X, Y, Z, intensity and thermography coordinates) in the ex-
amined area [21, 32]. In Fig. 6 the scanned structural sections 
are marked in red.

All recorded scans have been transformed into a uniform 
coordinate system defined by the signal points on the wall. 
These points are additionally measured using total-station 
and their coordinates are determined in the local coordinate 
system.

Fig. 5. Variability of average, maximum and minimum temperatures in September 2003 and 2010 at Nowy Sącz station (based on IMGW data)

Tavg2003
Tmax2003
Tmin2003
Tavg2010
Tmax2010
Tmin2010

[°C]

[days of the month]
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Fig. 6. View of the vented wall of the Rożnów water dam with the scanned area red-marked

Date, time,  
air temperature, 
temperature value range

Thermal images

28.09.2015,
6PM,
10.0˚C,

9.700000

1.000000

–5.312500

3.10.2015,
10AM,
8.0˚C,

9.700000

1.000000

–5.312500

3.10.2015,
6PM,
12,0˚C,

9.700000

1.000000

–5.312500

Fig. 7. Compilation of color-coded data scanned from the same station on 28.09. and 8.10.2015
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Figure 8 shows the results of scanning the vented wall surface 
from the station located in the middle of the island separating 
the active hydropower plant from the overflow sections (bottom 
bumps and surface overflows). Measurements were made on 

28.09 and 8.10.2015 with the Z + F Imager 5010 laser scanner 
equipped with an integrated T-Cam thermal camera. In Fig. 8, 
we can observe the differences in surface temperature based on 
the point-cloud of the thermal data. The atmospheric conditions 
prevailing in measured days are presented in Table 2. The tem-
perature of concrete recorded at level 2 of the control gallery 
inside the facility throughout the day was constant at 8.2°C.

At the top of the scans (Fig. 8), we can observe irregular, 
“spherical” areas. Such places are characterized by different 
surface properties (calcium carbonate leaks), which are clearly 
visible in the RGB optical image. Because of other surface 
properties these areas heat up and give off heat at a different 
rate than the concrete surface without infiltration.

Due to the large temperature variation on the surface 
caused by the intense daily sunlight of the open area, the au-
thors performed an experiment to demonstrate the influence 
of surface temperature changes on laser scanning. The dam 
wall was scanned twice on a low-clouded day (30.09.2015) – in 
the morning (10:00 am, air temperature t = 10°C) and in the 
evening (8.00 pm, t = 8°C). Due to its location on the North-
Western side, the wall is exposed to high solar activity during 
good weather and the daily temperature difference recorded 
on the wall surface is up to 30°C in the Autumn (September / 
October). The test was performed by using Leica Nova MS50 
scanning total station. Registered surface colored scans of laser 
beam reflection intensity are shown in Fig. 9. The differences 

Day  30-09-15  10 am, 10°C

Night  30-09-15  8 am, 8°C

Fig. 8. The results of scanning the surface of a massive concrete 
structure at different times of the day; test field range: 30£25 m [33]

Fig. 9. Areas on the wall surface selected for analysis: a) areas marked 
on the optical image layout, b) areas marked on the scan (test field 

range: 1, 2, 3:5£3 m)

Table 2 
Atmospheric conditions – data from sensors (water dam “Rożnów”)

Time Air 
temperature

Air 
humidity

Dew 
point 

Concrete 
temperature 

Concrete 
surface 

humidity
[°C] [%] [°C] [°C] [%]

28.09.2015
12.00 21.00 – – – –
18.00 10.00 – – – –

30.09.2015

10.00 10.00 –
in the middle of the wall  

(area 2, Fig. 9)
– –2.00 –

20.00 8.00 – – 21.20 –
8.10.2015

10.00 8.0 – – – 88.0
11.00 9.9 67.5 4.7 – 70.5
12.00 14.6 64.0 5.8 13.2 –
14.00 19.4 42.6 7.2 17.3 –
18.00 12.0 – – – –

a)

b)
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between recorded intensity values ​​were compared (in selected 
areas – Fig. 10). In Table 3 the percentage changes of the in-
tensity value are compared with 10 am for ten-hour solar op-
eration.

Table 3 
Changes in recorded values for selected areas of the concrete surface 

between 10 am and 8 pm (10-hour interval)

Area Mean 
Intensity 

value 10 am

Mean 
Intensity 

value 8 pm

Difference 
(ΔI)

% 
(approx.)

1 –2010 –1870 140 10

2 –1050 –6500 400 40

3 –1250 –1050 200 25

Based on the analysis of recorded values of laser beam re-
flection intensity, ambient temperature, the concrete temperature 
on the surface of the wall and its insolation, it was found that:

–	 the effect of air temperature, concrete and sunlight on the X, 
Y, Z-coordinates scanned with Leica Nova MS50 total-sta-
tion can be estimated as ±0.005 m,

–	 there is a significant impact of sunlight and changing con-
crete temperature on recorded laser beam intensities – es-
pecially in brighter areas (upper part of the scan); these 
changes may be significant for the technical assessment of 
the facility which indicates the appropriateness of attaching 
data from other sources such as thermal camera.
In order to further investigate the effect of surface tem-

perature differences on geodetic measurements (in particular 
on distance measurement results using a laser distance meter), 
a differential analysis of the wall fragment scans was per-
formed. The scans were made on 30.09.2013 and 8.03.2013 at 
midday, with the same level of topwater. The results of the wall 
scan – color images of the laser beam intensity (I) are shown 
in Fig.10. Thermal imaging (T) is shown in Fig. 11c and 11d. 
In the right part of the scans, we can identify the difference in 
recorded temperature values. Maximum surface temperature 
differences in concrete (∆tb) equals 1.5°C. The difference in 
air temperature on measuring days is 6.4°C.

The selected scan sections were fitted by using least squares 
method as well as the scanned points were scaled from the fit 

Fig. 10 Selected area for the vent wall of the Rożnów dam: a) picture 
from Nikon 300i – 2013 digital camera, b) picture in color intensity (I),  

(test field range: 10£10 m)

(a)

(b)

(b)

(a)

Fig. 11 Selected area for the vent wall of the Rożnów dam a) 2013,  
b) 2015 (test field range: 10£10 m)
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surfaces in order to check the quality of plane fitting and to 
compare the principal parameters of the surface roughness [34]. 
Fig. 12 presents the color map of the distance from the plane 
(scan from 2013). On the computed histograms (Fig. 13a, b), the 
differences between the two analyzed scans can be observed.

Analogically, there were compared scans performed on the 
same day but at different times. The measurement was made 
on 8.10.2015 at 12.00 and 2 pm at an ambient temperature 
difference of 4.8°C. The calculated differences from the fitted 
planes reach sizes up to 5 mm within the slits and 1‒2 mm in 
the homogeneous area. Fig. 14 presents distance maps from 
the fitted plane for measurements made in 2015 under different 
atmospheric conditions.

Fig. 12. Colour distance map from the fitted plane – point cloud from 
2013 (in the central part of the drawing there is a gap in the concrete 
surface for which the distance from the fitted plane is locally greater) 

– test field range: 10£12 m

Fig. 13. Histograms of the calculated distances: recorded points from 
the fitted plane: a) scan from 2013, b) scan from 2015

(a)

C2M signed distances (7342540 values) [256 classes]

C2M signed distances

C
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750000

500000

250000

0
–0.3 –0.15 0 0.15 0.3 0.45

(b)

C2M signed distances (7341054 values) [256 classes]

175000

150000
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125000

100000
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(a)

Fig. 14. Differential maps for a selected scan area performed under 
different atmospheric conditions (2015)

C2M signed 
distances

1

C2M signed distances = 0.022

C2M signed distances = 0.014

C2M signed distances = 0.016

2

C2M signed distances = 0.021

C2M signed distances = 0.014

C2M signed distances = 0.017

6.	 Conclusions

Based on the performed analyses, the dependence between the 
surveying results and the surface temperature can be proved. 
The general accuracy of such analyse does not exceed the range 
of 5 mm within the localized concrete slits /cracks and 1‒3 mm 
in the areas that are homogeneous in terms of surface geom-
etry (areas of low roughness parameters), at the changes of air 
temperature of 2°C÷4°C and concrete temperature range of 
2°C÷20°C. The presented differences are greater than those 
modeled for the Rożnów dam toward the mean direction of the 
load caused by water damming.

According to the model described in [35], the maximal 
displacements in the area of the analyzed scans equal from 
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1.4 mm to 3.18 mm. The authors elaborated and discussed an 
isoline model of predicted object displacements (Fig. 15). The 
real occurrence of control point displacements larger than the 
50% may cause object failure. The observed differences in the 
results of measurements performed on days with different air 
temperatures show how important it is to perform measure-
ments under similar atmospheric conditions.

The analyses of archival meteorological data have shown 
that the variability of temperature and humidity in the studied 
periods are statistically significant, which is particularly evident 
in the case of annual and seasonal averages. It can also be con-
cluded that the displacement measurements of hydro-technical 
objects should not be planned for spring but definitely for au-
tumn, when annual changes in temperature and humidity have 
the smallest values.
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