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A comparison of methods solving repeatable inverse
kinematics for robot manipulators

IGNACY DULEBA and IWONA KARCZ-DULEBA

In this paper two recent methods of solving a repeatable inverse kinematic task are com-
pared. The methods differ substantially although both are rooted in optimization techniques.
The first one is based on a paradigm of continuation methods while the second one takes advan-
tage of consecutive approximations. The methods are compared based on a quality of provided
results and other quantitative and qualitative factors. In order to get a statistically valuable com-
parison, some data are collected from simulations performed on pendula robots with different
paths to follow, initial configurations and a degree of redundancy.
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1. Introduction

Many robotic tasks at factory floors are performed cyclically in a virtually in-
finite loop of same actions performed on each consecutive item being processed.
Although a production cycle requires a cyclic behavior of the end-effector of a
manipulator (in a task-space) only, the cyclicity in a configuration space is also
desirable. In this case only once a collision avoidance between a manipulator
and its surrounding is to be checked and an optimization of one cycle is automat-
ically extended to any cycle to follow. A practical necessity forced to define an
important special kinematic task for robot manipulators called repeatable inverse
kinematics [1]. The task relies on planning a loop in a configuration space which
corresponds to a given loop in a task-space. Usually an entry configuration to the
loop is also given. In robotic literature there exist at least two main approaches
to solve the repeatable inverse kinematics task.

The first one have been initialized by Roberts and Maciejewski [12]. The
researchers have noticed that an extension of original kinematics into non-
redundant one, gives locally a unique solution of inverse kinematics [8]. So, the
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repeatability in a configuration space is guaranteed if only the planned trajec-
tory does not pass through any singular configuration. As the extension is free
to choose, some extra requirements can be imposed on it to optimize the mo-
tion along the loop in a configuration space. A desired trajectory should be short
to optimize an energy of motion and make the manipulator to occupy as small
volume in a task-space as possible. Locally, around a given configuration, the
shortest motion is generated with the Moore-Penrose (pseudo-) inverse kinemat-
ics [9]. Therefore, it is natural to extend the original kinematics in such a way
that its first columns of the inverse of the augmented Jacobian matrix to be as
close to the pseudo-inverse Jacobian matrix as possible over an assumed region
in a configuration space [6, 12]. Generally, this approximation task is difficult to
solve as it involves unknown partial differentials [10]. However, when a class of
functions is assumed (usually small degree polynomials) to describe unknown
augmenting functions in a parametric form, the approximation task is reduced
into a standard (although multi-dimensional) optimization problem to search for
coefficients of the augmenting functions [6]. Recently, a modification of this ap-
proach has been proposed aimed at making it task-dependent. This approach is
recalled later on as it is one of the methods being compared [3].

The second method to compare is based on principles of continuation meth-
ods [11] and propagated in robotics by Quinlan and Khatib [7]. In robotics it has
been applied to optimize paths of mobile robots. This method of solving repeat-
able inverse kinematics construct iteratively a series of loops in a configuration
space (Q-loops) which mapped (via forward kinematics) into a task-space con-
verge to a given loop (X-loop) there. The current (initial) Q-loop is trivial as it is
composed of a single initial configuration and apparently does not generate a de-
sired X-loop (but only its initial point). In consecutive iterations, a trial point in
X-space located on X-loop is selected and, using the Newton algorithm with opti-
mization in a null space of the Jacobian [9], a configuration is computed to reach
the point. This configuration is added to designed Q-loop configurations and the
configurations, when interpolated and mapped into X-space, give rise another X-
loop. If the X-loop is close enough to the given one, the algorithm is completed.
Otherwise, more and more configurations are added to Q-loop to get a desired
accuracy of tracing the given X-loop. A convergence of the presented procedure
is guaranteed as the distance between a current X-loop and the given X-loop
decreases monotonically. Details of the method have been presented in [2].

The outline of the paper follows. In Section 2 a repeatable inverse kinematic
task is defined and the Newton algorithm of inverse kinematics for redundant
manipulators is recalled in two versions: the basic one – without optimization,
and extended one – with optimization in a null space of the Jacobian matrix. Both
versions are extensively used by methods being compared. Then, two aforemen-
tioned approaches to solve the repeatable inverse kinematic tasks are discussed in
a nutshell. Complete linear equations for the method of iterative approximations
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with general second degree polynomials approximating the Jacobian functions
are provided. In Section 3 some factors useful in comparing the two approaches
are discussed. Based on them, some advantages and disadvantages of the meth-
ods are shown. Simulation results are provided in Section 4. The simulations are
performed on models of pendula with the redundancy index modified in order to
check various aspects of the algorithm and its parameters. Section 5 concludes
the paper.

2. Repeatable inverse kinematics: the task and algorithms

2.1. Repeatable inverse kinematics task

Forward kinematics k transforms a configuration q ∈ Q into a generalized
position x ∈ X. Q/X is a configuration/task-space, respectively. For redundant
manipulators, considered later on, dimQ = n,dimX = m, n > m and the redun-
dancy is described by the number r = n−m. In the task-space a closed path
(X-loop) is given

{xxx(s),s ∈ [0,smax], xxx(0) = xxx(smax)}. (1)

Repeatable inverse kinematics is aimed at finding a cyclic path qqq(·)∈Q (Q-loop)
which corresponds to X-loop (1)

∀s∈[0,smax] kkk(qqq(s)) = xxx(s), qqq(0) = qqq(smax). (2)

Additionally, an entry configuration qqq(0) to the Q-loop is also given kkk(qqq(0)) =
xxx(0). A non-repeatable inverse kinematic task is solved using the Newton algo-
rithm [9]

qqqi+1 = qqqi +ξ ·JJJinv(qqqi)(xxx(s)−kkk(qqqi))

(
+η(IIIn −JJJ#(qqqi)JJJ(qqqi))

∂ f

∂qqq

∣∣∣
qqq=qqqi

)
, (3)

where i is the iteration counter, ξ is a small, real and positive parameter and
an initial configuration qqq0 is appropriately selected. The goal points xxx(s) in the
X-space are set for some increasing sequence of the argument s. A resulting con-
figuration, obtained for the previous value of s, serves as the initial configuration
qqq0 of the current iteration (for s = 0, qqq0 = qqq(0) is known). For non-redundant
kinematics JJJinv = JJJ−1 is an inverse of the the Jacobian matrix JJJ = ∂kkk/∂qqq, while
for redundant kinematics JJJinv = JJJ# = JJJT (JJJJJJT )−1 is a (Moore-Penrose) pseudo-
inverse of JJJ as the matrix is not square in this case. For non-redundant manipu-
lators, the null-space of the Jacobian is typically trivial, thus there is no reason
to optimize in the null-space, η = 0.
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In its basic form, η = 0, the Newton algorithm searches for such a configura-
tion which realizes the point xxx(s). In its extended version (for redundant manip-
ulators only), η 6= 0, additionally optimizes a scalar function f (qqq). The Newton
algorithm is completed when an error ‖kkk(qqqi)−xxx(s)‖ drops below a given thresh-
old value δ . As a rule, the algorithm (3) does not generate a Q-loop when applied
to consecutive points xxx(s) of X-loop (1).

2.2. An algorithm based on the Jacobian augmentation (Method 1)

In this algorithm kinematics kkk(qqq) is augmented with r components
kkkadd(qqq) = (km+1(q), . . . ,km+r(qqq))

T to form non-redundant kinematics kkkaug(qqq) =
(kkk(qqq)T ,kkkadd(qqq)

T )T , the Newton algorithm (3) is applied with η = 0 and JJJinv =
JJJ−1

aug,trunc where J−1
aug,trunc(qi) collects first m columns of the inverse of the aug-

mented Jacobian matrix JJJaug = ∂kkkaug/∂qqq. The algorithm (3) is run for some
points xxx(s) with the variable s increased. An initial configuration qqq0 for the cur-
rent task is selected as the final configuration from the previous run. For the
first task qqq0 = qqq(0). Resulting configurations are interpolated (usually linearly)
to form a final Q-loop.

In this algorithm the only item to be designed is kkkadd(qqq). A pseudo-inverse
of the Jacobian matrix locally maximizes a motion of the end-effect for a fixed,
small displacement in a configuration space thus it is desirable to search for
an augmentation of the matrix approximating the pseudo-inverse solution [6].
Probably, the simplest augmentation of kkk(qqq) can be performed using the Singular
Value Decomposition algorithm [5] which allows to decompose the Jacobian
matrix JJJ (at a given configuration the matrix is composed of real numbers)

JJJ =UUU [DDD 000]VVV T = [UUUDDD 000]VVV T (4)

into rotation matrices UUU ∈ SO(m) (SO(m) denotes an orthogonal group of order
m), VVV ∈ SO(n), and diagonal matrix DDD collecting singular values, 000 is the ma-
trix of the size (r = n−m)× n. It has been checked [3] that the orthonormal
augmented Jacobian in the form

JJJortho =

[
UUU 000
000 RotRotRot

][
DDD 000
000 IIIr

]
VVV T =

[
UUUDDD 000

000 RotRotRot

]
VVV T =

[
JJJ

JJJadd,ortho

]
, (5)

for any RotRotRot ∈ SO(r), has got first m columns of its inverse matrix exactly the
same as the pseudo-inverse JJJ#. Consequently, for a given configuration qqq and the
simplest rotational matrix RotRotRot equal to the identity matrix IIIr the values of aug-
mented JJJadd,ortho can be determined. Based on the values, augmenting kkkadd(qqq)
can be constructed to have its Jacobian JJJadd(qqq) as close to JJJadd,ortho(qqq) as pos-
sible over a given (singular-free) region in a configuration space Q. Usually [6],
the region RRR is assumed to be fixed. Recently, [3] it has been proposed to vary
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the region and make it a task-dependent. For computational reasons it will be dis-
cretized with a set of configurations. At first, a parametric version of kkkadd(ppp,qqq)
is assumed. Then, an iterative algorithm of selecting regions RRR and optimiz-
ing a quality function is run. Let us assume that at the j-th iteration a region
RRR j = {qqq1, . . . ,qqqN j} is composed of N j configurations. In the first iteration, j = 1,
N j = 1 and RRR j = {qqq(0)}. For each item qqqi ∈ RRR j a desired JJJadd,ortho(qqq

i) is com-
puted and the quality function F(ppp) is minimized

F(ppp) =

∥∥∥∥
∂kkkadd(ppp,qqq)

∂qqq

∣∣∣
qqq=qqqi

−JJJadd,ortho(qqq
i)

∥∥∥∥
2

, F(ppp⋆) = min
ppp

F(ppp), (6)

where ‖ · ‖ denotes any matrix norm. The optimal value of ppp⋆ determines
kkkadd(ppp

⋆,qqq) and consequently the next current Q-loop. Then the iteration counter
j is increased by 1 and the Q-loop, when discretized with N j points, determines
new desired JJJadd,ortho(qqq

j). The procedure is repeated until a stop condition is
satisfied. The simplest and the most natural stop condition is satisfied when a
generated Q-loop in the current iteration is not shorter than Q-loop from the pre-
vious iteration (at the virtual 0-th iteration, the length of Q-loop is assumed to be
infinite).

It is worth noticing that the optimization task (6) in each iteration is decom-
posed into r independent tasks when consecutive components of kkkadd(ppp,qqq) =
{kkkc

add(ppp,qqq)}, c = 1, . . . ,r are determined based on c-th rows of JJJadd,ortho(qqq
i),

i = 1, . . . ,N j.
Now, a single optimization procedure will be described with details (it is

repeated r = n−m times for each row of kadd(ppp,qqq)). Let us express a current
row of kadd(ppp,qqq)) in a parametric, quadratic with respect to qqq, form, and denote
it as h(ppp,qqq)

h(ppp,qqq) =
n

∑
j=1

p jq j +
1
2

n

∑
j=1

p j jq
2
j +

n

∑
j=1

n

∑
k= j+1

p jkq jqk, (7)

where dim ppp = n+ n(n+ 1)/2, ppp = (p1, . . . , pn, p11, . . . , pnn, p12, . . . , p(n−1)n)
T .

The fraction 1/2 is Eq. (7) is used to simplify consecutive derivations and to
present them in a uniform form.

The task to solve is the following: given a set of configurations qqqi, i =
1, . . . ,N, and desired values of rows of the augmented Jacobian matrix vvvi at the
configurations, find the optimal value of ppp vector for a linear and a quadratic
approximation

F̃(ppp) =
N

∑
i=1

∥∥∥∥
∂h(ppp,qqq)

∂qqq

∣∣∣
qqq=qqqi

−vvvi

∥∥∥∥
2

=
N

∑
i=1

n

∑
j=1

∥∥∥∥
∂h(ppp,qqq)

∂qqq j

∣∣∣
qqq=qqqi

−vvvi
j

∥∥∥∥
2

. (8)
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The superscript marks trial (discretization) points and N denotes their number
(expression in Eq. (8) is squared to simplify calculations). In [3], explicit closed-
form formulas have been presented to get the optimal ppp⋆ with no cross terms
present in Eq. (7), i.e. pi j = 0 when i 6= j. Here, the general case is considered
and ppp⋆ can be obtained by a numerical solution of a set of linear equations.
A necessary stationary condition for the optimum is

∂ F̃(ppp)

∂ ppp
= 000. (9)

Taking into account (7)

∂h(ppp,qqq)

∂q j

= p j +
n

∑
k=1

p jkqk (10)

(to simplify notations it is assumed that pi j = p ji if only j < i) conditions result-
ing from Eq. (9) can be divided into three groups. The first equations, are derived
for variables pr, r = 1, . . . ,n

∂ F̃(ppp)

∂ pr
= 0 ⇒ N pr +

N

∑
i=1

n

∑
k=1

qi
k prk =

N

∑
i=1

vi
r (11)

The next equations are obtained for variables prr, r = 1, . . . ,n

∂ F̃(ppp)

∂ prr

= 0 ⇒
(

N

∑
i=1

qi
r

)
pr +

N

∑
i=1

n

∑
k=1

qi
kqi

r prk =
N

∑
i=1

vi
rq

i
r (12)

and finally, the equations for remaining variables prs, r = 1, . . . ,n, s = r+1, . . . ,n
(

N

∑
i=1

qi
r

)
pr +

(
N

∑
i=1

qi
s

)
ps +

N

∑
i=1

n

∑
k=1

qi
kqi

r prk +
N

∑
i=1

n

∑
k=1

qi
kqi

s psk

=
N

∑
i=1

(vi
rq

i
r + vi

sq
i
s). (13)

Based on Eqns. (11), (12), (13), a linear equation

AAAppp = bbb (14)

with known AAAdim ppp×dim ppp and bbbdim ppp can be constructed and solved to get ppp⋆ mini-
mizing (8). In order to reduce a computational effort, the following items should
be calculated first

N

∑
i=1

qi
r,

N

∑
i=1

qi
rq

i
s,

N

∑
i=1

vi
r,

N

∑
i=1

vi
rq

i
r, r = 1, . . . ,n, s = r, . . . ,n
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and substituted into appropriate boxes of the matrix AAA and vector bbb. For a special,
linear case of the augmented kinematic function (10) (pi j = 0, i = 1, . . . ,n, j =
i, . . . ,n), ppp⋆ is computed directly from Eq. (11).

2.3. An elastic band algorithm of repeatable inverse kinematics (Method 2)

This exemplification of a continuation method generates a final solution, Q-
loop, in an iterative process. The first approximation of the Q-loop (not neces-
sarily satisfying all requirements imposed on the original task) should be known.
Then, a sequence of solutions is constructed to decrease a quality function which
evaluates how far a current solution is from that satisfying all requirements. In
the limit, a current Q-loop tends to the solution of the repeatable inverse kine-
matics.

In the elastic band method of repeatable inverse kinematics, a role of the de-
formed path will play a cyclic trajectory, Q-loop, in the configuration space. It is
modified in such a way that a trajectory remains cyclic and its image, via forward
kinematics, is closer to the prescribed X-loop. In the following implementation, a
current Q-loop, called Ldisc is represented as a vector of pairs: (s-variable value,
configuration) and interpolated linearly to get the continuous Q-loop, Lcont(s),
s ∈ [0,smax]. The vector is ordered with respect to the s-variable. Main steps of
the algorithm implementing the elastic band idea follow:

Step 1 Read in initial X-loop (1) and an initial (current)
Ldisc = {(0,qqq(0)),(smax,qqq(0))}.

Step 2 Define an error which evaluates how far the X-loop corresponding to
current Q-loop is from X-loop (1)

err(Ldisc) =

smax∫

s=0

‖xxx(s)−kkk(Lcont(s))‖ds, (15)

where ‖ · ‖ is a norm in X⊂ SE(3).

Step 3 Compute error (15) for Lcont (derived from Ldisc) .

Step 4 If the error is below an acceptable threshold ρ , complete the computa-
tions and output Lcont . Otherwise progress with Step 5.

Step 5 Modify the current Q-loop:

1. On a prescribed path (1) determine the furthest point xxx(s⋆) from
kkk(Lcont(·)).

2. For s⋆, select from Ldisc two neighbor configurations (s j,qqq(s j)),
(s j+1,qqq(s j+1)) such that s j < s⋆ < s j+1 and denote them as qqq1 =qqq(s j),
qqq2 = qqq(s j+1).
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3. Run the Newton algorithm (3) with the optimization in the null space
of the Jacobian matrix and the following data:

• the goal point xxx(s⋆),
• the initial configuration

qqqinit = λqqq(s j)+(1−λ )qqq(s j+1), λ =
s⋆− s j

s j+1 − s j
, (16)

• the minimized function used in Eq. (3)

f (qqq) = ‖qqq−qqq1‖2 +‖qqq−qqq2‖2 (17)

which evaluates a squared distance from the current configuration
qqq to a pair of configurations qqq1,qqq2. The aim of the minimization is
to minimally stretch a current Q-loop while reaching the current
goal xxx(s⋆).

4. Result of the Newton algorithm run: the pair (s⋆,qqq(s⋆)), satisfying
kkk(qqq(s⋆)) = xxx(s⋆), is added into appropriate place in Ldisc to preserve
ordering of the sequence wrt the s-variable.

Step 6 The modified Q-loop becomes a new current trajectory. Continue with
Step 3.

3. Comparison of the methods

It is really difficult to compare methods different in nature although aimed
at solving the same task. However, two criteria are quite obvious: a solution ac-
curacy and complexity of algorithms implementing the methods. In the theory
of computations [13], a computational complexity is measures as a function of
a data size. In most of robotic tasks this definition has got a restricted appli-
cability as the number of degrees of freedom (a natural data size) is severely
limited and usually small. Another, and practical, measure of algorithms’ com-
plexity is their run-time. This criterion has got its own disadvantages as the run-
time depends on many factors: hardware-based (processor, ticking time, number
of cores, a cache memory available), software-based (a programming language,
options of a compiler used) and human-based (skillfulness of the algorithm pro-
grammer), an algorithm-based (number of parameters and their settings). Despite
all these disadvantages, the run-time qualitatively evaluates algorithms quite well
and it will be used later on.

The other criterion, the accuracy of solution, seems to be easier to evaluate at
the first sight. However, the accuracy of a solution depends on some parameters
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fixed while solving a given task. Besides common input data for both algorithms:
a model of manipulator, an initial X-loop and configuration qqq(0) there are also
method-dependent parameters. For Method 1: a threshold value ρ to stop com-
putations, cf. (15), a threshold value δ to stop the Newton algorithm (3) and a
method to solve two dimensional (ξ ,η) optimization problem in the algorithm.
For Method 2: base functions (polynomials, harmonic) and their degree used to
express augmented functions and a threshold value δ to stop the basic, η = 0,
Newton algorithm (3) are to be selected.

It is worth noticing that the two evaluation criteria are tightly related.
A shorter run-time usually means a worse accuracy. However other criteria
should not be missed. Method 2 does not add any extra functions and avoids a
computationally expensive problem of their optimization. This method also does
not introduce any extra singular configurations (to those defined by the condition
rank(J(qqq)) < m) (Method 1 does it, as singular configurations are characterized
by rank(Jaug(qqq)) < n and include all singular configurations of Method 2). In
the Newton algorithm (3) inverses of the Jacobians are performed on (m×m)
matrices for Method 2 and on (n× n) matrices for Method 1. For a significant
redundancy value, r = n−m, the factor is important as the Newton algorithm is
run frequently.

Based on the discussed criteria Method 2 is better suited to solve the repeat-
able inverse kinematics than Method 1. Moreover, Method 2 does not involve
iterative processing and it is much easier to implement.

4. Simulations

In order to evaluate the proposed methods, planar pendula manipulators up-to
five degrees of freedom (DoF) are selected, Fig. 1. For the manipulators a high
degree of redundancy is obtained easily and their task-space (assuming an un-
limited motion at joints) is easy to find. It facilitates determining an admissible

Figure 1: Planar pendula up to 5 DoFs: a configuration, parameters, the task-space
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X-loops within a task-space. Forward positional kinematics of the pendula are
given by

[
x

y

]
=

[
k1(qqq)

k2(qqq)

]
=

[
a1c1,1 +a2c1,2 +a3c1,3 +a4c1,4 +a5c1,5

a1s1,1 +a2s1,2 +a3s1,3 +a4s1,4 +a5s1,5

]
, (18)

where aaa = (ai, i = 1, . . . ,n) is a vector of links’ lengths. The lengths are set to the
value of 1 in all simulations. A standard robotic convention is used to abbreviate
trigonometric functions, c1,i = cos

(
∑i

j=1 q j

)
, and s1,i = sin

(
∑i

j=1 q j

)
. While

running the Newton algorithm (3), it is assumed that a total change of a config-
uration ‖qqqi+1 −qqqi‖ at a single iteration is limited to 3◦ to preserve accuracy of
the linearization of kinematics and the threshold value to stop the algorithm is
set to δ = 0.005. Two typical, practical and easy to parameterize X-loops are
considered:

1) a circle centered at (xc,yc) with the radius R

xxx(s) = xc +Rcos(2πs), y(s) = yc +Rsin(2πs), s ∈ [0,1], (19)

2) a rectangle with edges parallel to x-y axes characterized by its left-bottom
corner (xc,yc) and edge lengths ∆x,∆y. X-loop xxx(s), s ∈ [0,1] traces the
rectangle anti-clockwise where s denotes a linearly scaled current X-loop
length.

Simulations are performed for planar pendula with the smallest, n = 3, and
significant, n = 5, redundancy and circular and rectangular paths of two dif-
ferent lengths. In order to avoid an impact of a selected entry configuration qqq0
(kkk(qqq0) = xxx(0)) on final results and to get a statistical insight into obtained data, a
number of tasks with varied qqq0 is considered. The entry configurations have been
determined with algorithm described in [4]. For each task a mean and standard
deviation of a Q-loop length are calculated. Additionally, the shortest Q-loop,
Lbest , the number of total tasks and failed tasks are counted. It should be noticed
that admissibility of entry configuration qqq0 does not necessary mean admissibil-
ity of a Q-loop (as the Newton algorithm (3) may fail due to approaching any
singular configuration at some iteration). Algorithms of the methods were im-
plemented in Mathematica and run on a computer equipped with Intel Core2
2.66 GHz processor. The mean and dispersion of run-time were computed. All
the resulting data together with parameters of tested X-loops are gathered in
Table 1. Based on the data collected in Table 1 the following remarks can be
formulated.

• The elastic band method, Method 2, runs much faster than both versions of
the augmented Jacobian method, Method 1 lin/quad, cf. T rows. It needs
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Table 1: Initial data and statistical results for Method 1 (approximations with with linear
and quadratic functions), and Method 2 (elastic band)

Task number
1 2 3 4 5 6 7 8

DoFs 3 5
init path circle rectangle circle rectangle
data (xc,yc) (1.5,0) (1.5,0) (1,−0.5) (1,−1) (2.5,0) (2.5,0) (1,−1) (1,−1)

R 0.5 1 0.75 1.5
∆x, ∆y 0.5, 1 0.5, 2 0.5, 1 0.5, 3

Method total 122 78 226 178 234 86 1024 1024

failed 0 0 0 0 0 0 0 0
T [s] 0.05 0.085 0.042 0.07 0.074 0.11 0.048 0.11

elastic σT [s] 0.003 0.005 0.005 0.005 0.004 0.006 0.005 0.01
(2) L [◦] 163.8 310.6 155.6 237.9 144.3 265.9 110.9 241

σL [◦] 19.8 36.9 21.7 22.3 22.2 30.9 18.4 31.2
Lbest [

◦] 128.7 270.8 124.5 201.7 101.4 214 68.1 154

failed 8 52 6 2 38 36 73 304
T [s] 0.48 0.63 0.09 0.23 0.72 0.95 0.24 0.31

linear σT [s] 0.3 0.18 0.08 0.24 0.67 0.82 0.2 0.39
(1 lin) L [◦] 169.3 313.3 155.3 237.2 148.6 282.6 109.5 248.5

σL [◦] 25.7 37 23.8 24.7 26 40.8 19.2 36.4
Lbest [

◦] 128.2 269.7 122.2 199.2 101 217.8 66.3 156

failed 5 52 12 11 54 48 116 404
T [s] 0.85 0.67 0.42 0.83 1.3 1.24 0.99 1.54

quadrat σT [s] 0.66 0.52 0.45 0.86 0.84 0.75 0.85 2.31
(1 quad) L [◦] 169.7 313 155.8 236.7 150.3 289.2 109.8 252.4

σL [◦] 26.6 37.5 24.6 24.9 26.3 42 19 35.6
Lbest [

◦] 128.2 269.1 122.1 199.2 101.2 223.3 66.2 164

only one iteration to generate a resulting Q-loop while the two versions
may require a few iterations to converge. Moreover, using the Newton al-
gorithm (3) Method 2 inverts matrices of smaller sizes than the other meth-
ods.

• Method 2 is more robust to initial data (the number of failed tasks is sig-
nificantly smaller than for Methods 1) as it does not introduce any ex-
tra singularities. Method 1lin seems to be less sensitive to failures than
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Method 1quad as it is easier to fail due to ill-conditioned matrix AAA in
Eq. (14) than ill-conditioning of Eq. (11).

• The best, shortest Q-loops generated with Method 1 and 2 were more or
less the same, cf. Lbest . Exemplary stroboscopic views of the shortest Q-
loops for Task 8 are presented in Figure 2. It is worth to observe that the
shortest Q-loops are realized with short motions in q1 coordinate. This mo-
tion is transferred, via a long kinematic chain, into large displacements of
the end-effector to trace the given rectangle.

a) b)

Figure 2: The stroboscopic view of the shortest Q-loops for an
exemplary rectangular path of the 5DoF planar pendulum (Task 8)
obtained with: a) Method 2, b) Method 1 lin

• It does not seem that the quadratic approximation improves quality of the
resulting Q-loop comparing to a linear approximation. It should be pointed
out that the optimization in Methods 1 is a path-dependent process (at any
iteration Q-loop is deformed differently by the two versions of Method 1).

• On average, Method 2 gives shorter Q-loops than Method 1, cf. L and with
a little bit smaller dispersion σL. The histogram of Q-loop length differ-
ences for Method 1lin and Method 2, ∆, solving Task 8 is presented in
Fig. 3. It appear that in rare cases Method 1 given significantly longer paths
than Method 2 (∆ > 60◦).

• Run-time of Method 2 is proportional to the total length of X-loop. For
Method 1 this regularity does not hold as the optimization process is path-
dependent in the Q-space.

• For both methods, an efficiency of planning the shortest Q-loop strongly
depends on the initial configuration qqq(0), cf. Lbest , L. This dependence is
amplified by increasing redundancy r = n−m as in this case there is more
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initial configurations to choose. The longest Q-loop solving Task 8 with
Method 2 was Lworst = 338.4◦ while for Method 1lin – Lworst = 391.2◦.
The values are significantly larger than average ones, cf. Table 1.

Figure 3: Histogram of differences of Q-loop lengths ∆ generated with Method 1 lin and
Method 2 while solving Task 8 with the same and varied initial configurations. The total
number of tasks simultaneously solved 720

5. Conclusions

In this paper two methods of repeatable inverse kinematic task are compared.
The first one solved the task via approximating a pseudo-inverse Jacobian ma-
trix with linear and quadratic polynomials and exploited an iteratively modified
task-dependent region in the configuration space to evaluate the quality function
(length of a resulting Q-loop minimized). The second one adapted an elastic band
method to the title task. Simulations and theoretical considerations allow to draw
a conclusion that the elastic band method is more reliable than approximation
techniques in solving the repeatable inverse kinematic task and it has got several
advantages over the approximation methods (significantly shorter run-time, easy
implementation, a smaller impact of configuration singularities on solvability of
the task).
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