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Optimal operation of a process by integrating dynamic
economic optimization and model predictive control
formulated with empirical model
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and NASSER MOHAMED RAMLI

In advanced control, a control target tracks the set points and tends to achieve optimal oper-
ation of a process. Model predictive control (MPC) is used to track the set points. When the set
points correspond to an optimum economic trajectory that is sent from an economic layer, the
process will be gradually reaching the optimal operation. This study proposes the integration
of an economic layer and MPC layer to solve the problem of different time scale and unreach-
able set points. Both layers require dynamic models that are subject to objective functions. The
prediction output of a model is not always asymptotically equal to the measured output of a pro-
cess. Therefore, Kalman filter is proposed as a state feedback to the two-layer integration. The
proposed controller only considers the linear empirical model and the inherent model is iden-
tified by system identification, which is assumed to be an ample representation of the process.
A depropanizer process case study has been used for demonstration of the proposed technique.
The result shows that the proposed controller tends to improve the profit of the process smoothly
and continuously, until the process reaches an asymptotically maximum profit point.

Key words: integrate economic optimization and MPC, Matlab-Hysys Interface, Kalman
filter, integrate RTO-MPC, depropanizer

1. Introduction

The goal of a control strategy involves controlling a process with respect
to an optimal trajectory process operation given the presence of a constraint.
The achievement of a target involves the construction of control hierarchy that
is comprised of various layers. Extant studies examine a widely-known hierar-
chical control structure [1-4] as shown in Fig. 1a. In the structure, a real-time
optimization (RTO) layer provides the optimal operation set points of a pro-
cess. A model predictive control (MPC) layer brings the process to the optimal
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operating point. However, a drawback of the scheme corresponds to the incon-
sistency between RTO and MPC layers. The upper layer is the RTO that uses a
steady state nonlinear model to calculate the optimal set-points for profit or cost
function [2]. The implementation time of the RTO is based on the time required
(several hours) for the MPC to move the process to a new stable state because
the collected data is used for updating RTO model parameters at a steady state
condition. The lower layer MPC is typically based on a dynamic linear model
to calculate control moves for the process to reach the set-points from the RTO
layer in a time period ranging from seconds to minutes. The performance index
problem in MPC is the summation of output error and input move regulariza-
tion terms in a finite horizon [5]. In case the MPC controller is used to track the
set-points from the RTO layer, the objective function of the MPC includes a cost
term ||u — uye||. This leads to a problem of unreachable set-points because the
MPC distributes the offset between the set-points for both ys.; and ug,. This in
turn causes an inconsistency due to the sampling time difference and unreachable
set-points, and thereby results in poor economic performance. The inconsistency
is reduced by a layered structure that could consist of three-layers, two-layers, or
one-layer.

In a three-layer structure, an additional layer is introduced between RTO and
MPC layers. The role of the middle layer involves approximately calculating
the set-points for the MPC layer by using the same model at the MPC layer in
the cost function [3]. The model in middle layer is transformed from dynamic
into steady state version. In a two-layer strategy, the RTO layer is replaced by
a dynamic real-time optimization (DRTO) [6, 7] or economic model predictive
control (EMPC) layer [8] that leads to the reduction of inconsistency in a dif-
ferent time scale. In a one-layer structure, the RTO layer merges with the MPC
layer by integrating the economic function in the RTO layer as a part of the tar-
get function in the MPC layer [9, 10]. A main issue of the one-layer method
is that the optimization function becomes a complex nonlinear function if the
economic problem is nonlinear and subject to a rigorous nonlinear model, and
this results in a higher computer load and it is barely possible to synchronize the
controller with the process. In the present study, the aforementioned inconsistent
problems in conventional control structure are solved by simply using the same
linear dynamic model at both layers. A linear discrete empirical model is the
most commonly used model in most industries [2, 11]. Therefore, the empirical
model is chosen to use for both layers. Multiple linear models are used in case a
process is highly nonlinear [12]. The problem is that an empirical model needs a
complete representation of state of the process at a given instant of time. There-
fore, it is necessary for the proposed controller to involve the presence of a state
estimator.

The aim of the present study relates to the integration of an economic op-
timization layer with a MPC layer in the presence of a state estimator at each
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sample time to bring process operation to the optimum point. The economic
control layer usually add the tracking term, resulting in the decrease in average
profit as the weight of tracking term increases [13]. In this work, the change in
the input term is added instead of tracking term. Therefore, the average profit is
not affected while changing the weight of the adding term. The proposed con-
troller is applied for the Depropanizer. The results show that the integration of
economic optimization and MPC ensures the profit is improving compare to the
conventional hierarchical control.

2. Methodology

2.1. Economic layer versus MPC layer

Even, the two-layered structure suffers from the well-known drawback of
different time scales and unreachable set-points. The two-layer approach still
has high acceptance because if the optimization function of the economic layer
fails to converge, then operators can manually fix known set points such that the
process is maintained at a given operation point. In order to correct this issue,
the empirical dynamic model is used in both economic layer and MPC layer to
be able to synchronize between the process and control. The architecture of the
approach is shown in Fig. 1b.

+
X
2) Parameter Data Recongiliation & ) Um Economic layer « ke
Estimation Gross Error Detection
\ \
i S dx S u:et yiet Same model
teady State
RTO layer Detection u - ‘ X1
| | ‘T . =™ MPC layer
Uset Yset Different model \
Y v Uk
MPC layer \
T Real plant
Uk —I
A ym
Real plant Measurements, u,y > Um _ Kalman filter

Figure 1: Vertical hierarchies of process control: a) classical control structure, b) pro-
posed control structure

The proposed hierarchy uses an empirical model and especially a discrete
state space model that is obtained by system identification. A common discrete
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state space model that describes a process is considered, and it is given as fol-
lows:

X1 = Axg + Buy, 0
Vi1 = CXpqr
where k denotes discrete value of time (k = integer), x € R™™ denotes the sate
vector, u € R™ denotes the manipulated variable vector, and y € R denotes
the algebraic controlled vector. The discrete state space model corresponds to a
one step ahead prediction model. The matrices A, B, and C are typically termed
as a process matrix, an input matrix, and an output matrix, respectively, and
determined by system identification.
When an empirical model is used, a potential exists for an offset between the
calculated prediction output, y |, and measured output from the process, y;,,
due to lack of accurate state value of process.

2.2. State estimation by Kalman filter

The model (1) is applied in the proposed control technique. Matrices A, B,
and C in (1) are fixed once identification of the model of the MPC is accom-
plished, and thus y;,; as calculated by equation (1) differs from the measured
output, y,,, at time k+ 1 due to the incorrect state estimate. It is only possi-
ble to obtain y,, asymptotically equal to yx,| through the state estimate of the
vector xi 1. Additionally, in order to obtain the corrected state, x,:rl, a discrete-
time Kalman filter is employed for the state estimation algorithm for the cor-
rected x 1.

The discrete-time Kalman filter equations in [14] are summarized as follows:

Priori estimate state is as follows:
x; =Ax; | +Bu_;. 2)
Priori covariance is as follows:
P, =AP! A'+0. (3)
Kalman gain is as follows:
Ki=P C'(CP_C'+R)". 4)
Posteriori state estimate is as follows:
X =% + K g — Cxp ). )
Posteriori covariance is as follows:

Pl =(I-KC)P_, (6)
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where x;, denotes priori estimate state when x; is estimated with all the mea-
surements up to time k — 1, x,j denotes the posteriori estimate state when all
the measurements up to time k are available for estimate x;, Q denotes process
noise covariance matrix, and R denotes the measurement covariance matrix, the
transpose of a matrix or vector is denoted by the prime.

As shown in Fig. 1b, the controller sends the control moves u to the process
that when substituted in equation (1) results in y ;. Because of unknown state
of the process, yi41 is offset by y,,. The Kalman filter based on y,, calculates
optimal state estimate, x,jﬂ , which is substituted as x; | in equation (1) to obtain

y,‘;l asymptotically equal to y,,. Therefore, the Kalman filter results in reduce the
offset.

2.3. MPC layer

Definition 1 MPC is used to determine the approximate input based on the pre-
diction model (discrete state space model) by optimizing the control law function
as follows:

y ny ny
2 2 2
J = Z HYSet_YkJrnHWS + Z | thser — uk+n71HWQ + Z 101 _umHWR (7)

subject to:

discrete state space model (1)

I
X0 =X
Umin < Upn—1 < Umax 5
At < A1/‘k+nfl < Aumax, 5

where ny denotes the prediction horizon, ny denotes the control horizon (ny < ny),
Vset € R'™ denotes the set points, and u,, € R™ denotes the measured input at
each transition. Additionally, || - ||% is the square of the two-norm of a vector
formulated with diagonal matrix R and is defined as follows:

||x||12e = Rnx% +R22X% +... +R,mx%.

ny

Ws, Wy and Wg denote positive weights since Y. |[ug4n—1 — “mH%VR is a regular-
n=1

ization term that penalizes the control moves.

It is assumed that the discrete state space model (1) is obtained by system
identification from a real process.
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Thus, Equation (7) is re-expressed as follows:

2 2
J = Hr*ones(ny,l)— v H +H ut —u .ones(nu,l)H
%k—ﬁ—l W Kok set Wy
2
+ H%Z” — Up.ones(nu, 1)’ . (8)
where .
Yi+1 uy
Yi+2 Ui
ny _ . _ )
e L S
yk+ny Ukt nu—1 |
r! [ ul
rxones(ny,1)= | : |; upxones(nu, 1) = | : |
rY | ul
u;et
Uge * ones(nu, 1) = :
Uy
The predictive output vector is as follows:
ny _ ny
l)kH_ka""H%k , 9)
where:
CA CB 0 e 0
CA? CAB CB --- 0
P= ; H =
CA™ CA”'B CA™’B --- CB
The MPC controller optimizes J function (8) and obtains vector gzy as aroot.

However, only u; is considered in the vector and sent as manipulated variables
to the real process.

The MPC typically tracks the output set-point with the first and third terms
in Equation (8) only. However, the proposed integration technique includes the
second term while tracking the set-point from the RTO or economic control layer
because the set points include both input and output.



www.czasopisma.pan.pl P N www.journals.pan.pl

s

OPTIMAL OPERATION OF A PROCESS BY INTEGRATING DYNAMIC ECONOMIC OPTIMIZATION
AND MODEL PREDICTIVE CONTROL FORMULATED WITH EMPIRICAL MODEL 41

2.4. Economic optimization control layer

The cost function of the economic layer formulated with the empirical model
is given as follows:

Jeco - AVeca +REG7 (10)

where
N

AVeco = — l(xk+n7 Uk+n— 1) —NI (x]:ra um)
n=1

and

N N
REG =Y ||vksn _y]—:legl + 3 Metein—1 = tenllz, -
n=1

n=1

N
Jeco - - Z (l(-xk+nauk+n—l> _Nl(x]—:aum))

n=1

N N
+ Y Ok =Yg, + X M thinr —wn)llz, (1)
n=1

n=1
which subject to the following:

discrete state space model (1)

xozx,':,
N

0<a (‘xk+1 —X]:r‘) < Z l(karn,ukJrn,l) —Nl(x,j,um),
n=1

Umin S Ug+n—1

<
Altpin < AMk—Q—n—l < Aumax

where N denotes prediction horizon, AV,.,denotes the difference between pre-
diction and current economic terms, / (x,j, up,) is the current economic term that
is calculated based on measured input and estimated state, and /(x1,u;) de-
notes the prediction economic term. Additionally, REG denotes the regulariza-
tion term, x,j , Uy denote current estimated state and measured input, respectively,

at each iteration, y,j = szr denotes the estimated output, and R; and R, denote
positive weights. A continuous non-decreasing scalar function is defined as (- ).
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2.5. Two layer control hierarchy algorithm

Integrating two layers with the Kalman filter

The Kalman filter is integrated to obtain the asymptotically corrected state of
the process. The method for integrating two layers with the Kalman filter is as
follows:

Specifically, x,j in (5) substitutes x; in (9) at each iteration as follows:
ny _ p.+ ny
l)kﬂ_ka +Hﬂ>k . (12)

Thus, yr+1 in the vector l) Zil corresponds to the prior output, y,_ ;. After

sufficient iterations, y, | is asymptotically equal to the output from the real pro-
cess, Y.
Additionally, x,‘: in (5) also substitutes x,‘: in (11) at each iteration.

Implementation strategy

The economic optimization layer and MPC obtain the state estimation from
the Kalman filter x,j in each iteration. First, MPC is used to track a given set
point to obtain the process operation at stability, resulting in the state estimation
at this time is more accurate. Subsequently, the economic optimization layer is
switched on to address the economic function. The economic optimization layer
sends the first element in the result to the MPC layer as set points consequently
after solving an optimization problem. Subsequently, the MPC controller forces
the process to follow the optimal trajectory.

3. Results and discussions

3.1. Case study
3.1.1. Process description

Figure 2 shows the dynamic simulation of the Depropanizer column process
that was described in a previous study [15]. The Depropanizer column is de-
signed with 24 stages and the feed stream position at stage 12. The pressure at
the top and at the reboiler corresponds to 1925 kPa and 2070 kPa, respectively,
and the feed composition is shown in Fig. 2. The controlled variables correspond
to the purity of top and bottom products based on propane composition while
the manipulated variables correspond to the reflux flow rate and boil up flow
rate. The control strategy is designed in Simulink-Matlab to control the dynamic
process simulation at optimal economic operation by using a Matlab-Hysys in-
terface. The interface code is from a toolbox used in a previous study [16].
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P=1925 kPa
T=58C
Q=3570 kW

0.78 mol% ethane

41.34 mol% propane

12.26 mol% n-Butane  Feeq

7.08 mol% i-Butane

4.15 mol% n-Pentane  192.2 m%h
518 mol% i-Pentane  p = 2171 kPa
29.2 mol% n-Hexane T =11o¢

P = 2070 kPa
T=145.2°C

Figure 2: Dynamic depropanizer process simulation

3.1.2. Implementation of the proposed hierarchy at the Depropanizer distillation column

Assumption: The first principle model of the dynamic simulation is not
known. The economic cost functions are known and are sent from planning and
scheduling modes.

In this application, a nonlinear mathematical of dynamic simulation of De-
propanizer process is not available because identifying a nonlinear process is a
very difficult task. However, the linear system identification is easier to imple-
ment than nonlinear model. Moreover, the linear model sufficiently accurate to
describe the nonlinear process in a certain region. Therefore, in this case study,
the model is used for economic control layer and MPC layer, which is obtained
by linear system identification method.

a) Model identification

The models used for the hierarchy are identified by closed-loop system identi-
fication. Two PI controllers are designed in Matlab-Simulink to manipulate reflux
flowrate and boil-up flowrate to bring the controlled variables (propane compo-
sition in the top and bottom products) to the given set-points. Pseudo-Random
Bit Sequence (PRBS) signals are designed to generate bias to the set-points (the
current set points position corresponds to 0.9 for the top and 0.07 for the bottom).
The 7000 data points including manipulated variables, controlled variables, and
flowrate to the condenser are obtained for model identification and validation as
shown in Fig. 3a, b, c.

Two discrete state space models are identified by the subspace method (n4sid)
[17, 18]. The n4sid code is ready in Matlab toolbox, is used to obtain the models.
The extensive discussion of n4sid will not be presented because out of scope of
the target of this paper.
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a) Data on product purities b) Flowrate with respect to the condenser data
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Figure

3

The identified matrices for the first discrete state space model (model 1) in-
clude the following inputs: reflux flowrate («#;) and boil up flowrate (u;); and
the following outputs: propane composition of the top product (y;) and bottom

product (y;).

22077 0.1053 10000 0]
—0.3009 22246 010000
—1.4570 —0.2570 0 0 1 0 0 0
Ap— | 07212 -17152000100 .
0.1268 02106 000010 |°
—0.5622 0.5392 00000 1
0.1191 —0.0591 0 00 0 0 0
0.1363 —0.0503 0 000 0 0
0.0005 0 [1 0]
0.0009 —0.0005 01
—0.0008 0 00
—0.0015 0.0006 , 00
Bl=1| 00004 o |5 C'=loo
0.0006 0 00
—0.0001 0 00
0 —0.0001 00
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The other identified matrices for the second discrete state space model
(model 2) include the following inputs: reflux flowrate and boil up flowrate; and
the following output: flowrate to the condenser (F¢).

0 00 —02531 0.0798  0.0756 0
102500 05094| . |-03356 0.1645| ., |0
A2=1"0" 10 —12804 " B2=| (0080 —05788|° €2 =1 o
0 01 1.8398 02215  0.3967 0.5

The model 1 and model 2 have the same inputs, therefore these can be com-
bined to become one model with 3 outputs and 2 inputs.

Fig. 4a, b show the comparison between the prediction plots from the mod-
els and the remaining 25% data used for validation from the dynamic simulation
process. In Fig. 4a, b, it is also observed that the behavior of the dynamic simula-
tion process is accurately predicted by model 1 and model 2. Fitting percentages
calculated by the normalized root mean square error method (NRMSE) Matlab
toolbox correspond to 89.25%, 80.33%, and 92.36% for y1, y»2, and F¢ respec-
tively.

a) Validation for model 1 b) Validation for model 2

01 y1 (plant) g L

“y2 (plant) “ ¥
= ¥1 (state space model) _E, 20 E /\
S 0.05 _weq [ Y2 (state space model) < i \
B - | & # /
@ ] 10 £ V, S
i g / N
g 0 8 o / 3 e
E g { \ ;'/
8 - e-10 /
£.0.05 ® 4 \,/
a €20 4 !
i e ~plant
0 i 3 | state space model
B 10 500 1000 1500 2000 = (b 500 1000 1500 2000
Time (k) Time (k)

Figure 4

b) Controller design scheme

The matrices A1, B1, and C1 and A2, B2, and C2 are substituted for A, B,
C, respectively, in the model (1). Physical constraints on the equipment as well
as control actuators and targets from planning and scheduling layers cause the
control actions to be bounded as follows: reflux flowrate (1) is from 10 m3/h to
110 m3/h, boil-up flowrate (u>) is from 150 m3/h to 300 m>/h, the purity of the
top product (y;) is from 0.86 to 0.94, and the purity of the bottom product (y;)
is from 0.03 to 0.11. Both purity products are calculated based on the propane
composition.

e The economic cost function with tuning parameters is presented in form of
Matlab code as follows:
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10
Jeco = sum <— Z (L( Xty Ugrn—1) — 10 X l(x,j,um))>

n=1

2
+ 100 X norm (repmat(y,j, 10, 1) — Xﬂﬁl) +...
2
+40 X norm <ﬂ>]1<0 — repmat (U, 10, 1)) ) (13)

e The MPC cost function with tuning parameters is presented in form of
Matlab code as follows:

2
J = norm (repmat(yse,, 10, 1) — 1)121)
2
+norm <ﬂ)2 — repmat (ugey, 6, l)) + ...
2
+norm (ﬂ)g — repmat (U, 6, 1)) , (14)

where: y;.; : output_setpoints; u,, : input_setpoints; u,, : measured_inputs.

The output and input set-points are from RTO layer or economic control
layer, which are sent to MPC layer for tracking purpose.

3.2. Results and discussions

The economic objective function is defined as follows:
Profit: P = ppFp+ ppFp — psuz — prF, (15)

where: F denotes flowrate (m>/h) of the feed stream of the column, and the price
of F corresponds to pr ($/m?). Additionally, F¢ denotes the flowrate (m3/h) to
condenser, Fp denotes the flowrate (m>/h) of the top product that is sold at the
commercial price pp ($/m3), Fp denotes product flowrate (m3/h) at the bottom of
the column with a commercial value pg $/m>, ps denotes the cost ($/m?) of the
boil up flowrate uy, and u = [u; uz]; y = [y1 y2]. The control action includes three
controlled variables (F¢, y1, y2) and two manipulated variables (u, up). The
column is maintained at a given operation point by the MPC controller and after
this, the economic control layer is executed at time ¢ = 400 (k). Time constant,
Ts=0.5s.

Case study: pp = (10%y;)? $/m>; pp = (10%(1-y2)*)*0.5 $/m>; pr = 400 $/m?;
ps = 20 $/m>; upin = [10 150]; ttmax = [110 277.15], Ymin = [0.86 0.03], ymax =
[0.94 0.11].

The optimum points are calculated by Real Time Optimizer (RTO) in steady
state simulation Hysys as following: Fc = 142.9 (m’/h), R = 75.15 (m3/h) and
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S =277.1 (m3/h). The optimum points are sent to MPC as set-points. The profit
significantly increases and reaches a stable operation approximately 400 times
(k) after the MPC controller commences. As shown in Fig. 5b and Fig. 5d, the
process is stable at Fr = 142.1 (m>/h), u; = 76.33 (m>/h) and us = 296.7 (m>/h).
Thereby, the optimum points cannot be reached because of unreachable set-
points problem as aforementioned inconsistent problems. Moreover, MPC does
not conduct with the output constraints. Thereby, y; is 0.948 as shown in Fig. 5c,
which is violating of output constraints. At the time is 400 (k), the economic
controller is switched on, which sends the set-points to MPC layer instead of
the optimum points from RTO. From 400 (k) of time, the profit starts increasing
gradually because the set-points from the RTO are not actual the optimum points
of the process.

The main profit function as denoted by equation (15) corresponds to non-
linear function, is used in economic control layer. The profit function (15) is
affected by the product flowrate as well as by the purity of products. Based on
the assumption pp = (10-y1)? $/m?; pp = (10- (1 —y,)?)-0.5 $/m?, the price of
products increases when the product is purer. Figure 5c shows that the product
purities are kept almost constant when the bound is reached. Although it is nec-
essary to increase the top product flowrate, the top product flowrate decreases as

a) Optimum profit profile
4
—~ 3 X 10 .
cf,; 2.92 x 10* 1
225 + 2.625 x 10
“5 W
2
©
= 2
2 |
o .
G15- - Profit (§/hr)
0 100 200 300 400 500 600 700 800 900 1000
Time(k)
b) Flowrate to condenser, F¢
150 - n|
é 140 + 139.6 142.1 1t
[5)
£ 130
(@)
w 120
110 - Bl
0 100 200 300 400 500 600 700 800 900 1000
Time(k)

Figure 5
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¢) Product purities (y;: top product purity, y>: bottom product purity)
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shown in Fig. 5e. This is explained as follows: an increase in both product purity
and product flowrate increases the profit. However, when the product purity in-
creases, the top product flowrate decreases and vice versa. In this case, the effect
of the product purity on the profit value exceeds that of the product flowrate.
Figure 5d shows reflux and boil up flowrates that are manipulated to gradually
increase to increase the product purities. As shown in Fig. 5a, the controller tends
to improve the economic function (15) smoothly and continuously until the pro-
cess reaches an asymptotically maximum point and attempts to keep it almost

stable at that point.
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4. Conclusions

This study, the two-layer hierarchy is presented by integrating economic op-
timization layer and MPC by using the same model formulated as empirical
model. Moreover, the empirical model need to estimate the process state, and
thus the two-layer architecture is integrated with the Kalman filter to avoid the
offset. The proposed control structure is successfully coded in Matlab-Simulink
which is able to bring the dynamic simulation process in Hysys to the optimal
profit operation. The results show that the set points from RTO (conventional
control structure) are not actually the optimum points. Because the profit grad-
ually increases after the economic control layer is active. As more detail in the
case study, the proposed control hierarchy is able to increase the profit of the
process higher than classical control structure about 2950 $/hr.
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