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Network winner determination problem

MARIUSZ KALETA

Many real-world marketplaces involve some additional constraints to be addressed during
the market clearing process. This is the case of various infrastructure sectors of the economy,
where market commodities are associated with some elements of the infrastructure, e.g., ele-
ments of telecommunication, power transmission or transportation network. Transactions are
allowed only if the infrastructure, modeled as a flow network, is able to serve them. Determina-
tion of the best offers is possible by solving the optimization problem, so called the Winner De-
termination Problem (WDP). We consider a new subclass of the WDP, i.e., the Network Winner
Determination Problem (NWDP). We characterize different problems in the NWDP class and
analyze their computational complexity. The sharp edge of tractability for NWDP-derived prob-
lems is generally designated by integer offers. However, we show that some specific settings of
the problem can still be solved in polytime. We also present some exemplary applications of
NWDP in telecommunication bandwidth market and electrical energy balancing market.

Key words: network auctions, network winner determination problem (NWDP), complex-
ity of the NWDP, MILP models, multi-commodity flow optimization, graph models

1. Introduction

The Winner Determination Problem (WDP) must be addressed in any market
mechanism design as a part of market clearing procedure. A process of market
clearing must be supported by a decision support system in which optimization
plays a key role. A wide stream of the literature has focused on combinatorial
auctions and derived WDPs. In this case, the WDP is to find an allocation of
items (commodities) that a seller has, to the bids (offers) that buyers submit1.
Common belief is that the WDP is a hard, computational complex problem.
However, there are some specific cases which result in tractable WDP. Two as-
pects of practical importance are significant for its tractability. The first aspect,

1An ‘Item’ is commonly used in the literature devoted to combinatorial auctions. Since we also consider
divisible items, we use the term ‘commodity’ alternatively. Also, being conscious of the meaning differences
on various markets, we use the term ‘offer’ as a synonym to ‘bid’ in this paper.
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which has not gained much interest in the literature so far, is a divisibility of com-
modities and consequently the offers’ continuity. Energy, water, telecommunica-
tion bandwidth are examples of a variety of commodities that can be traded as
divisible objects. The second aspect relates to additional conditions that must be
taken into account in many real-world marketplaces. Market participants’ prefer-
ences, technological production processes or limited transportation capabilities
are a potential source of such constraints. There is a stream of researches that
focus on a maximization of economical value under constraints expressed by the
bidders, e.g., substitutability of commodities [1–3]. However, in the last decades
many infrastructure sectors of the economy have been transformed or have
started transformation into the open markets. On the infrastructure market, the
traded commodities must be transported from the sellers to the buyers with the
use of some infrastructure. Therefore, transactions are allowed only, if the infras-
tructure is able to serve them, which limits the free trade on the market. A natural
way to incorporate infrastructure constraints into the WDP is to apply a graph
model, i.e., a flow network that models real resources and commodities flow [4].

The WDP under flow network may be considered on the grounds of classical
combinatorial auctions. Special structures related to paths in a network can be
achieved by standard bidding language, i.e., XOR operator [5]. A bidder may
submit each offer for each possible bundle of commodities that create a path,
and then combine these offers with XOR operator. However, due to the necessity
of enumeration all possible paths, the combinatorial auction with XOR bidding
language is not a satisfactory tool in practice. To illustrate the problem, let us
consider the network presented in Figure 1. A seller offers links c1 to c8 and a
buyer is interesting in buying any path starting in node s and ending in t. When
combinatorial auction is applied to find allocation, then the buyer is forced to
enumerate all possible paths and each path is a composition (bundle) of links.
All possible paths must be arranged in one offer by combing the paths with
XOR operator, e.g., {c1,c3,c7}⊕ {c1,c4,c8}⊕ {c2,c5,c4,c8}⊕ {c2,c6,c8},
where ⊕ is the logical exclusive OR operator. Moreover, in some cases a buyer
could not be even informed about the structure of flow network or may not be
interested in analysis of all possible paths. Therefore, the combinatorial auction-
based approach cannot be regarded as simple and succinct. A complete graph
with |V | vertices is the worst case that involves enumeration of (|V |−2)! paths.
What a buyer needs is just a connection between s and t.

Since combinatorial auctions based on XOR bidding languages are ineffi-
cient in terms of expressing the preferences, we define the network auction as
an allocation and pricing mechanism that enables bidding the commodity bun-
dles isomorphic to some graph objects: vertices, edges, paths, trees, etc. In the
network auction, each buy or sell offer corresponds to some element or group
of elements in a given oriented graph G = (V,E), where V is a set of vertices
and E is a set of edges. A specific correspondence between commodities, of-
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Figure 1: Example of flow network in case of auction for path from s to t

fers and graph elements is characterized by well defined network auction setting.
For each network auction setting, a special variant of the WDP must be solved.
This creates a subclass of WDPs, denoted as the Network Winner Determination
Problem (NWDP), which covers all problems for every specific network auction
setting. For instance, regarding the example we introduced earlier in the paper,
we propose a very simple solution that only involves delivery of source and des-
tination nodes of required path instead of paths enumeration needed in combina-
torial auction. Having these nodes, the task is to find a flow in the network from
the source to the destination that is revenue-maximizing. This exemplary prob-
lem can be modeled as a special case of the NWDP, referred to as Arc-oriented
Network Winner Determination Problem further in this paper.

While the transparency and fairness are of much importance in auctions, find-
ing the exact solution of the WDP is crucial. Unfortunately, many markets with
side constraints appear to be intractable [3]. We have outlined the concept of the
NWDP for the first time in [6], where the security constrained versions are con-
sidered. We considered an impact of side constraints related to security issues on
numerical complexity of the problem. Comparing to [6], in this paper we analyze
the NWDP class more formally in node- and arc-oriented cases and we provide
deeper discussion of tractability of the basic formulation and some specific cases.
Our contribution is in formulation and variant analysis of optimization problem
that is the most important part of decision support system for market clearing
processes. We analyze the complexity of the NWDP in several cases. First, we
consider binary and continuous versions of the problem for single-item (the seller
has one item of each commodity to sell). Both cases, node- and arc-oriented, are
considered in capacitated and uncapacitated versions. Then, we analyze multi-
item problems. Again, we consider several well-defined versions of the multi-
item problem. Even though the problem is defined over the flow network, there
is a sharp edge between tractability and intractability determined by the integral-
ity of offers. However, the positive result we show in the paper is that there are
some special cases in terms of offers structures, that are tractable in case of inte-
ger offers. Finally, we show some exemplary applications which involve solving
the network WDP-like problems.
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2. Related literature

The Winner Determination Problem is mostly recognized in the context of
combinatorial auctions. There is a wide surge of research devoted to complexity
of the WDP. Classical formulation of the WDP assumes only one instance of
each traded item and consequently, it is equivalent to the weighted set packing
problem and can also be transformed into the weighted stable set problem or
the maximum weighted clique problem [7]. Moreover, general formulation of
the WDP is also inapproximable [8]. Approximation algorithms yield results far
from optimal solutions and they also have negative effects on other properties of
auctions, e.g., strategy-proofness. Different algorithms for solving the classical
WDP are discussed in [5].

It is also worth noting that explicite specification of valuations for all subsets
of items is inconvenient and impractical. Several bidding languages have been
developed to express valuations more succinctly and in more convenient way.
OR and XOR bidding languages are the most important and often referred to in
the context of WDP complexity. For more information on bidding languages in
combinatorial auctions see [9] and for divisible commodities see [10].

Due to NP-hardness of the WDP, a stream of researches is aiming at refor-
mulation of the problem to make the modified WDP problem easier to solve,
e.g., by imposing some restrictions or by relaxing selected constrains. There
are two main approaches to restrictive redefinition of the WDP: restrictions on
the bundles on which bids can be submitted, or restrictions on the bid values.
Müller has shown that, if there is a complete ordering on the items and the bid-
ders bid only on consecutive items according to this ordering, then the coeffi-
cients matrix is totally unimodular [11]. The WDP can also be transformed to
the maximum-weight matching problem and solved in O(m3) if each bid has at
most two items [7]. Another structure of the WDP that guarantees its tractabil-
ity is related to perfectness property of intersection graph related to subset of
items allowed for submission [11]. Interval bids are an example of assump-
tion under which the WDP can be modeled as perfect intersection graph. They
assume that items can be ordered in a way that each bid relates only to con-
secutive items. Rothkopf et al. considered nested bids which is a special case
of interval bids [7]. Vires and Vohra have proved that the WDP with OR bid-
ding language, denoted by WDPOR, is tractable for bids on neighbor items on
a circle (circular-arc graph) [12]. Dynamic programming algorithm was also
proposed to solve the WDP when bid sets are restricted to a subtree of tree,
whose nodes are identical to items [11]. Lehman et al. have proved that even
in case of restrictive constraints, i.e., every bid with value equal to 1 or every
bidder submitting only one bid or every item contained in exactly two bids, the
WDP remains NP-hard [8]. On the other hand, they mentioned two special cases
that are easy to solve: a) homogenous items with decreasing marginal valua-
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tions (by simple sorting the items), b) unit demand valuations (by transforma-
tion to assignment problem). Contizer et al. showed that the WDP is solvable
in polynomial time, if interactions among bids can be represented by the struc-
tured item graph [13]. Gottlob and Greco showed that WDP is tractable if bid-
der interactions can be represented with hypergraphs having bounded hypertree
width [14].

Restrictions on accepted bid structure can also be introduced to the prob-
lem as side constraints. Sandholm and Suri have discussed the impact of dif-
ferent side constraints on complexity of the WDP [15]. Some of the constraints
bring negative result and the WDP remains NP-complete, for instance, the max-
imum number of winners or constraints imposed by XOR-of-OR bidding lan-
guage. Unfortunately, most of side constraints do not alleviate the complexity of
WDP [16, 17].

Another way for transformation the WDP into tractable problem is to intro-
duce some restrictions on bidders’ valuations [11]. Linear relaxation of the WDP
has an integer optimal solution if for each bidder, the valuation function satis-
fies the substitutes condition. Another example of tractable case, considered by
Müller, is additive bid values with convex discounts [11]. Under this assumption,
the problem can be transformed into the min-cost flow problem.

Instead of restrictions one can also consider relaxation of the original WDP
which can also be intrinsic to the problem in some cases. The WDPOR becomes
polynomial if bids can be accepted partially. However, when some of side con-
straints are included, the problem can become NP-complete again.

Tennenoltz introduced another technique for identification the auction set-
tings that can be solved in polynomial time [18]. He used different reductions
to b-matching problem to prove tractability of several variants of the WDP. He
proved that additive quantity-constrained multi-item auction and sub-additive
quantity-constrained multi-item auction with bundles of size two, are tractable.
He also introduced other settings that are tractable: almost-additive auctions, sub-
additive symmetric bids, super-additive symmetric bids for triplets. Kothari et al.
showed that in case of exchange of k different items, the related WDP can be
solved in polynomial time if k bids can be accepted partially and valuation func-
tions are superadditive (e.g., bids on nonexclusive combinations of items) [19].
However, in case of subadditive valuations (e.g., bids on exclusive combinations
of items), the WDP remains NP-complete, even when all bids can be accepted
partially.

Loker and Larson considered complexity of the WDP assuming that sizes of
some of the input parameters are fixed, which is recognized as parameterized
complexity in the literature [20]. Finding a subset of parameters of the WDP,
which would result in fixed-parameter tractability, is similar to the attempts of re-
striction imposed on the WDP. Loker and Larson showed that parametrization of
total number of bids leads to fixed-parameter tractability, however parametriza-
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tion the number of bids per agent does not. The parametrization of so called
bid graph class corresponds to the results of Rothkopf [7]. Loker and Larson
proved that the WDP is fixed-parameter tractable if bid graph is an interval graph,
but it is fixed-parameter intractable when bid graph is chordal graph. They also
considered a class of bid graphs built of disconnected components. When each
of component has limited number of vertices, then the WDP becomes fixed-
parameter tractable. This assumption is equivalent to the division of items into
several groups and forbidding the bids for bundles mixing items from different
groups.

Another dimension of WDP’s complexity is property of free disposal of
items, which is considered in [21]. In this paper, the authors showed that without
free disposal, even finding a feasible solution is NP-complete for a combinato-
rial auction, reverse combinatorial auction or combinatorial exchange. One of the
most interesting results of this paper is finding that reverse combinatorial auction
with free disposal can be approximated while combinatorial auction does not.

We need to mention that auctions of items related to flow networks have been
considered in a few papers, especially in the context of communication network.
Typical assumption in these works is that links in a communication network are
equivalent to items, and a buyer wants to purchase a set of links creating a path
between two given nodes or forming a spanning tree. While the underlying prob-
lems, i.e., shortest path or minimal spanning tree, are tractable, corresponding
WDP is also tractable (see, e.g., [22]). For instance, Hershberger and Suri con-
sidered auction of shortest path between two points [23]. They proved that even
the need of sensitive analysis of WDP, which is required in case of Vickrey-
Clarke-Groves mechanism, does not change the complexity of the WDP. A com-
binatorial network auction is considered by Tennenoltz in [18]. He considered
a tree of items in which set of nodes is isomorphic to the set of items and any
bid can be submitted only for a bundle that creates a path in the tree. Resulting
WDP is proved to be tractable. It is worth noting that this problem formulation
is simplified in comparison to formulation of networked auction we provide fur-
ther in the paper, since it does not allow for submission more than one exclusive
paths.

Nisan [9] has mentioned network valuations as a special case of valuations in
discussion of bidding languages. He provided a short example of selling edges
and buying paths. However, there is no formal definitions of the problem and
no discussion concerning complexity of this case. We discuss the complexity of
the NWDP in the context of security related constraints in [6]. We showed that
so called MAX-WINNER constraint on maximum number of winning bidders
in certain subset of bidders makes the NWDP problem NP-hard. However, con-
straints on min/max volume traded in total or per bidder do not affect the com-
putational complexity. In this paper we systemize and provide a formal analysis
of the Network Winner Determination Problem.
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3. Network winner determination problem

3.1. Problem definition

In the literature, the Winner Determination Problem is usually defined in the
context of combinatorial auctions. In classical formulation of the WDP, e.g., see
[8], it is assumed that there is one seller and many buyers, and each commodity
can be allocated to at most one buying offer.

Definition 1 (The Winner Determination Problem, WDP) The seller has a set
of commodities, C = {1,2, . . . ,C}, to sell. Buyers submit a set of offers (bids)
B = {1,2, . . . ,B}. An offer m ∈B is a tuple 〈Sm,em〉, where Sm ⊆ C is a bundle
of demanded commodities, and em ­ 0 is an offered unit price. The Winner Deter-
mination Problem (WDP) is to find an allocation of commodities to buying offers
which belongs to a set of feasible allocations X and is revenue-maximizing.

The revenue is defined as ∑m∈B emxm, where vector x = (xm) represents an
allocation and xm is 1 if offer m is winning and 0 in other case. Set of feasible
allocations X is defined by bidding languages [8]. Without any additional re-
quirements, it is OR language assumed by default, which does not restrict to any
combination of bids. This problem is known to be NP-hard, since the set packing
problem can be reduced to the WDPOR [7]. Also for other, widely considered,
bidding languages, the problem remains NP-hard [8].

In network auctions, each commodity, as well as each offer, is associated
with a subset of vertices. Any allocation induces flow of commodities in the
network that must be feasible. Therefore, the Winner Determination Problem
must be replaced by extended version of the problem that takes into account
flow constraints. This leads us to the Network Winner Determination Problem.
The concept of the Network Winner Determination problem has been informally
introduced in [6]. Below we provide more formal definition for the first time.

Definition 2 (The Network Winner Determination Problem, NWDP) The Net-
work Winner Determination Problem is the Winner Determination Problem un-
der assumption that feasible allocation of commodities to buying offers belongs
to X ∩X G, where X G is a set of allocations that induce feasible flows in
flow network G. Let g and h be functions that map each commodity and of-
fer, respectively, to a set of vertices in G, i.e., g : C → V ×V × . . .×V , and
h : B → V ×V × . . .×V . Then, the set of allocations inducing feasible flows is
defined as follows: X G = {x : F(x,g,h)∈F}, where F is a set of feasible flows
in G and F(x,g,h) induces flow in G for allocation x and mappings g,h.

The above definition is general, and the devil is hidden in the definition of
functions g, h, and F(x,g,h). The emerging cases for typical interpretation of
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F(x,g,h), g and h are collected in table 1. In the simplest case, mappings g and h
associate one vertex to each commodity and offer, that is, g : C →V , h : B →V ,
and F(x,g,h) transforms each allocated commodity into a source vertex and each
allocated offer into a sink vertex. Each sell offer is for injection the commodity
to the flow network at related vertex and each buy offer is for withdrawing the
commodity from the flow network at given vertex. This special case will be re-
ferred further as Vertex-oriented Winner Determination Problem, VWDP [6]. In
this problem, the flow in a network can be perceived as an additional service or
a common good that serves the flow between contractors.

Table 1: Types of network auctions

demand supply type of the WDP

vertex vertex VWDP

arc arc combinatorial auction

2 vertices arc AWDP

arc 2 vertices flipped AWDP

vertex arc / vertex mixed VWDP-AWDP

arc / vertex vertex flipped mixed VWDP-AWDP

The second case assumes that each sell and buy offer refers to a pair of ver-
tices that belongs to E, that is, they refers to arcs in G. It can be interpreted as
the seller posses some capacities of links to sell and the buyer is interested in
buying capacities of particular links. Notice, that no flow is induced by an arc
allocation, and this case does not essentially differ from the combinatorial auc-
tion with simple offers. As we discussed before, the combinatorial auction can
be used to obtain the links that constitute required constellation, for instance, a
path. However, this does not take advantages of graph model and the complexity
lies in expressing buyer’s preferences with a use of bidding language.

The graph nature of the problem is inherent in the next two variants. In both
cases each commodity and each buy offer is associated with two vertices. How-
ever, on one side there are pairs of vertices from set E, and on the other side there
are pairs from V , that do not have to belong to E. In third variant each commod-
ity refers to an arc, while each buy offer reflects the need of path connecting two
vertices. To better illustrate this, one can consider telecommunication bandwidth
market, where sellers offer telecommunication links, and buyers are interested
in buying the cheapest paths between certain vertices. In this case the demand is
described by two vertices and can be also perceived as a virtual arc connecting
these two nodes. Due to that, we refer to this case as the Arc-oriented Winner
Determination Problem (AWDP) [6]. Notice, that a user does not have to bother
with possible path enumeration. “Virtual” link presented by the user is implicitly



NETWORK WINNER DETERMINATION PROBLEM 59

converted into package of links that creates a proper path in the auction solu-
tion. Since a buyer needs any combination of commodities that creates a suitable
path, the AWDP reminds a combinatorial auction. However, in this formulation a
buyer does not express all possible bundles of edges that create a set of possible
paths. In the fourth variant, which is symmetric to the previous one, commodities
and offers are flipped, i.e., each commodity is associated with a path and each
buy offer is related to an edge. Even though it can be difficult to give a mean-
ingful interpretation to this setting, it completes the map of possible variants as
flipped Arc-oriented Winner Determination Problem.

The last two cases represent some kind of mixture of the previous settings.
They are also symmetric, therefore we will focus on the penultimate one. In this
case, the vertex-oriented problem is extended in the way similar to arc-oriented
formulation, i.e., there are some commodities related to vertices but there are
also some commodities related to links. It means, that an accepted buying offer
requires delivery of commodity available at node defined by the seller, but setting
a route of delivery requires also buying links. We refer to this problem as mixed
VWDP-AWDP. In the last case the commodities and offers are flipped, which
generates flipped VWDP-AWDP.

It’s worth to notice that each of the aforementioned problems can appear as
reverse auction in the same way as reverse auction does in classical auction the-
ory. ‘Reversion’ is related to number of agents taking part on supply and demand
sides, while ‘flipping’ relates to the offered and requested commodities. Table 2
presents all combinations of ‘reverse’ and ‘flipped’ AWDP.

Table 2: Types of AWDP auctions due to number of agents and types of commodities.
Differences to ADWP are marked in bold font

buyers sellers

commodity # of agents commodity # of agents

AWDP paths n arcs 1

reversed AWDP paths 1 arcs n

flipped AWDP arcs 1 paths n

flipped reversed AWDP arcs n paths 1

Finally, after consideration the commodity and offer mappings to one or two
vertices, let us make a comment on the case of more than two vertices. First of
all, it brings some ambiguity to the problem in terms of offer’s and commodity’s
interpretation. Some cases that go beyond regular paths are likely to be solved
by applying one of the defined models: AWDP, VWDP, or mixed, and allowing
for combination of offers using one of the bidding languages, e.g., XOR or OR.
The case of minimal spanning tree is considered deeper in Section 3.5. Despite
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this, we believe that more interesting and valuable settings of the NWDP can be
developed in future researches. We refer to all problems that satisfy definition 2
as the NWDP subclass of WDP problems.

The second variant listed in table 1, as it is classical combinatorial auction,
has received great attention in the literature [12,24]. However, the other variants
have received very little attention till now. Let us define two basic problems, i.e.,
VWDP and AWDP, that are backbone of these variants of the NWDP.

Definition 3 (The Arc-oriented network Winner Determination Problem,
AWDP) Let the flow network be modeled as an oriented graph G = (V,E), where
V is a set of vertices and E is a set of edges. To make the notation simpler, we
assume that G is a connected graph and it is defined by an incidence matrix
a = [ave],v ∈V,e ∈ E. Each commodity to sell is associated with an arc from E,
that is, g : C →V , An offer m has the source and target vertices, vs

m, vt
m respec-

tively, and mapping h is defined as follows: h : B → V ×V. The Arc-oriented
network Winner Determination Problem (AWDP) is to find an allocation of com-
modities to buying offers which is revenue-maximizing under the constraints that
for each wining offer m, a subset of assigned commodities constitutes a path from
vs

m to vt
m, vs

m 6= vt
m.

Figure 2 illustrates the graph model of the AWDP. Commodities c1, c2, . . .,
c|E| are denoted with solid lines that represent set E. Usually, they reflect the
physical resources or transportation services, such that, each resource or service
is associated with some arc in the graph G. Buy offers m1,m2, . . . ,m|B| are defined
by pairs of vertices which are connected with dotted lines in Figure 2. These are
not edges of G, but for better understanding that can be perceived as virtual
links. Any solution of the AWDP is equivalent to a flow in G and must satisfy
flow conservation law, i.e., divergency must be positive at each source vertex,
negative at each target vertex, and netural at any other vertex. A buy offer m
requires a combination of arcs that create a path between the source vs

m and sink
vt

m vertices. Any path can be constituted, based on commodities that the seller
has, to satisfy given demand m.

One may notice, that commodities to sell are different from requested com-
modities in buy offers. Links and paths cannot be matched directly. However,
they can be matched due to some kind of conversion between commodities to
sell and demanded commodities. This conversion is performed implicitly by an
auction mechanism and due to the incidence matrix a. A pair of vertices, or in
other words, a virtual link, is implicitly converted into a set of possible paths
connected with XOR operator.

In the Vertex-oriented network Winner Determination Problem (VWDP) the
trade is related to commodities that can be injected by the seller into the network
at a given node, and are taken by buyers from the specified nodes of the network.
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Figure 2: Graph model of the AWDP

The transportation services in the network are required to transfer the commodi-
ties from the seller to buyers. We assume, that every commodity requires the
same level of resource in the network to be transferred (e.g., the same weights,
sizes).

Definition 4 (Vertex-oriented network Winner Determination Problem, VWDP)
Consider the WDP and related oriented graph G = (V,E). The seller has C com-
modities, and each commodity is located at some vertex v ∈V . An offer m is for
a commodity c ∈C at price em and located at vertex w ∈V . The Vertex-oriented
network Winner Determination Problem is to find an allocation of commodities
to buying offers which is revenue-maximizing under the feasibility of commodity
flow in G induced by accepted offers.

Figure 3 illustrates a graph model of the VWDP. Commodities c1, . . . ,C flow
into the flow network. The demand is defined by offers attached to vertices.
A pair 〈c,em〉 describes and offer for commodity c at price em.

Figure 3: Graph model of the VWDP
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3.2. Variants of the NWDP

Along with the standard WDP formulation, there is a commonly accepted
set of assumptions. Two common assumptions are: indivisibility of offers and
limitation to only one item of each commodity. We address both of them, which
leads us to the more general concept of the Winner Determination Problem.

Definition 5 (The Generalized Winner Determination Problem, GWDP) Let us
consider a set of commodities to sell, C = {1,2, . . . ,C}. The seller has w j copies
of commodity j ∈ C . Buyers submit a set of offers (bids) B = {1,2, . . . ,B}. Let
vm(xm) be marginal valuation in offer m if the vector of allocated commodities
xm = (x1,m, . . . ,xC,m) is assigned to offer m and belongs to the set of feasible
allocations X . The Generalized Winner Determination Problem (GWDP) is to
find an allocation of commodities to buying offers which is revenue-maximizing.

In case of continuous bid the accepted volume of a bundle can take any value
below the maximum volume defined in the offer. For this case, there are also
bidding languages used to express bidder valuations [10]. Notice, that the notion
of bundles used in WDP formulation is replaced by the set of feasible allocations
X . If this set allows for partial allocations, then the offers and commodities
are divisible. We will refer to this case as a continuous one, contrary to the bi-
nary case, in which each offer can be accepted entirely or not at all. Moreover,
this formulation allows for many instances of each commodity. On the basis of
GWDP definition, the Generalized Network Winner Determination Problem can
be formulated.

Definition 6 (The Generalized Network Winner Determination Problem, GN-
WDP) The Generalized Network Winner Determination Problem is the GWDP
problem under assumption that commodity flow induced by the allocation in the
same way as in definition 2, is feasible.

As well as specification of the GWDP leads to various formulations of the
problem, the GNWDP can be reduced to different variants, particulary different
variations of VWDP and AWDP. We consider three main aspects of any setting.
Each aspect is related to one of the following area: offers, items, and arcs. Before
we define variants of the problem, we need to introduce more notation. Let pc

and dm be the accepted volume of sold commodity c and buy offer m, respec-
tively. In case of AWDP, a commodity is equivalent to some arc. Therefore, pc

already defines the flow over edge associated with commodity c. To simplify the
notation we will also use pe, e ∈ E to denote the accepted volume of commodity
associated to arc e. In case of VWDP we also need to introduce fce, the flow of
the commodity c over edge e induced by the solution (pc,dm).
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Offers Offers can be either divisible (continuous) or indivisible (binary). In
default formulations of VWDP and AWDP the indivisible offers are assumed, so
variables dm and pc are binary:

dm ∈ {0,1} ∀m ∈ B, (1)

pc ∈ {0,1} ∀c ∈ C . (2)

In continuous NWDP, constraints (1) and (2) are replaced by the following
constraints:

0 ¬ dm ¬ 1 ∀m ∈ B, (3)

0 ¬ pc ¬ 1 ∀c ∈ C . (4)

Notice, that no integer variant is considered in standard versions of NWDP,
due to the assumption of only one copy of each commodity.

Items In multi-item problem, constraints (1) and (2) are replaced by the follow-
ing constraints:

dm ∈ {0,dmax
m } ∀m ∈ B, (5)

pc ∈ {0, pmax
c } ∀c ∈C, (6)

where dmax
m is maximal volume of offer m and pmax

c is maximal available volume
of commodity c. In case of continuous offers constraints (3) and (4) are replaced
by the following constraints:

0 ¬ dm ¬ dmax
m ∀m ∈ B, (7)

0 ¬ pc ¬ pmax
c ∀c ∈C. (8)

In multi-item case, there is also possibility to consider integer offers. In this case,
constraints are as follows:

dm ∈ {0, . . . ,dmax
m } ∀m ∈ B, (9)

pc ∈ {0, . . . , pmax
c } ∀c ∈C. (10)

Arcs We consider two cases: capacitated and uncapacitated arcs. In the capaci-
tated VWDP, the total flow over edge e is limited by the maximal flow f max

e , and
the following constraint must be introduced to the model:

∑
c∈C

fce ¬ f max
e ∀e ∈ E. (11)
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In case of the AWDP, arc capacities and flow costs are already defined by
offers related to arcs. However, an extra capacity constraint takes the follow-
ing form:

pe ¬ f max
e ∀e ∈ E. (12)

We need to add, that similarly to traditional auction designs, also network
auctions can be extended to double auctions (exchanges). One sided auction is
a special case of double auction, which is also called a combinatorial exchange.
In an exchange, multiple buyers and sellers provide complex offers and related
winner determination problem is aimed at matching offers to maximize the social
welfare resulting from the matching.

3.3. Notation system in the GNWDP class

As the space of problems in GNWDP class is multidimensional and complex,
we suggest to apply convenient notation for the problems which allows for quick
understanding the nature of the problem and it reduces possible ambiguity. We
propose field-based notation, similar to the idea of Kendall’s notation in queue-
ing theory or notation for theoretic scheduling problems. Four fields are needed
to describe a network auction system: α|β |γ|δ , where α is related to proper-
ties of items/commodities, β reflects offer’s properties, γ characterizes the flow
network, and δ specifies a type of auction.

Values that we identified for each field, aim at identification the settings men-
tioned before in this paper. However, the dictionary of values is not closed and
can be extended for each field during further research. In field α we use values
MI and SI which distinguish multi- and single-item cases. For offers (field β )
we need to determine their divisibility. Values B, C and I indicate binary (indi-
visible), continuous (divisible) and integer offers, respectively. In the field γ there
can be more potential values separated with comma. The cap/uncap value in-
forms that the network is either capacitated or uncapacitated. The cost value in
the field γ means that some additional cost of flow appears in the network. Fi-
nally, the field δ describes an auction system, and indirectly, an objective of the
auction. In this paper we mainly use VWDP and AWDP in this field. However,
also reverted auctions or exchanges should be indicated in this field.

We assume the following default values for fields α − γ: SI, B, uncap, re-
spectively. In case of default values, a field can be left empty as well as lead-
ing empty fields can be omitted. Therefore, the system described as VWDP (or
equivalently |||VWDP) means single-item uncapacitated vertex-oriented prob-
lem with binary offers. Default values can still be put in each field explicitly
to emphasize the setting. Let us notice, that assumed order of fields facilitates
reading the problem settings. For instance, MI|B|uncap|AWDP which denotes
one of the most complex case, can be read as ‘multi-item binary uncapacitated
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arc-oriented winner determination problem’. Other examples of definitions are
presented in table 3.

Table 3: Exemplary notation of problems in the GNWDP class

notation description

cap|VDWP single item capacitated vertex-oriented problem with bi-
nary offers

MI|||VWDP multi-item uncapacitated vertex-oriented problem with
binary offers

MI|I|cap|VWDP multi-item capacitated vertex-oriented problem with inte-
ger offers

MI|C|cap|AWDP multi-item capacitated vertex-oriented problem with con-
tinuous offers

B|uncap,cost|AWDP single item uncapacitated vertex-oriented problem with
binary offers

Each of the problems can also appear with side constraints [3]. For instance,
in [6] two types of constrains in network auction are discussed: MIN/MAX-
VOLUME and MIN/MAX-WINNER. These types put constraints on a total
traded volume or total number of winners in a given subnetwork, respectively.
We recall this aspect to draw the whole landscape of NWDP-like problems,
however, security constraint NWDP are beyond the scope of this paper. We
recommend to put additional information about side constraints in front of the
problem definition and separate this from the rest with a space. Therefore, the
problem MIN/MAX-VOLUME MI||cap|AWDP means multi-item capacitated
arc-oriented problem with binary offers and under MIN/MAX-VOLUME con-
straints. To distinguish problems without side constraints we refer to them as
unconstrained cases.

3.4. Relationships between VWDP and AWDP

As we defined two main problems in the NWDP class, an interesting question
arises: is the VWDP somehow related to the AWDP? In case of the AWDP, a
buyer provides the source and target vertices, which specify a set of possible
bundles of commodities, such that each bundle creates required path between
the source and the destination. An offer exhibits substitutability, since any proper
path can serve the buyer needs. There is also complementarity, because the links
are only valuable in combinations forming proper paths, and they are worthless
in other case.
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The VWDP does not reflect such combinatorial aspects as the AWDP does.
A flow in the network that must be constituted to let the offers become matched
involves only setting up network resources, while in the AWDP it requires a
combination of offers. Therefore, intuitively the VWDP brings a greater com-
plexity and likely is more comprehensive than the AWDP. The following remark
confirms the simplicity of basic variant of the VWDP.

Remark 1 Notice, that the VWDP can be transformed into a set of trivial AS-
SIGNMENT problems, each problem for each commodity. This decomposition is
possible, since in the VWDP, the network flow is uncapacitated and any flow is
feasible. In each resulting problem a given commodity must be assigned to the
most valuable offer from the set of buy offers submitted for this commodity.

From this remark the relationship between the VWDP and the AWDP imme-
diately results.

Remark 2 The VWDP can be transformed into an instance of the AWDP in lin-
ear time. Each commodity can be considered separately. We construct an in-
stance of the AWDP for a given commodity as follows. Each commodity from
the VWDP is associated with some arc in the AWDP. These arcs also create
paths for which buyers bid. Then, every bid in the VWDP for commodity c is
transformed into similar bid in the AWDP for link (vs

m;vt
m). In other words, every

ASSIGNMENT problem related to the VWDP can be modeled as a trivial one-arc
instance of the AWDP. Figure 4 illustrates the transformation.

Figure 4: Model presented in Figure 3 transformed into the AWDP

Remark 3 The capacitated VWDP can be transformed into the AWDP in linear
time. Let G be a graph in the VWDP, vc be a vertex in which commodity c is
available, and vm be a vertex associated with offer m. An instance of the AWDP
with graph GAWDP is created in the following way:

1. Initially, GAWDP = G
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2. Each arc is associated with some artificial commodity which is available
at volume equal to capacity of related arc in G

3. For each commodity:

(a) Add a new vertex v′c
(b) Add an arc (v′c,vc)

4. Each commodity c in the VWDP is transformed into a commodity associ-
ated with link (v′c,vc) and the volume as in the VWDP

5. Each buy offer m for a commodity c is transformed into an offer for a path
connecting vertex v′c with vm

Figure 5 illustrates the transformation.

Figure 5: Transformation of (a) capacitated VWDP into (b) the AWDP

Unfortunately, due to combinatorial nature of the AWDP and assignment-like
nature of the VWDP, the AWDP is not transformable into the VWDP in general.
The AWDP can be modeled as the WDP with XOR-constraints, which in general
is NP-complete [3].

3.5. Minimal spanning tree

Introducing the AWDP facilitates bidder’s preference expression. The con-
tractor does not have to express desirable combinations of arcs, but instead of
that he expresses his preferences in terms of paths. A path can be considered
as a complex commodity and it is network auction mechanism, that is responsi-
ble for conversion this commodity into a proper set of simple commodities, i.e.,
links. The conversion is obviously driven by a network model. Then, immedi-
ately arises the following question: are there any other graph-based structures
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that should become a complex commodity directly traded? We leave this ques-
tion open, however, since a spanning tree is the one considered in the literature
in the context of auctions [22], we will make a comment on it.

Consider an auction of links in graph G = (V,E). Sellers have links e ∈ E
to sell at price ce, and the buyer is interested in buying links that constitute a
minimal spanning tree in G, where ce is a weight of edge e ∈ E. This setting of
auction can be modeled as the mixed VWDP-AWDP. More precisely, this is the
problem SI|B||VWDP-AWDP, which is constructed in the following way. Graph
G = (V,E) creates a flow network of the problem. Commodities are naturally
related to links. Sellers offer links that are binary (can be either accepted fully
or rejected). The maximal volume of each offer is |V | − 1 and price of offer e

is
ce

|V |−1
. Let us choose any vertex l ∈ V as a root of the demanded spanning

tree. The spanning tree will be designated by a flow of additional, artificial com-
modity c. This commodity is available at vertex l and the buyer is interested in
acquiring one unit of commodity c in every other vertex. One seller submits an
offer for |V |−1 units of commodity c at node l and at price 0.

Proposition 1 The optimal solution of SI|B||VWDP-AWDP constructed as de-
scribed above designates the minimal spanning tree of G.

Proof First, notice that for every spanning tree there exists a feasible solution
of the considered auction. Moreover, a graph induced by the optimal flow of the
problem is connected and induced by all vertices in V , because in any feasible
solution the commodity flows from vertex l to every other vertex in V . Therefore,
to prove that optimal flow of the problem induces a spanning tree of G, we only
need to show that there are no cycles. Let us assume that there is a cycle induced
by the optimal solution of the auction. In this case at least one link in the cycle
can be removed and the flow between vertices connected by this link can be
redirected along the second path in the cycle. Notice, that the capacity resulting
from the offered volume, which is |V |−1, is sufficient for this flow, since there is
|V |−1 units of commodity in total. After removing the link, the solution remains
feasible, while the total cost is lower. It means, that there are no cycles in optimal
solution. Therefore, the optimal solution of the problem is a spanning tree.

Now, we need to prove that this tree is the minimal one. Since only the offers
for links have non-zero costs, then the problem is formulated as follows:

min
ce

|V |−1
pe (13)

s.t. pe belongs to set of flows inducing any spanning tree of G. It is binary prob-
lem, thus, pe is either 0 or |V |−1. Each winning offer for a link e generates the
cost ce, while each rejected offer brings no cost. Therefore, the optimal solution
of the auction is equivalent to the minimal spanning tree.
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4. Complexity in the NWDP class

4.1. Complexity of AWDP-derived problems

First, let us consider AWDP-derived problems with single items.

Proposition 2 The following problems: C||AWDP, C|cap|AWDP, C|cost|AWDP,
and C|cap,cost|AWDP (uncapacitated, capacitated without and with flow costs)
can be solved in polynomial time.

Proof Let a = [ave],v ∈V,e ∈ E be an incidence matrix describing the flow net-
work G, which is a connected graph by the definition. A buy offer m has the
source and target vertices, vs

m,v
t
m respectively. The problem is to find an allo-

cation of commodities to buying offers which is revenue-maximizing under the
constraints that for each wining offer m a set of allocated commodities consti-
tute a path from vs

m to vt
m, vs

m 6= vt
m. Problem C||AWDP can be modeled as the

following linear program:
max ∑

m∈B

emdm, (14)

s.t.

∑
e∈E

ave pem =





dm v = vs
m

0 v 6= vs
m,v

t
m

−dm v = vt
m

∀v ∈V,m ∈ B, (15)

pe = ∑
m∈B

pem ∀e ∈ E, (16)

0 ¬ dm ¬ 1 ∀m ∈ B, (17)

0 ¬ pe ¬ 1 ∀e ∈ E, (18)

where pem is a volume of commodity related to arc e and allocated to demand m.
A flow conservation is achieved due to constraint (15). In constraint (16) the total
flow over arc e is calculated. Constraint (17) limits the maximal accepted volume
of offers and constraint (18) assures that no more than one item can be sold. The
linear programming problem was shown to be solvable in polynomial time by
Khachiyan [25]. In capacitated problem the constraint (12) must be added to the
model (14)–(18). The problem with external costs involves adding component
(−∑e∈E pece) to the objective (14), where ce is a cost of unit commodity flow.

Proposition 3 Each of the following problems: AWDP, cap|AWDP, cost|AWDP,
and cap,cost|AWDP (uncapacitated and capacitated, without and with flow
costs) is NP-complete.
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Proof The AWDP can be expressed by (14) subject to (15)–(16), and (1)–(2)
(notice, that index c is isomorphic to index e in case of the AWDP). This prob-
lem is equivalent to the multi-commodity flow problem with weighted maximal
flow as an objective under additional assumption of unit capacities. This prob-
lem was proved to be reducible to satisfiability problem (SAT) and, therefore, to
be NP-complete, even for two commodities [26]. The capacitated version can be
transformed into uncapacitated one. If capacity of a given arc is lower than 1,
then this arc can be removed, since no integral amount of any offer can be allo-
cated to it. If the capacity is higher than 1, it can be omitted since the available
volume of commodity related to this arc is 1. Concerning the additional flow
cost, the AWDP is a special case assuming that cost is equal 0. Therefore, AWDP
can be reduced to any of the following problems: cap|AWDP, cost|AWDP, and
cap,cost|AWDP. Thus, each of the problem is NP-complete.

Now, let us consider multi-item AWDP-derived problems.

Proposition 4 The following problems: MI|C||AWDP, MI|C|cap|AWDP,
MI|C|cost|AWDP, and MI|C|cap,cost|AWDP (uncapacitated, capacitated
without and with flow costs) can be solved in polynomial time.

Proof Each of the problems can be modeled as linear program. Problem
MI|C||AWDP is an maximization problem (14) subject to (15)–(16), and (7)–
(8). Capacitated problem is a modification of this formulation according to (12).
Problem with additional flow cost is also simple modification of the objective
(14) by adding (−∑e∈E pece) component, where ce is a cost of unit commodity
flow.

Theorem 1 Multi-item AWDP-derived problems, i.e., MI|||AWDP,
MI||cap|AWDP, MI||cost|AWDP, MI||cap,cost|AWDP are NP-complete.

Proof First, let us notice that MI|||AWDP can be reduced to any of the rest
problems, because it is a special case of each of them. Therefore, it is sufficient
to prove that MI|||AWDP is NP-complete. We reduce the KNAPSACK problem
to the MI|||AWDP. In the knapsack problem there are B items. Each item m ∈
{1, . . . ,B} has value rm and weight wm. W is the maximum weight that can be
carried in the knapsack. We formulate an instance of MI|||AWDP with a flow
network G = ({v1,v2},{e1 = (v1,v2)}). There are m commodities offered by B
buyers for a path from v1 to v2 with maximal volume dmax

m equal to weight of

item wm, and unit price em equal
rm

dmax
m

. A seller has link e1 with capacity W . The

original knapsack problem has an optimal solution with total value Q̂ if and only
if the instance of MI|||AWDP has an optimal solution with objective value Q̂.
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Proposition 5 Multi-item AWDP-derived problems with integer offers, i.e.,
MI|I||AWDP, MI|I|cap|AWDP, MI|I|cost|AWDP MI|I|cap,cost|AWDP are NP-
complete.

Proof Similarly to the previous proof, let us notice that MI|I||AWDP can be
reduced to any of the rest problems. Moreover, this is the multi-commodity flow
problem which is proved to be NP-complete (see proof of proposition 3).

4.2. Complexity of VWDP-derived problems

First, let us consider VWDP-derived problems with single items.

Proposition 6 The following problems: C||VWDP, C|cap|VWDP, C|cost|VWDP,
and C|cap,cost|VWDP (uncapacitated, capacitated without and with flow costs)
can be solved in polynomial time.

Proof Let a = [ave],v ∈V,e ∈ E be an incidence matrix describing the flow net-
work G, and A be the availability set, i.e., set of pairs (c,v), such that the seller
has commodity c at vertex v. Let us also define a function u : B → C ×V that
assigns commodity c ∈C and vertex v ∈V to an offer m ∈ B. It means, that offer
m is for commodity c requested at vertex v, if u(m) = (c,v). The problem is to
find an allocation of commodities to buying offers which is revenue-maximizing
under the constraint conserving the flow in G. We will show that each of the prob-
lems can be modeled as linear program, therefore they belongs to P complexity
class. Problem C||VWDP can be modeled as the following linear program:

max ∑
m∈B

emdm, (19)

s.t.

∑
e∈E

ave fce =

{
pc if(c,v) ∈ A
0 otherwise

}
− ∑

m:u(m)=(c,v)

dm ∀v ∈V,∀c ∈C, (20)

0 ¬ dm ¬ 1 ∀m ∈ B, (21)

0 ¬ pc ¬ 1 ∀c ∈ C , (22)

where fce is a flow of the commodity c over the edge e. Problems C|cap|VWDP,
C|cost|VWDP, and C|cap,cost|VWDP are simple modifications of problem
(19)–(22). Capacitated version is obtained by introduction constraint (11). Ex-
ternal cost flow involves inclusion the element −(∑e∈E,c∈C ke fce) in objective
(19), where ke is an external flow cost over edge e.

Proposition 7 Problems VWDP, cost|VWDP are in P.
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Proof Problems VWDP, cost|VWDP remaind the multi-commodity flow prob-
lem, which is known to be NP-complete for integer flows. However, since there
is no link capacity constraint, the matrix of coefficients of problem (19)–(22) is
totally unimodular as it is network matrix [27].

Proposition 8 Problems cap|VWDP and cap,cost|VWDP are NP-complete

Proof Problems cap|VW DP, cap,cost|VWDP are the multi-commodity flow
problem. Complexity of the multi-commodity flow problem is mentioned in the
proof of proposition 3.

Now, let us consider multi-item VWDP-derived problems.

Proposition 9 The following problems MI|C||VWDP, MI|C|cap|VWDP,
MI|C|cost|VWDP, and MI|C|cap,cost|VWDP (uncapacitated, capacitated
without and with flow costs) can be solved in polynomial time.

Proof Each of the problems can be modeled as a linear program. Problem
MI|C||AWDP is the maximization problem (19) subject to (20), (7), and (8).
Capacitated problem is a modification of this formulation according to (11).
Problem with additional flow cost is also simple modification of the objective
(19) by adding ∑e∈E,c∈C kc fce component, where kc is the cost of a unit com-
modity flow.

Optimization problem (19), (20), (7), and (8) remains multi-commodity flow
problem without capacity constraints.

Proposition 10 MI|I||VWDP and MI|I|cost|VWDP can be solved in polynomial
time.

Proof Notice, that there is no link capacity constraints. Therefore the matrix of
coefficients of the problem is totally unimodular as it is network matrix [27] and
the optimal solution is integer.

Theorem 2 MI|I|cap|VWDP and MI|I|cap,cost|VWDP are NP-complete.

Proof Capacitated version of the problem includes constraint (11), which
makes the problem equivalent to multi-commodity flow. In general, the multi-
commodity flow has a matrix that is not totally unimodular and linear relax-
ation of MI|I||VWDP can result in fractional solution. Complexity of multi-
commodity flow problem is mentioned in the proof of proposition 3.

Table 4 collects all considered variants along with the information about their
computable complexity and the way of proof.
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Table 4: NWDP’s complexity summary
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SI B uncap AWDP NP SAT reduction

SI C uncap AWDP P LP

SI B cap AWDP NP SAT reduction

SI C cap AWDP P LP

MI B uncap AWDP NP knapsack reduction

MI C uncap AWDP P LP

MI I uncap AWDP NP SAT reduction

MI B cap AWDP NP knapsack reduction

MI C cap AWDP P LP

MI I cap AWDP NP SAT reduction

SI B uncap VWDP P total unimodularity

SI C uncap VWDP P LP

SI B cap VWDP NP SAT reduction

SI C cap VWDP P LP

MI B uncap VWDP NP knapsack reduction

MI C uncap VWDP P LP

MI I uncap VWDP P total unimodularity

MI B cap VWDP NP knapsack reduction

MI C cap VWDP P LP

MI I cap VWDP NP SAT reduction

4.3. Other tractable instances of the NWDP with integer offers

As we mentioned in the introduction, a path auction, i.e., AWDP auction,
can be perceived as a combinatorial auction with XOR bidding language. Also,
the problem SI|B|cap|VWDP can be considered as a combinatorial auction with
XOR language. Since there are known settings of combinatorial auctions that are
tractable, we apply this knowledge to discover auction settings that can be solved
efficiently. This is relevant to problems proved to be NP-complete in general,
i.e., SI|B|cap|VWDP, SI|B|cap|AWDP, SI|B|uncap|AWDP, MI|I|uncap|AWDP,
MI|I|cap|AWDP. Since problem SI|B|cap|VWDP can be transformed into proper
AWDP-derived problem in linear time (see Remark 3), we limit further consider-
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ation to AWDP-derived problems. It is worth to noting, that this approach opens a
new challenging area of searching for problem structures, that allow to solve the
hardest NWDP problems and algorithms that can be derived from the discovered
structures. In this section we deliver the preliminary achievements.

The AWDP with limited path length Let us consider a graph G = (V =
{v1,v2},E) that has several edges in the set E, each connecting v1 and v2. Each
offer is for any path from v1 to v2. Therefore, only one edge from E must be al-
located to an offer to constitute a path. The binary case of this problem is equiv-
alent to a combinatorial auction with XOR language and bids for single items.
This type of combinatorial auction is proved to be in P [11]. In fact, the problem
can be transformed into maximal weighted flow and remains integer convex hull,
even in case of integer version of the AWDP. Figure 6 illustrates this case and
transformed model. Of course, the graph G can be more complex and offers may
relate to different pairs of vertices, unless each offer is a path not longer than 1,
i.e., there exists no other route that is longer.

Figure 6: a) The AWDP with paths of length equal 1 and b) related max weighted flow
problem

A case of path lengths limited to 1 can be extended to paths of length ¬ 2,
but only in case of OR language. It means that paths wanted by buyers can be of
length 1 or 2, but there can only be one path between each two vertices for every
buy offer. The problem can be transformed into an item graph: each link is repre-
sented by a vertex and two vertices are connected if they are covered by any buy
offer (see Fig. 7). For buy offers for one link, the vertex related to the link must
be doubled. In the new graph, the maximum weighted matching problem can be
solved (e.g. by Edmonds’ algorithm with O(n3) complexity), and therefore re-
lated SI|B|cap|AWDP, SI|B|uncap|AWDP, and MI|I|uncap|AWDP are tractable.

The OR bidding language is insufficient to express substitutability that is
needed, when more than one possible path can be matched with a buy offer.
Notice, that OR bidding language with dummy items can be used instead of the
XOR bidding language [8]. However, adding a dummy item means lengthening
the path, which leads us again to the case of original paths no longer than one.
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Figure 7: a) The AWDP with paths of length ¬ 2 and b) related item graph

Let us consider the VWDP that is transformed into the AWDP with paths of
length 1 and according to Remark 2. It means, that the VWDP is limited to only
one commodity. In fact, it makes this problem equivalent to a network flow prob-
lem limited to one commodity, which becomes easy in integer case, due to total
unimodularity of coefficients matrix. This is also the case of the minimal span-
ning tree problem considered in Section 3.5. General problem SI|B|C|VWDP-
AWDP is NP-hard. However, in case of the minimal spanning tree, there is
only one commodity with non-zero cost, and the problem is actually a single-
commodity flow problem. This result is consistent with findings of Bikhchan-
dani et al. [22], since they showed that the minimal spanning tree auction is
tractable.

The AWDP with hierarchical structure of offers Let us assume that offer m in-
duces only one possible path denoted by Pm. If for any two offers m and n and
related paths Pm and Pn, their intersection is empty or one path is completely in-
cluded in the second one, then problems SI|B|cap|AWDP and SI|B|uncap|AWDP
become tractable. Each problem can be transformed into a tree, such that, if link
c belongs to some node, then it also belongs to the parent node (see Fig. 8).

Figure 8: a) The AWDP with tree structure and b) resulting tree
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Combinatorial auctions with OR language and with subtree (hierarchical) bids
are known to be in P [8]. The solution can be constructed by simple depth-first
traversing the tree and comparing revenue for a given node with summation of
revenues for all children of this node. For instance, in the example illustrated in
Figure 8, it is enough to compare the total revenue of offers m4 and m6 to the
revenue of offer m3 in order to decide which offers are winning in this subtree.

The AWDP with bids for consecutive items If G is an acyclic graph and links can
be put into some order, such that each buy offer relates to some consecutive links,
then problems SI|B|cap|AWDP and SI|B|uncap|AWDP are tractable. This case is
equivalent to combinatorial auction with OR language and so called interval (or
sometimes called ‘linear’) bids [8]. Exemplary graph is illustrated in Figure 9.

Figure 9: The AWDP with bids for consecutive items

The AWDP with tree-like network Idea of interval bids is extended to a network
of goods represented by a tree in [18]. Inspired by this achievement we apply
similar approach to the case of AWDP-derived problems to demonstrate that
offers limited to paths in a tree make the problems computationally tractable.

Theorem 3 If flow network G is a tree and offers can be only submitted for
paths in G, then problems SI|B|cap|AWDP and SI|B|uncap|AWDP can be solved
in polynomial time.

Tennenholtz considered similar problem in which commodities are identified
with vertices instead or edges, and offers are binary [18]. His proof is based
on showing an isomorphism between original problem and optimal coverage of
G′ by circles, which can be transformed into weighted perfect matching in a bi-
partite graph. This approach could be also used in case of binary offers, but not in
case of integer offers. Therefore, we will apply more general approach to prove
the theorem.
Proof We construct the graph G′ = (V ′,E ′) on the basis of G and by applying
the following modifications:

1. Each edge e ∈ E has assigned weight 0.
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2. For each bid m for a path from vm
1 to vm

2 we add two new vertices vm′ and vm′′

and three edges: em′1 = (vm′,vm
1 ), e2m′′ = (vm

2 ,vm′′), and em′m′′ = (vm′,vm′′).
Edges em′1 and em′m′′ have weight 0 and the edge e2m′′ has weight em. Each
of the edges has capacity equal to dmax

m .

3. Each vertex vm′ is a source with in-flow equal to dmax
m and vertex vm′′ is a

sink with out-flow equal to dmax
m .

First, we will show that the original problem is equivalent to the maximal
weighted flow problem in G′. A flow over edge e2m′′ generates revenue due to
unit revenue em assigned to this edge. It is equivalent to accepted volume of offer
m. If the in-flow at vm′ is directed to the sink at vertex vm′′ , it means that the of-
fer m is rejected. Partially accepted offer induces flow of dmax

m divided over both
edges em′1 and em′m′′ . Therefore, any solution of an auction can be encoded as a
flow in G′, and for any flow in G′, there exists a related solution of the auction.
Figure 10 illustrates the case of tree-like network and related graph G′.

Figure 10: a) AWDP with bids for consecutive items, b) and related graph G′

One may notice, that in the optimal solution of maximal weighted flow prob-
lem the in-flow at vm′ can be directed to vn′′ , and thus it breaks the logic of the
problem. However, since vm′′ is a sink vertex, there must be another accepted
offer, that will be directed to vm′′ at appropriate level to conserve the flow. Such
mixed flows can be always refined keeping the total flow at each edge and the
objective unchanged. Let us assume that flows originated at vm′ and vn′ mix up
at vertex vi. The joint flow splits apart again at some vertex and flow x from vm

is directed to vn′′ , while the same flow from vn′ is directed to vm′′ . It is clear that
flows can be exchanged starting from the vertex vi without affecting the total
flows, as well as the objective. The refinement is illustrated in Figure 11. Note,
that the refinement is not necessary to obtain the winning offers, so it does not
add complexity to the problem.
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Figure 11: The flow refinement: a) flow mixed up and b) refined

Now, we need to show, that the maximal weighted flow problem in G′ is
tractable. Let us construct the following linear programming model:

max ∑
(i, j)∈E ′

ci jxi j, (23)

s.t.

xm′1 + xm′m′′ = dmax
m ∀m ∈ B, (24)

xm′m′′ + x2m′′ = dmax
m ∀m ∈ B, (25)

∑
i:( j,v)∈E ′

x jv − ∑
j:(v, j)∈E ′

xv j = 0 ∀v ∈V, (26)

where xi j is a flow over edge (i, j) and ci j is a unit cost of this edge. Constraints
(24)–(26) represent flow conservation for source, sink and intermediate vertices,
respectively. Matrix of coefficients is a network matrix which is totally unimod-
ular which guarantees integrality of solution of the LP model.

5. Some practical applications

Infrastructure economies which are being moved into deregulated, competi-
tive markets are the natural areas for applications of the Network Winner Deter-
mination Problems. In this section we present some applications of the NWDP
in telecommunication and energy sectors. However, the range of applications is
much wider and includes: supply chain management, transportation sector (mar-
itime, air, land, rail), time auctions, water supply, among others.
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5.1. Communication bandwidth trade

The telecommunication industry deregulation that dates back to 90’s, led to
the development of the bandwidth markets. Originally, it was oriented on bilat-
eral negotiations, but the new technological and conceptual opportunities have
appeared, as the structure of telecommunication market became more complex
and dynamic. The new efficient, flexible trading mechanisms became needed to
enable the development of real competitive bandwidth markets.

Typically, telecommunication resources are conceptually organized as a lay-
ered model. For example, the Open Systems Interconnection model (OSI model)
distinguishes seven layers, starting from physical layer and ending in application
layer. An auction mechanism can be applied to organize an exchange of goods
in one or more linked layers. Some model of an infrastructure is associated with
each layer and must be addressed during the trade. At physical layer, communi-
cation ducts create the infrastructure network and resources being traded. Proba-
bly, the most natural layer for business is transport or network layer. In this case
bandwidths of telecommunication links create elementary resources, that build
the whole flow network. Buyers can be interested in various complex products.
We will use two of them to present possible applications of the NWDP: paths in
this section and virtual private network in Section 5.3.

In [28] and [29] Balancing Communication Bandwidth Trade (BCBT) model
is proposed. It provides effective allocation of network resources in the sense that
it maximizes global economic surplus (welfare) by matching appropriate buy and
sell offers, referring not only to individual or bundled links, but also to end-to-end
connections, i.e., paths. The structure of the communication network resources
offered for sale is represented by multigraph (V,E ), where V is a set of network
nodes (locations) and E denotes a set of (directed) network links, i.e., bandwidth
resources offered for sale. The sell offer concerning link e ∈ E is described by
[ye,Se], where ye is the maximal capacity the seller is willing to sell and Se is the
minimal acceptable unit price of bandwidth resource e. The assignment between
sell offers and network nodes can be expressed by the incidence matrix [ave],
where ave = 1 if offer e originates in node v, −1 if e terminates in node v, and 0
otherwise.

The set of buy offers is denoted by D . Every buy offer concerns a point-to-
point bandwidth connection between a pair of specified locations in the network.
The connections are unidirectional, i.e., they have source and sink nodes. The
source node for buy offer d ∈ D is denoted by sd and the sink node by td. There
may be many demanded connections between a pair (sd, td), hence (V,D) is a
multigraph. A buy offer d ∈ D , concerning end-to-end connection, is described
as [hd,Ed], where hd is the maximal bandwidth capacity the buyer wants to pur-
chase and Ed is the maximal acceptable unit price of bandwidth.
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In basic version of the model it is assumed that offers can be realized par-
tially; xd is the variable of volume realization for buy offer d, xe is the variable of
volume realization for sell offer e. Variable xed denotes the bandwidth capacity
allocated to sell offer e to serve buy offer d. The BCBT clearing model can be
formulated as the following mathematical linear program:

max

(
∑

d∈D

Edxd − ∑
e∈E

Sexe

)
, (27)

s.t.

0 ¬ xd ¬ hd, ∀d ∈ D , (28)

0 ¬ xe ¬ ye, ∀e ∈ E , (29)

∑
d∈D

xed ¬ xe, ∀e ∈ E , (30)

0 ¬ xed , ∀e ∈ E ,∀d ∈ D , (31)

∑
e∈E

avexed =





xd v = sd

0 v 6= sd, td

−xd v = td

,∀v ∈V,∀d ∈ D . (32)

Constraints (28) and (29) set upper bounds on bandwidth realization of de-
mand and supply offers. Constraint (30) sets the values of contracted nonnegative
bandwidth volume on each link according to flows allocated to network paths.
The flow constraints (32) are expressed by demand realization variables xd .

The above model can be perceived as an AWDP-derived exchange (two-sided
auction). But we can also directly use the model of capacitated multi-item AWDP
with cost flow, i.e., MI|C|cost|AWDP. Maximal volumes and prices of sell offers
need to be mapped onto link capacities and additional cost flow in the prob-
lem. Constraint (32) is equivalent to the constraint (15), constraints (29) and (30)
are equivalent to constraints (17)–(18), and constraint (30) is equivalent to (16).
Inequality sign in (30) is introduced only due to numerical properties and at opti-
mal solution this constraint is satisfied at equality. According to our findings, the
resulting problem is tractable, but as far as integer case is considered, it becomes
NP-complete. Thus, for instance in [30], some algorithmic technics are proposed
to deal with its computational complexity.

Contrary to other models of telecommunication resource auction, in the
BCBT model, the buy offer d does not have to specify explicitly a bundle of
inter-node links that realize the best connection between selected nodes. There-
fore, the buyer does not have to guess which links to choose to obtain the allo-
cation of demanded capacity. It is the decision of the model that allocates the
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most efficient links to connections. This flexibility is achieved thanks to AWDP-
derived model.

The basic BCBT model can be extended in several ways, in order to take
into account specific, real-world trade requirements. A variety of more general
exchange models covers different market needs and requirements, such as ca-
pacity modularity [31], bidirectional bandwidth trading [32], or atomicity. These
cases lead to some variants of AWDP-derived problems, including integer/binary
offers, remodeling a flow network model into the case of directed flow. The com-
plexity of each of these models is crucial for practical applications. Therefore,
the knowledge of computational complexity of underlying problems is useful
in determining promising directions of model development. It points out which
functional requirements can be relatively easily included and which ones are
hard.

5.2. Electrical energy balancing market

Electrical energy markets very well illustrate the complexity of the infras-
tructure market. Market balancing is being obtained by multi-step processes of
the multi-commodity trade. A market operator is responsible for running a com-
plex process that leads to demand and supply balance at every moment of time.
Usually, this process is a sequence of auctions. On a single auction the operator
needs to acquire an energy provided by suppliers and required to balance the sys-
tem. There is one buyer, the system operator, that must acquire certain volumes
of energy at given nodes of the power grid. There are many sellers of energy, who
inject sold energy into the power grid at given nodes. Decisions arising from the
auction models refer to the levels of generations and loads at each node of power
grid. An energy is injected and taken at given nodes and it requires transmission
network resources to be delivered and committed. The auction mechanism must
provide the solution that guarantees feasibility of energy flow in the power grid.
Therefore, the problem is equivalent to the reversed MI|C|cap|VWDP. However,
there is an important feature that distinguishes an electricity market from the
telecommunication bandwidth trade. It is the need for taking into account the
physical properties of the power flow. While in the BCBT-derived models, both
based on AWDP and VWDP, the commodity flow in the network was a result of
optimization of some economic measure, on electricity auction the power flow
comes from nonlinear electrical laws, including the Kirchoff laws.

At different stages of balancing process, the models of commodity flows are
taken into account with different accuracy. For the auctions carried out well
ahead of delivery time the limitations of the network may be in the form of
restrictions on the divergence of individual nodes. For shorter horizons, the lin-
earized models are usually considered. Typically, the power flow is incorporated
into the Winner Determination Problem by means of so-called Power Trans-
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fer Distribution Factors (PTDFs). Assuming some referenced node in the net-
work, PTDF is defined for a pair of node-line and it denotes the MW change in
the power flow at given line when additional (relatively to some assumed flow)
1 MW is transferred from the given node of the network to the referenced node.
Then, in the auction models, the network restrictions take the following form of
constraints:

−Pe ¬ ∑
v∈V

PT DFvePv ¬ Pe ∀e ∈ E, (33)

where Pe is maximal admissible load of the transmission line e and Pv denotes
the divergence in the node v. Divergence at node v is a result of solving the auc-
tion model (energy injected and received at the node v) similar to the reversed
VWDP model. The following model is an example of typical short-time balanc-
ing model:

min
d,p

[∑
j∈J

s j p j], (34)

s.t.

∑
v∈V

Pv = 0, (35)

Pv = ∑
j∈Jv

p j − ∑
m∈Mv

dm ∀v∈V , (36)

−Pe ¬ ∑
v∈V

PT DFvePv ¬ Pe ∀e∈E , (37)

0 ¬ p j ¬ pmax
j ∀ j∈J, (38)

0 ¬ dm ¬ dmax
m ∀m∈M, (39)

where sets J and M denote the sets of generation units and demand respectively,
and Jv ⊆ J and Mv ⊆ M are subsets of generators and demand respectively, re-
stricted to node v. Decision variables dm and p j are accepted volumes of bought
energy at node related to demand m ∈ M and sell offer j ∈ J respectively. Unit
cost of energy for generator j is s j. Feasible volumes of offers are limited by
pmax

j for sell offer j and by dmax
m for buy offer m. This particular model is clearly

the security-constrained reversed VWDP-like problem. Constraint (37) makes
the problem differ from the clear reversed VWDP, since it is required to provide
security-constrained solution. Nonetheless, all our findings for clear VWDP or
reversed VWDP, can be applied also for this problem. Particulary, they can indi-
cate potential changes in the model that would make the problem hard.
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5.3. Virtual private network

Virtual Private Network (VPN) auctions are an interesting example of appli-
cations of both subclasses of the NWDP, the VWDP and the AWDP, to solve
a practical problem. A family of models dedicated to the trade of telecommu-
nication resources for the VPN is another example of models derived from the
BCBT. In this problem a seller offers bandwidth for telecommunication links.
Buyers want to acquire the bandwidths, that will be proper to organize VPN for
their purposes. In the literature, there are two approaches to express the needs of
VPN users. In the pipe-model a user needs to specify the bandwidth requirement
between any two endpoints [33]. The requirements for bandwidth connections
are determined between each pair of nodes belonging to the VPN and resulting
model is a AWDP-like one. However, if the telecommunication network con-
sists of a large number of nodes and number of endpoints increases, the routing
uncertainty is growing and the pipe-like approach becomes inconvenient for the
auctioneers. Number of pairs for which a customer needs to specify an offer in-
creases rapidly. To solve this problem, the hose model has been proposed. In the
hose model a user needs to specify the amount of traffic that can be sent to and
received from the backbone network at each endpoint [33]. A user must only
provide required in- and out- flow at vertices he or she is interested in. The hose
model simply leads to VWDP-like problem. Let us notice, that the hose formu-
lation suffers from uncertainty issues, and there is no superior solution for VPN
problem.

As we discussed before, VWDP and AWDP are not equivalent. Therefore,
derived functional features of the VPN auctions are different and they are the
subject of undergoing researches. The auction models for both cases were intro-
duced in [33], where detailed models can be found.

6. Summary

In this paper we defined the Network Winner Determination Problem, which
is a new subclass of the Winner Determination Problems, such that the win-
ning offers induce a commodity flow in a certain flow network. We focused on
two general problems in the NWDP class: the Arc- and Vertex-oriented Winner
Determination Problems. These problems can be expressed in terms of combi-
natorial auctions, however, the AWDP and the VWDP formulations significantly
facilitate expressing the agent preferences. Figure 12 summarizes our findings
in field of computational complexity of various variants of AWDP/VWDP prob-
lems. Even though, the sharp edge of tractability is generally designated by bi-
nary/integer offers, it turns out that uncapacitated integer VWDP is tractable.
More over, some special structures of offers and flow network can make the



84 M. KALETA

problem easy, even if in general it is NP-hard problem. This includes hierarchi-
cal structure of the bids, bis for consecutive items, among others. One of the
most interesting case is when the flow network is a tree, and offers may only
cover paths along the branches connecting leafs with root of the tree.

Figure 12: Variants of NWDP and the edge of tractability

Systematic approach to network auctions that we proposed, and our findings
concerning the behaviour of different variants in terms of computational com-
plexity, support designing the network auction market mechanisms. A designer
may not only use VWDP- or AWDP-derived auction setting instead of tough
combinatorial auction, but he or she is also aware of complexity issues, when the
problem drifts into some variants recognized in this paper. Due to the abstract
model, that can be applied in different infrastructure economies, the knowledge
in field of auction design can be easier transferred to other fields of economy.
We presented two applications areas, telecommunications and energy sectors,
providing specific real-world problems.
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We have also created a new area for possible future research. We have left
opened interesting question if there exists other structures, that make certain vari-
ants of the problem easy. Our preliminary results in security constrained auctions
are presented in [6].
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and J. Krystek, eds., pp. 111–118, Wydawnictwo Pracowni Komputerowej
Jacka Skalmierskiego, 2012.

[7] M. H. ROTHKOPF, A. PEKEC and R. M. HARSTAD: Computationally
manageable combinational auctions. Manage. Sci., 44 (1998), 1131–1147,
Aug.

[8] D. LEHMAN, R. MÜLLER and T. SANDHOLM: The winner determination
problem. Combinatorial Auctions, P. Cramton, Y. Shoham, and R. Stein-
berg, eds., ch. 12, The MIT Press, 2006.

[9] N. NISAN: Bidding languages. Combinatorial Auctions, P. Cramton,
Y. Shoham, and R. Steinberg, eds., ch. 9, The MIT Press, 2006.



86 M. KALETA

[10] M. KALETA: Bidding languages for continuous auctions. New Trends in
Databases and Information Systems, (2013), 211–220, Springer Berlin Hei-
delberg.

[11] R. MÜLLER: Tractable cases of the winner determination problem. Com-
binatorial Auctions, P. Cramton, Y. Shoham, and R. Steinberg, eds., ch. 13,
The MIT Press, 2006.

[12] S. DE VRIES and R. V. RAKESH: Combinational auctions: A survey. In-
forms Journal on Computing, 15(3) (2003), 284–309.

[13] V. CONITZER, J. DERRYBERRY and J. SANDHOLM: Combinatorial auc-
tions with structured item graphs. Proceedings of the National Conference
on Artificial Intelligence (AAAI), (2004), 212–217, The AAAI Press.

[14] G. GOTTLOB and G. GRECO: On the complexity of combinatorial auc-
tions: Structured item graphs and hypertree decomposition. Proceedings of
the 8th ACM Conference on Electronic Commerce, EC ’07, (New York, NY,
USA), (2007), 152–161, ACM.

[15] T. SANDHOLM and S. SURI: Side constraints and non-price attributes in
markets. Games and Economic Behavior, 55(2) (2006), 321–330, Mini
Special Issue: Electronic Market Design.

[16] M. BICHLER, J. R. KALAGNANAM and H. S. LEE: Reco: Representa-
tion and evaluation of configurable offers. In Computational Modeling and
Problem Solving in the Networked World: Interfaces in Computer Science
and Operations Research, H. K. Bhargava and N. Ye, eds., (2003), 235–
258, Boston, MA: Springer US.

[17] A. DAVENPORT and J. KALAGNANAM: Price negotiations for procurement
of direct inputs. Tech. Rep. RC 22078, IBM, May 2001.

[18] M. TENNENHOLTZ: Tractable combinatorial auctions and b-matching. Ar-
tificial Intelligence, 140(1) (2002), 231–243.

[19] A. KOTHARI, T. SANDHOLM and S. SURI: Solving combinatorial ex-
changes: optimality via a few partial bids. Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS (2004), 1418–1419, July.

[20] D. LOKER and K. LARSON: Parameterizing the winner determination
problem for combinatorial auctions. 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto,
Canada, May 10-14, Volume 1-3, (2010), 1483–1484.



NETWORK WINNER DETERMINATION PROBLEM 87

[21] T. SANDHOLM, S. SURI, A. GILPIN and D. LEVINE: Winner determina-
tion in combinatorial auction generalizations. AAMAS ’02: Proceedings of
the first international joint conference on Autonomous agents and multia-
gent systems, (2002), 69–76, ACM.

[22] S. BIKHCHANDANI, S. DE VRIES, J. SCHUMMER and R. V. VOHRA:
Linear programming and Vickrey auctions. Mathematics of the Internet:
E-Auction and Markets, vol. 127 of IMA Volumes in Mathematics and its
Applications, pp. 75–116, Springer, 2002.

[23] J. HERSHBERGER and S. SURI: Vickrey pricing in network routing: Fast
payment computation, In Proc. of the 42nd IEEE Symposium on Founda-
tions of Computer Science, (2001), 252–259.

[24] P. CRAMTON, Y. SHOHAM and R. STEINBERG: Combinatorial Auctions.
The MIT Press, 2006.

[25] L. G. KHACHIYAN: A polynomial algorithm in linear programming (in
Russian). Doklady Akademii Nauk SSSR, 244 (1979), 1093–1096. English
translation: Soviet Mathematics Doklady, 20(1), (1979), 191–194.

[26] S. EVEN, A. ITAI and A. SHAMIR: On the complexity of time table and
multi-commodity flow problems. 16th Annual Symposium on Foundations
of Computer Science (sfcs 1975), (1975), 184–193, Oct.

[27] A. SCHRIJVER: Combinatorial Optimization – Polyhedra and Efficiency.
Springer, 2003.
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