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Abstract

A Bayesian stochastic volatility model with a leverage effect, normal errors
and jump component with the double exponential distribution of a jump value
is proposed. The ready to use Gibbs sampler is presented, which enables one
to conduct statistical inference. In the empirical study, the SVLEDEJ model is
applied to model logarithmic growth rates of one month forward gas prices.
The results reveal an important role of both jump and stochastic volatility
components.
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1 Introduction
Financial time series of logarithmic rates of return are often modelled by the SV
processes (e.g. Jacquier, Polson and Rossi 1994, Pajor 2003, Jacquier, Polson and
Rossi 2004, Yu 2005, Omori, Chib, Shephard and Nakajima 2007). Extending basic
SV structures to the ones featuring a jump component may often appear empirically
superfluous, because of a small number of jumps (if at all) to be identified in a given
dataset, which is believed to be a consequence of the SV component’s capability of
modelling sharp movements in the data, especially in the fat-tailed SV models, see
Jacquier, Polson and Rossi (2004).
Energy is an important economy factor having effects on the politics and development
economy. The problem of modelling time series from energy markets is important
from practical point of view (e.g. forecasting; see e.g. Weron 2014). Such data sets
often feature periods of high and low volatility and jumps. Asymmetry of returns
justify one’s expectation of an asymmetry of jump values. This paper addresses the
aforementioned problem by proposing a new model structure, which is believed to be
a useful tool in modelling commodity time series.
Bayesian SV models with jumps are not a new concept (Chib, Nardari and Shephard
2002, Johannes and Polson 2010). Some models with Levy jumps were considered
e.g. by Li, Wells and Yu (2008), Szerszen (2009). The contribution of the paper
is the proposition of the Bayesian stochastic volatility model with a leverage effect,
normal errors and jump component with the double exponential distribution of a
jump value (the SVLEDEJ model, in short). The assumed distribution of jumps
corresponds with one’s expectation of asymmetrical (around zero) jump sizes. The
main goal is to define the model and present the numerical algorithm, namely the
Gibbs sampler (Gamerman and Lopes 2006) which facilitates statistical inference
under the SVLEDEJ model. Moreover, an application of the methodology to a
problem of estimating parameters, detecting jumps and identifying periods with high
volatility is presented.
The double exponential jump-diffusion model is a jump-diffusion structure with the
double exponential jump size distribution. The process defines the dynamics of an
asset under the Kou model framework which is applied in pricing derivative securities
(Kou 2002, Kou and Wang 2004). The specification is a particular case of the Pareto-
Beta jump-diffusion specification proposed by Ramezani and Zeng (1998), where two
Poisson processes govern the arrival rate of “bad” and “good” news. The discrete
version of the double exponential jump-diffusion model (DEJD, in short) is considered
by Kostrzewski (2015), who proposed its Bayesian version. The Bayesian DEJD
model was applied to detect jumps and investigate the asymmetry of jump values.
The main drawback of the DEJD structure is the assumption of independence of the
returns. The SVLEDEJ model is an extension of the DEJD model. Bacause of the
SV component, the assumption of the independence of returns is no longer in force,
under SVLEDEJ framework.
The very term of a jump is in common use. Unfortunatelly, there is no a unique and
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generally accepted definition. While analysing a time series which is believed to be
a trajectory of some stochastic process, one seems to know which values are jumps
“for sure”, but does not know how to classify the rest of observations, that is where
to put the border between a small movement (diffusion) and a jump. In the paper,
it is assumed that a time series is generated by a process with jumps. The problem
how to classify a given data point as being (co-)generated by the jump component is
solved by introducing latent variables.
The paper is structured as follows. In the first part, the theoretical one, the definition
of the model is given. Then the Bayesian version of it is proposed. Finally, the Gibbs
sampler is given. The second part, the empirical one, is devoted to application of
the new structure. First, the time series is presented. Second, results of estimation
and detection of jumps are shown. Finally, the article ends up with conclusions and
further plans of research.

2 The SVLEDEJ model

2.1 The model structure

The DEJD model assumes that the logarithm of a risky asset S is governed by a
jump-diffusion process. The process is built of two components: a (pure) diffusion
part, representing continuous variations in the series, and a (pure) jump component,
reflecting abnormal (extreme) movements in the series:

d (ln (St)) =
(
µ− 1

2σ
2
)
dt+ σdWt︸ ︷︷ ︸

a pure diffussion
component

+ d

(
Nt∑
i=1

ξi

)
︸ ︷︷ ︸
a pure jump
component

,

where {St} is the stochastic process of prices and {Wt} stands for a Wiener process.
The continuous price behavior between jumps is described by a geometric Brownian
motion, while the arrival rate of jumps is described by a homogeneous Poisson process,
{Nt}, and jump magnitudes – by {ξi}.
The Merton model (Merton 1976) is presumably the most famous jump-diffusion
structure. The Bayesian version of a discrete version of this model was given e.g.
by Kostrzewski (2014) in the framework of Bayesian JD(M)J model. The discrete
version of DEJD model (also called DEJD) is similar to the JD(M)J specyfication for
M = 1. The difference resides in different distributions of jump values. In the case of
the DEJD model the double exponential distribution DE (pD,ηD,pU ,ηU ) is assumed.
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Hence the distribution of a jump value ξi is given by the density:

fξi (x) = pD
1
ηD

exp
(

1
ηD

x

)
I(−∞,0) (x) + pU

1
ηU

exp
(
− 1
ηU
x

)
I[0,∞) (x) ,

pD ≥ 0, pU ≥ 0, pD + pU = 1, ηD > 0, ηU > 0.

Hence, negative and positive jumps follow exponential distributions with different
values of parameters. The main motivation behind such a structure is a presumption
of the asymmetry of frequency and values of jumps. Additional properties of the
DEJD structure are presented in Kostrzewski (2015).
The DEJD structure might be criticized for the assumption of independence of returns
and a constant value of the volatility parameter. Because of these disadvantages,
a new model is suggested so as to incorporate, additionally, a stochastic volatility
component and correlation between returns and volatility, usually referred to as the
leverage effect. Let us first write it in a continuous time scale:

d (ln (St)) = µdt+
√

exp (ht)dW (1)
t + d

(
Nt∑
i=1

ξi

)
dht = κh (θh − ht) dt+ σhdW

(2)
t , d

〈
W (1),W (2)

〉
t

= ρdt,

where {ξi} ∼ iid DE (pD,ηD,pU ,ηU ) and
{
W

(1)
t

}
,
{
W

(2)
t

}
are Wiener processes with

an instantaneous correlation ρ. This new specification incorporates continuous and
small changes of values of the process ln (St), jumps (with the double exponential
distribution) as well as stochastic volatility and correlation between returns and
volatility. The process

∑Nt
i=1 ξi is a compound Poisson process with jump intensity

λ > 0 and the double exponential distribution of jump values. In what follows research
the discrete version (the Euler-Maruyama approximation) of the model is considered:

yi+1 = yi + µ+
√

exp (hi)ε(1)
i+1 + Ji+1,

hi+1 = hi + κh (θh − hi) + σh

(
ρε

(1)
i+1 +

√
1− ρ2ε

(2)
i+1

)
,

(1)

where yi = ln (Si),
{
ε

(1)
i

}
∼ iid N (0, 1),

{
ε

(2)
i

}
∼ iid N (0, 1), ε(1)

i and ε
(2)
j are

independent, and the distribution of a jump component value Ji is given by the
density:

fJi (x) = pD
1
ηD

exp
(

1
ηD

x

)
I(−∞,0) (x) + p0δ(0) (x) + pU

1
ηU

exp
(
− 1
ηU
x

)
I(0,∞) (x) ,

where δ(0) is the Kronecker delta.
An additional restriction of 0 < κh < 2 is assumed in order to ensure the
stationarity of the log-volatility process hi. Parameter µ ∈ R represents the drift of
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Zi+1 = yi+1 − yi. Note that E (hi|h1) → θh for i → ∞. The value of |1− κh| is
responsible for the speed of mean reversion of the log-volatility process hi towards its
mean θh (which is called the long run equlibrium value or the mean reversion level
of hi (Brigo and Mercurio 2001)) and σh is the volatility parameter of hi. The value
of 1

κh
represents the mean reversion time. The parameter ρ ∈ (−1, 1) is interpreted

as (instantaneous) correlation coefficient between return shocks ε(1)
i and volatility

shocks ρε(1)
i +

√
1− ρ2ε

(2)
i . If ρ < 0 or ρ > 0, then the leverage effect or the inverse

leverage effect appears, respectively. The parameters pD, p0 and pU are interpreted
as the probabilities of a negative jump, no jump and a positive jump, respectively.
Moreover, ηD and ηU are means of negative and positive jumps, correspondingly.
Let us note that:

1. E (Zi+1|hi) = µ− ηDpD + ηUpU .

2. E (Zi+1|hi,qi+1 = −1) = µ − ηD, E (Zi+1|hi,qi+1 = 1) = µ + ηU ,
E (Zi+1|hi,qi+1 = 0) = µ.

3. V ar (Zi+1|hi) = exp (hi) + η2
DpD (1− pD) + η2

UpU (1− pU ) + 2ηDηUpDpU .

4. Zi+1|hi is a mixture of continuous distributions:

(a) Zi+1|hi, qi+1 = 0 ∼ N (µ, exp (hi)).

(b) p (Zi+1|hi, qi+1 = −1) =
1− Φ0,1

(
Zi+1−(1−exp(hi)/ηD)

exp(hi/2)

)
ηD

·

· exp
(

1
2

(
exp

(
− 1

2hi
)
− 1

ηD
exp

( 1
2hi
))2
− 1

2 exp (−hi)µ+ Zi+1/ηD

)
,

where Φ0,1 stands for a standard normal cumulative density function.

(c) p (Zi+1|hi, qi+1 = 1) =
1− Φ0,1

(
Zi+1−(1+exp(hi)/ηU )

exp(hi/2)

)
ηU

·

· exp
(

1
2

(
exp

(
− 1

2hi
)

+ 1
ηU

exp
( 1

2hi
))2
− 1

2 exp (−hi)µ− Zi+1/ηU

)
.

5. Zi+1|hi+1, hi, Ji+1 ∼

N

(
µ+ Ji+1 +

√
exp (hi)
σh

ρ (hi+1 − hi + κh (θh − hi)) ,
(
1− ρ2) exp (hi)

)
.

6. If hi+1 = hi ≡ ln
(
σ2) (e.g. κh = σh = 0 or ρ = θh = 0 and κh = 1), where

σ2 > 0 and Ji ≡ 0 then {yi} is a Gaussian random walk with a drift µ and
{Zi} ∼ iid N

(
µ, σ2).

7. If Ji ≡ 0 then {Zi − µ} is a stochastic volatility process.
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8. If hi+1 = hi ≡ ln
(
σ2), where σ2 > 0 then {yi} is a jump-diffusion process with

a double exponential distribution of jump values.

9. If κh ∈ (0, 2) then {hi} is an AR(1) process and hi ∼ N
(
θh,

σ2
h

(2 + κh)κh

)
.

Let justify the interpretation of ρ. Assume that ζi+1 = ln
(
Si+1
Si

)
− µ− Ji+1 and

γ = κhθh and φ = 1− κh. Therefore

ζi+1 =
√

exp (hi)ε(1)
i+1,

hi+1 = γ + φhi + σh

(
ρε

(1)
i+1 +

√
1− ρ2ε

(2)
i+1

)
,

where ε
(1)
i ⊥ ε

(2)
j (stochastically independent) for all i and j, and

{
ε

(1)
i

}
,{

ε
(2)
i

}
∼ iid N(0, 1) and |φ| < 1.

Note that

E
(
hi+1| ε(1)

i+1, hi

)
= γ + φhi + σhE

(
ρε

(1)
i+1 +

√
1− ρ2ε

(2)
i+1

∣∣∣ ε(1)
i+1, hi

)
= γ + φhi + σhρε

(1)
i+1.

As |φ| < 1, then hi ∼ N
(

γ
1−φ ,

σ2
h

1−φ2

)
and

E
(
hi+1| ε(1)

i+1

)
= E

(
E
(
hi+1| ε(1)

i+1, hi

)∣∣∣ ε(1)
i+1

)
= E

(
γ + φhi + σhρε

(1)
i+1

∣∣∣ ε(1)
i+1

)
= γ + φE

(
hi| ε(1)

i+1

)
+ σhρε

(1)
i+1

= γ + φ
γ

1− φ + σhρε
(1)
i+1.

Note that sign (ζi+1) = sign
(
ε

(1)
i+1

)
. In order to interpret ρ, assume for an

instant that ρ < 0. If the value of hi is constant and values of ζi+1 decrease,
then ε

(1)
i+1 decreases and volatility increases i.e. the conditional mean of hi+1 (i.e.

E
(
hi+1| ε(1)

i+1

)
) increases, to be exact. Note that if Ji+1 = 0 and µ = 0, then

ζi+1 < 0 means negative logarithmic return. For these reason, ρ can be interpreted
as the leverage effect (Yu, 2005).
The above discrete time structure (1) is called the stochastic volatility model with
a leverage effect and double exponential jumps (SVLEDEJ, in short). Further
considerations are limited to this structure. Note that the log-volatility process hi
(and not hi+1as in Jacquier, Polson, and Rossi 2004) appears in the formula for yi+1,
which is in line with the idea presented by Yu (2005) (and also used in Omori, Chib,
Shephard, and Nakajima 2007, Li, Wells, and Yu 2008, Johannes and Polson 2010).
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2.2 The Bayesian SVLEDEJ model
While analysing a time series which is believed to be a trajectory of some stochastic
process, we do not actually know if a given data point has been generated by a pure
diffusion, or a pure SV process, or a jump component, or any combination of them.
To manage the problem, latent variables qi, ξDi and ξUi are introduced. The variable
qi takes three values −1, 0 or 1. The first value corresponds with a negative jump,
the second one with no jump and the last one with a positive jump. Formally, an
occurence of a jump is equivalent to an event qi 6= 0. Unfortunately, the values
of variables qi are not observed, but the posterior probability P (qi 6= 0| y) can be
assessed. Let us assume that a jump occurs at i if the posterior probability of a jump
exceeds an arbitrarily chosen value of 0.5. Additionally, the value of a negative jump
equals −ξDi+1 · I (qi+1 = −1), and a positive one ξUi+1 · I (qi+1 = 1). It leads to the
following specification:

yi+1 = yi + µ+
√

exp (hi)ε(1)
i+1 + Ji+1,

hi+1 = hi + κh (θh − hi) + σh

(
ρε

(1)
i+1 +

√
1− ρ2ε

(2)
i+1

)
,

Ji+1 = −ξDi+1 · I (qi+1 = −1) + ξUi+1 · I (qi+1 = 1),

where yi = ln (Si),
{
ε

(1)
i

}
,
{
ε

(2)
i

}
∼ iid N (0, 1), ε(1)

i and ε
(2)
j , are independent,{

ξDi
}
∼ iid Exp (ηD),

{
ξUi
}
∼ iid Exp (ηU ), qi ∈ {−1, 0, 1}, P (qi = −1) = pD,

P (qi = 0) = p0, P (qi = 1) = pU . The Bayesian SVLEDEJ model is defined with
extended parameter space including also the latent variables.
Let us assume Zi = yi − yi−1, where i = 2, ..., n. The random variables Zi stand for
the logarithmic growth rates of Si. Moreover,

Zi = µ+
√

exp (hi−1)ε(1)
i + Ji,

hi = hi−1 + κh (θh − hi−1) + σhε
(3)
i .

The vector of all unknown quantities is defined as:
(θ, h, q, ξ) =

(
µ,κh,θh,σh,ρ, ηD, ηU , pD, p0, pU , h1,..., hn, q2,..., qn, ξ

D
2 ,..., ξ

D
n , ξ

U
2 ,..., ξ

U
n

)
,

where µ ∈ R, 0 < κh < 2, θh ∈ R, σh > 0, ρ ∈ (−1, 1), ηD > 0, ηU > 0, pD ≥ 0,
p0 ≥ 0, pU ≥ 0, pD + p0 + pU = 1, hi ∈ R, qi ∈ {−1, 0, 1}, ξDi ∈ (0,∞), ξUi ∈ (0,∞).
According to Jacquier, Polson, and Rossi (2004), we reparametrize the model using
φh = σhρ and ωh = σ2

h

(
1− ρ2) instead of σh and ρ.

For all unknown quantities of the model, standard proper prior distributions
reflecting prior uncertainty are assumed. The prior structure is as follows:
p (θ, h, q, ξ) = p (µ) p (κh) p (θh) p (φh, ωh) p (ηD) p (ηU ) p (pD, p0, pU ) ·

·p (h1)
n∏
i=2
p (hi|hi−1, θ)

n∏
i=2
p (qi| θ)

n∏
i=2
p
(
ξDi
∣∣ θ) n∏

i=2
p
(
ξUi
∣∣ θ), where

µ ∼ N (mµ, wµ),
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κh ∼ N (mκh , wκh) I(0,2) (a truncated normal distribution),
θh ∼ N (mθh , wθh),
ωh ∼ IG (aωh , bωh) (an inverse gamma distribution), where

p (ωh) ∝ ω−aωh−1
h exp

(
− bωhωh

)
,

φh |ωh ∼ N
(
0, 1

2ωh
)
,

ηD ∼ IG (aηD , bηD ),
ηU ∼ IG (aηU , bηU ),
(pD, p0, pU ) ∼ Dirichlet (dD, d0, dU ), where p (pD, p0, pU ) ∝ pdD−1

D pd0−1
0 pdU−1

U .
The prior assumptions for latent variables are as follows:
p (qi = −1 |θ ) = pD, p (qi = 0 |θ ) = p0, p (qi = 1 |θ ) = pU , ξDi |θ ∼ Exp (ηD),

ξUi |θ ∼ Exp (ηU ), where p
(
ξDi |θ

)
= 1

ηD
exp

(
− ξ

D
i

ηD

)
. Moreover, we assume

hi|hi−1, θ ∼ N
(
κhθh + (1− κh)hi−1, σ

2
h

)
and a uniform distribution for

h1 ∼ U (−Ah1 , Ah1), where Ah1 is a “large” number (e.g. 104) belonging to
the interval (0,∞].
Finally, the Bayesian SVLEDEJ model we define as the joint density

p (Z, θ, h, q, ξ) := p (θ, h1, q, ξ)
n∏
i=2
p
(
Zi, hi|hi−1, qi, ξ

D
i , ξ

U
i , θ

)
,

where p
(
Zi, hi|hi−1, qi, ξ

D
i , ξ

U
i , θ

)
∝

n∏
i=2

exp
(
− 1

2(1−ρ2)

[(
ε

(1)
i

)2
−2ρε(1)

i ε
(3)
i +

(
ε

(3)
i

)2
])

.

The Gibbs sampler
Combining the Gibbs sampler and the independent Metropolis-Hastings algorithm
facilitates the Bayesian inference under the SVLEDEJ model. These techniques
are numerical methods of multidimensional integration, which belong to the Markov
Chain Monte Carlo (MCMC) methods (Gamerman and Lopes 2006). In what follows
the applied in practise algorithm is described.
The algorithm of generating a sample from the posterior conditional distribution of hi
employed by Jacquier, Polson and Rossi (2004) is applied. In particular, the property
of time reversibility of the AR(1) is used in generating h1. Some tedious, yet fairly
simple calculations yield the following formulae of relevant posterior conditionals,
making the Gibbs sampler ready to use:

1. µ :

p
(
µ|θ\(µ), h, q, ξ, y

)
∝ exp

(
− 1

2Cµ

(
µ− Dµ

Cµ

)2
)
, where
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Cµ = 1
wµ

+ 1
1− ρ2

∑n
i=2 exp (−hi−1),

Dµ = mµ

wµ
+ 1

1− ρ2
∑n
i=2

Zi − Ji
exp (hi−1) −

ρ

1− ρ2
∑n
i=2

ε
(3)
i

exp (hi−1) ,

ε
(3)
i = hi − hi−1 − κh (θh − hi−1)

σh
.

2. κh :
p
(
κh|θ\(κh), h, q, ξ, y

)
∝ exp

(
− 1

2Cκh

(
κh −

Dκh
Cκh

)2
)
· I (κh ∈ (0, 2)), where

Cκh = 1
wκh

+ 1
1− ρ2

∑n
i=2

(θh − hi−1)2

σ2
h

,

Dκh = mκh

wκh
+ 1
σ2
h (1− ρ2)

∑n
i=2

(
−ρε(1)

i σh (θh − hi−1) + (hi − hi−1) (θh − hi−1)
)
,

ε
(1)
i = yi − yi−1 − µ− Ji√

exp (hi−1)
.

3. θh :
p
(
θh|θ\(θh), h, q, ξ, y

)
∝ exp

(
− 1

2Cθh

(
θh −

Dθh
Cθh

)2
)
, where

Cθh = 1
wθh

+ 1
1− ρ2

(n− 1)κ2
h

σ2
h

,

Dθh = mθh

wθh
+ κh
σ2
h (1− ρ2)

[∑n
i=2

(
hi − hi−1 + κhhi−1 − ρσhε(1)

i

)]
,

4. (φh, ωh) :
p
(
φh, ωh|θ\(φh,ωh), h, q, ξ, y

)
= p

(
φh|θ\(φh,ωh), h, q, ξ

)
p
(
ωh|θ\(φh,ωh), h, q, ξ

)
,

where
p
(
φh|θ\(φh,ωh), h, q, ξ, y

)
∝

exp

−1
2

2+
∑n

i=2

(
ε

(1)
i

)2

ωh

φh − 1(
2 +

∑n
i=2

(
ε

(1)
i

)2
) ∑n

i=2 ε
(1)
i [hi − hi−1 − κh (θh − hi−1)]


2,

so that φh|θ\(φh), h, q, ξ, y ∼ N
(
Dφh
Cφh

, 1
Cφh

)
, where

Cφh = 1
ωh

(
2 +

∑n
i=2

(
ε

(1)
i

)2
)
, Dφh = 1

ωh

∑n
i=2 ε

(1)
i [hi − hi−1 − κh (θh − hi−1)],
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p
(
ωh|θ\(φh,ωh), h, q, ξ, y

)
∝(

1
ωh

)n/2+d+1
exp

(
− 1
ωh

[
bωh + 1

2
∑n
i=2 [hi − hi−1 − κh (θh − hi−1)]2

])
·

· exp

− 1
ωh

− 1
2

1(
2 +

∑n
i=2

(
ε

(1)
i

)2
) (∑n

i=2 ε
(1)
i [hi − hi−1 − κh (θh − hi−1)]

)2


,

so that ωh|θ\(φh,ωh), h, q, ξ, y ∼ IG (Aωh , Bωh), where
Aωh = n/2 + aωh ,
Bωh = bωh + 1

2
∑n
i=2 [hi − hi−1 − κhθh − hi−1]2 +

− 1
2

1(
2 +

∑n
i=2

(
ε

(1)
i

)2
) (∑n

i=2 ε
(1)
i [hi − hi−1 − κh (θh − hi−1)]

)2
.

1. h1 :

p
(
h1|θ, h\(h1), q, ξ, y

)
∝ 1√

exp (h1)
exp


[
Z2 − µ− J2 −

√
exp (h1)ρε(3)

2

]2

−2 · (1− ρ2) exp (h1)

 ·
· exp

(
[h1 − h2 (1− κh)− κhθh]2

−2σ2
h

)
.

In the empirical research a Metropolis-Hastings (MH) step with the proposal
density of the normal distribution N

(
h2 (1− κh) + κhθh, σ

2
h

)
is applied.

2. hn :

hn|θ, h\(hn), q, ξ, y ∼ N

(
ρσh (Zn − µ− Jn)√

exp (hn−1)
+ hn−1 + κh (θh − hn−1) , σ2

h

(
1− ρ2)).

3. hi, i ∈ {2, ..., n− 1} :

p
(
hi|θ, h\(hi), q, ξ, y

)
∝exp

(
− 1

2
1

1−ρ2
1

exp(hi−1)

[
Zi − µ− Ji −

√
exp (hi−1)ε(3)

i ρ
]2
)
·

· 1√
exp (hi)

exp
(
−1

2
1

1− ρ2
1

exp (hi)

[
Zi+1 − µ− Ji+1 −

√
exp (hi)ε(3)

i+1ρ
]2
)
·

· exp
(
− 1

2

(
ε

(3)
i

)2
)
· exp

(
− 1

2

(
ε

(3)
i+1

)2
)
. In the empirical research a MH step with

the proposal density of

N

(
(1− κh) (hi−1 + hi+1) + κ2

hθh

1 + (1− κh)2 ,
σ2
h

1 + (1− κh)2

)
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is applied.

1. pD, p0, pU :
p
(
pD, p0, pU |θ\(pD,p0,pU ), q, ξ, y

)
∝ (pD)dD+

∑n

i=2
I(qi=−1)−1 ·

(p0)d0+
∑n

i=2
I(qi=0)−1 · (pU )dU+

∑n

i=2
I(qi=1)−1.

2. q :
p
(
qi|θ, q\(qi), h, ξ, y

)
∝ pI(qi=−1)

D · pI(qi=0)
0 · pI(qi=1)

U ·

· exp
(
− 1

2 (1− ρ2) exp (hi−1) [Zi − µ− Ji − ρε3h exp (hi−1)]2
)
,

3. ηD, ηU :
p
(
ηD|θ\(ηD), q, h, ξ, y

)
∝
(

1
ηD

)aηD+n
exp

(
− 1
ηD

[
bηD +

∑n
i=2 ξ

D
i

])
,

p
(
ηU |θ\(ηU ), q, h, ξ, y

)
∝
(

1
ηU

)aηU+n
exp

(
− 1
ηU

[
bηU +

∑n
i=2 ξ

U
i

])
.

4. ξDi , ξUi :

p
(
ξDi |θ, q, ξ\(ξDi ), h, y

)
∝

∝

 exp
(
− 1

2
1

Dξ,i

(
ξDi −

(
−Cξ,i − Dξ,i

ηD

))2
)
· I
(
ξDi > 0

)
, qi = −1,

exp
(
− ξ

D
i

ηD

)
· I
(
ξDi > 0

)
, qi ∈ {0, 1} ,

p
(
ξUi |θ, q, ξ\(ξUi ), h, y

)
∝

∝


exp

(
− ξ

U
i

ηU

)
· I
(
ξUi > 0

)
qi ∈ {−1, 0} ,

exp
(
− 1

2
1
Di

(
ξUi −

(
Cξ,i − Dξ,i

ηU

))2
)
· I
(
ξUi > 0

)
, qi = 1

where Cξ,i = Zi − µ− ρε(3)
i

√
exp (hi−1), Dξ,i =

(
1− ρ2) exp (hi−1).

Modification of the Bayesian structure
It is possible to define the Bayesian structure introducing latent variables J1, . . . , Jn
which directly describe jump values components, without defining ξDi , ξUi and qi. In
effect, we obtain a more parsimonious model (i.e. with a lower number of unknown
latent variables). Moreover, calculation of the conditional posterior densities for
the Gibbs sampler, under the modified specification, is based on the same idea
as in the former version. In practice, the Markov chains generated by the Gibbs
sampler in the modified model seem to be more stable, which is indicative of a
faster convergence. However, the results of Bayesian inference for both structures
are very similar. Hereafter, in the empirical research, the outcomes calculated under
the original version are presented.
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3 Empirical study

3.1 Data presentation
Natural gas, oil and coal are important energy sources. They were employed to
production of 87% of total world energy consumption and 80% of Europe and Eurasia
consumption in 2012, 2013 and 2014 (BP 2014, BP 2015). The natural gas is crucial
for both electricity production and heating. Prices of gas contracts play critical role
for commodity markets. One of the main, easily noticeable characteristics of these
prices are sharp upward and downward movements. For this reason, it appears well-
justified to analyse such data by means of models incorporating jumps.
At a virtual trading hub, injected into transmission network gas is traded. It is not
important, at a virtual hub, which entry or exit is chosen for the natural gas injection
or withdrawal. The time series analysed in this study comprises daily prices of one
month gas contract prices (e/MWh) coming from the Dutch Title Transfer Facility
(TTF) virtual trading hub. The data is provided by the London Energy Brokers’
Association (https://www.leba.org.uk/). The daily prices ranges from January
21, 2008 to April 22, 2015. The number of observations equals 1840. The left panel
of Figure 1 presents contract prices, while the logarithmic growth rates are shown on
the right.

Figure 1: The contract prices (left) and the logarithmic growth rates (right)
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Table 1 shows descriptive statistics calculated for the analysed logarithmic growth
rates on forward contract prices. A large value of kurtosis and a positive value of
skewness suggest a nonnormal right-skewed distribution of the data.
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Table 1: Descriptive statistics of the logarithmic growth rates

Min −0.16488
Max 0.24543
Median −0.000941
Mean −0.00004
Kurtosis 17.97714
Standard deviation 0.02430
Skewness 1.27031
Number of observations 1839

3.2 Numerical methods
Posterior characteristics of the unknown quantities are calculated via the MCMC
methods, combining the Gibbs sampler and the independent Metropolis-Hastings
algorithm. The MH acceptance rates are high and range from 78.2% to 95.81% for
h1, . . . , hn−1. The convergence of ergodic means and standard deviations as well as
convergence of the CUMSUM statistics are observed. The presented results are based
on 1.000.000 MCMC draws, preceded by 500.000 burn-in cycles. In order to analyse
the posterior characteristics of the latent variables the final 100.000 draws were taken
into account.

3.3 The Bayesian estimation results
The values of hyperparameters of the prior structure are given in Table 2. The values
of hyperparameters for µ, κh, θh, ωh are the same as in Szerszen (2009). Prior mean
and mode for ηD (and ηU ) equal 0.5 and 0.15, respectively. The prior probability
of values of ηD and ηU located close to zero is not “high”. It expresses a prior
expectation of a “large” jump. In such case “small” changes of values should be
modelled by the (pure) SV part. The values of hyperparameters dD, d0 and dU imply
E (pD) = E (p0) = E (pU ) = 1

3 , so the prior means of the probability of a negative
jump, no jump and positive jump are the same. Note, that the marginal distribution
of pD (and pU ) is the Beta(1,2) distribution (Frühwirth-Schnatter 2006, Kwiatkowski
2015) with P (pD < 0.5) > 0.5 (and P (pU < 0.5) > 0.5). The prior specification
favours “lower” (closer to zero) values of pD and pU rather than values close to one.

Table 2: The hyperparameters of the prior structure
mµ mθh wµ wθh mκh

0 0 10 10 1
wκh aωh bωh aηD aηU

6 3 1/20 1.86 1.86
bηD bηU dD d0 dU

0.43 0.43 1 1 1
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Table 3 presents the posterior means, E (θ| y), and standard deviations, D (θ| y),
calculated for the parameters of the SVLEDEJ model. The histograms, depicted
in Figure 2, represent the posterior distributions of the parameters, with solid lines
representing the prior densities. The posterior distribution of κh is concentrated
close to zero which implies strong volatility persistence thereby validating introducing
the SV component into the model structure. The posterior mean of the long run
equilibrium value of the log-volatility process equals −6.44. The mean reversion time
equals about 167 days, so the log-volatility process hi needs (on average) about 167
days to return to the long run equlibrium value. Zero is located in the 76% highest
posterior density interval for ρ, so, accordingly to Lindley’s test, the parameter is not
significantly different from zero. Hence, the results suggest that the leverage effect
is negligible. The posterior probability of upward jumps, pU , is higher than that of
downward movements, pD. Additionally, the posterior mean of the probability of
no jump is about 0.96. The results are in line with our prior expectations - jumps
are sporadic events, and upper jumps are more frequent than lower ones, which is a
typical feature of commodity series but not financial ones. Moreover, the posterior
means of negative and positive jumps equal −0.1202 and 0.0564, respectively, so the
negative jumps are on average twice as strong as the positive ones (in the absolute
value terms).

Table 3: The posterior means and standard deviations of the model parameters

θ E ( θ| y) D ( θ| y)
µ -0.000727 0.000268
κh 0.005991 0.004802
θh -6.439377 3.062736
σh 0.155582 0.022145
ρ -0.059986 0.084033
ηD 0.120194 0.070058
ηU 0.056425 0.010924
pD 0.004585 0.003079
p0 0.960854 0.009587
pU 0.035616 0.008762

Figure 3 shows the posterior probabilities of jumps, that is the values of a function
i → P (qi 6= 0| y) · sign (yi). Upward jumps are notably more frequent. The SV
component explains many sharp movements of the series. However, in some cases,
the probability of a jump is close to one. It proves that the SV component does not
explain the whole dynamics, thereby justifying the need for a jump component to
be included in the model structure. Note that the number of jumps depends on the
arbitrarily chosen threshold of the posterior probability (here 0.5).
Figure 4 shows the posterior means of the jumps and the posterior means of stochastic
volatility and their mirror reflection along the horizontal axis. The volatility tends
to cluster into periods of higher and lower logarithmic growth rates variability. The
jumps found by the presented technique do not correspond to values below or above
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Figure 2: The posterior histograms and prior densities of the model parameters
µ κh
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some fixed thresholds, i.e. outliers. There do exist values classified as jumps whose
sizes are lower than some other observations which were not classified as jumps. The
highest return featuring a positive jump and the lowest return featuring a negative
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Figure 3: Logarithmic growth rates (solid line) and probabilities of jumps times the
signs of the logarithmic growth rates (dashed lines)
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jump (cf. Figure 4) appear on 01.09.2009 (Tuesday) and 01.02.2010 (Monday),
respectively. Note that they appear on the first days of the months after trading
breaks. An extensive analysis of frequency of jumps and a study of their moments of
appearances we defer for further research.

4 Final remarks and conclusions
The Bayesian stochastic volatility model with a leverage effect, normal errors and
jump component with the double exponential distribution of a jump value is presented.
The double exponential distribution of jumps corresponds with our expectation of
asymmetrical (around zero) jump sizes. Moreover, the structure facilitates testing of
the volatility persistence and a leverage effect. The Bayesian approach to the model
in question is largely facilitated by introducing latent variables, and computationally
feasible by means of MCMC methods. The proposed algorithm, combining the Gibbs
sampler and the Metropolis-Hastings procedure, is an effective tool of numerical
calculations.
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Figure 4: Posterior means of jump values and stochastic volatility (continuous line)
and their mirror reflection along the horizontal axis
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The described theory is exemplified in the empirical study. The results confirm strong
persistence of volatility. The methodology proves itself capable of detecting jumps.
The SV component explains many sharp movements in the series. However, the SV
component does not explain the whole dynamics and the role of the jump component
is crucial for the investigated dataset. Detected jumps do not correspond to values
below or above some fixed thresholds. This result is in a contradiction to assumptions
made in some other papers, where jumps are defined in that fashion (e.g. Janczura,
Truck, Weron, and Wolff 2013). The frequency of positive jumps is much higher than
negative jumps, and the jump value distribution is nonsymmetric around zero, which
is in line with typical empirical features of commodity time series. The leverage effect
is negligible and might be omitted from the model.
The SVLEDEJ model seems to be a promising and useful tool in modelling commodity
time series. Future research will concern comparison of DEJD, SVLEDEJ and some
pure SV structures, especially, the comparison with a fat-tailed SV model e.g. FCSV
model (Pajor 2003) seems interesting. Moreover, the analysis of jumps frequency and
linking the times of jumps with calendar effects will be conducted.
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