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Abstract

We apply Bayesian inference to estimate transformation matrix that converts
vector of industry outputs from NACE Rev. 1.1 to NACE Rev. 2 classification.
In formal terms, the studied issue is a representative of the class of matrix
balancing (updating, disaggregation) problems, often arising in the field of multi-
sector economic modelling. These problems are characterised by availability
of only partial, limited data and a strong role for prior assumptions, and are
typically solved using bi-proportional balancing or cross-entropy minimisation
methods. Building on Bayesian highest posterior density formulation for
a similarly structured case, we extend the model with specification of prior
information based on Dirichlet distribution, as well as employ MCMC sampling.
The model features a specific likelihood, representing accounting restrictions in
the form of an underdetermined system of equations. The primary contribution,
compared to the alternative, widespread approaches, is in providing a clear
account of uncertainty.
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1 Introduction
Multi-sector economic models, such as computable general equilibrium (CGE), input-
output or input-output-econometric models, rely on data characterised by relatively
detailed disaggregation. These models typically include several tens of industries
and commodities, and sometimes also further distinguish individual regions, socio-
economic groups of households, occupational groups of labour etc. The published data
rarely meet the needs of multi-sector modelling immediately. Major difficulties include
insufficient disaggregation, inconsistencies of different data sources, significantly
delayed publication (by even a few years), limited time scope, and changes in
classifications. Consequently, in the field of multi-sector economic modelling, there is
substantial literature devoted to the problems of data processing, such as updating,
balancing or estimation, based on partial information, with an important role of prior
assumptions.
The data issue addressed in this paper arose as a part of a modelling task which
required the use of comparable input-output tables for different years, namely 2000,
2005 and 2010. However, the latest available, 2010 table is based on different industry
classification (NACE Rev. 2) than the previous ones (NACE Rev. 1.1). In order to
get a consistent set of input-output tables, transformation procedure was necessary
(applied to the older tables), with elements of both judgement and estimation. As an
important step, that procedure involved identifying a matrix of coefficients allowing
to transform a vector of industry outputs from NACE Rev. 1.1 to NACE Rev. 2
classification. In this article we focus on that step only, in order to illustrate estimation
approach with a view to its possible extensions to other similar data problems.
As we will show in the next section, the problem of estimation of transformation
coefficients is formalised as the so called matrix balancing problem. In the area
of multi-sector modelling that problem can be summarised as follows: find matrix
Z, knowing its row and column totals, along with an initial guess Z0 (most often
formulated using past data). The unknown matrix is typically an input-output table
(or its part) or a social accounting matrix (SAM) – the primary data sources for
multi-sector models. Balancing may be performed in (a rather standard) situation,
where e.g. the input-output table relates to year t−5, while some partial (aggregate)
data are already available for year t. In the literature one can find numerous studies
on the matrix balancing problem. Two broad approaches are dominant, namely bi-
proportional balancing (RAS; the name ‘RAS’ refers to symbols R, A, and S used in
the original mathematical notation) methods and entropy-based estimation methods
(including Minimum Cross Entropy and Generalised Cross Entropy).
RAS method involves iterative scaling of rows and columns of the initial estimate,
Z0, of the unknown matrix until the match with target row and column totals is
reached (Miller and Blair, 2009, p. 313–336, Lahr and De Mesnard, 2004). Different
mutations of RAS have been developed, to deal with with negative entries (Junius
and Oosterhaven, 2003), sign changes (Lenzen et al., 2014), and information beyond
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just row and column totals (Lenzen, Gallego and Wood, 2009, Gilchrist and St Louis,
1999).
The competing technique of matrix balancing uses constrained (numerical)
optimisation. It consists in minimizing divergence of Z from Z0, under constraints of
row and column totals being equal to their target values (in practice, the problem is
often reformulated such that proportions – e.g. column shares of Z – are estimated
rather than Z directly). Although a variety of divergence metrics can be used
(e.g. sum of absolute or squared differences, either weighted or unweighted – see
Jackson and Murray, 2004), most applications refer to information-theoretic concept
of minimum cross entropy (Golan, Judge and Miller, 1996, p. 11–14, 29-31; see also
Golan, Judge and Robinson, 1994, Robinson, Cattaneo and El-Said, 2001).
It has been shown that in fact minimum cross entropy and RAS methods lead to
equivalent results under certain assumptions (McDougall, 1999). At the same time,
generalisation of entropy-based techniques, proposed by Golan, Judge and Miller
(1996), extends the scope of their applications. In the context of matrix balancing, it
allows for example to solve problems with noise, i.e. with constraints not binding
strictly (Golan and Vogel, 2000, who also utilise data for multiple periods), or
perform estimation with unknown column totals, using alternative information input
(Peters and Hertel, 2016). In general, entropy methods make a convenient framework
for the estimation of systems of equations when data are weakly informative, and
supplementary prior information is available.
With acknowledgement of advantages of generalised entropy methods, they have been
criticised by Heckelei, Mittelhammer and Jansson (2008) for awkward specification
and interpretation of prior information. The same authors propose Bayesian highest
posterior density (HPD) estimation as an alternative to entropy-based methods.
HPD formulation developed by Heckelei, Mittelhammer and Jansson (2008) is the
starting point of our analysis. Recognizing the fact that all of the discussed methods
lack a comprehensive account of uncertainty, we employ inference based on the
full posterior distribution. Our additions to the approach proposed by Heckelei,
Mittelhammer and Jansson (2008) include the use of Dirichlet distribution as means
of specifying prior knowledge (for both the uninformative and informative cases), and
application of MCMC simulation to analyse the posterior distribution. Our goal is to
demonstrate how processing of data for multi-sector modelling could possible benefit
from the Bayesian approach. The considered problem of NACE Rev. 1.1 to NACE
Rev. 2 transformation, although practical, should be treated as illustrative.

2 Problem formulation and numerical example
For ease of exposition, we will first consider a slightly simplified case, along with
a 2x2 numerical example. Next we extend the formulation slightly to cover the actual,
practical estimation problem.
The transformation of industry output data from NACE Rev. 1.1 to NACE Rev. 2
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can be written as follows:

yi =
∑

k

λki · xk∑
i

λki = 1

λki ≥ 0

(1)

where xk (for k = 1, . . . ,K) is output of NACE Rev. 1.1 industry k, yi (for
i = 1, . . . , I) is output of NACE Rev. 2 industry i. Transformation coefficients λki

are interpreted as share of NACE Rev. 1.1 industry k output classified to industry i
under NACE Rev. 2. The coefficients form a K× I transformation matrix ΛΛΛ. For the
problem to be consistent, it is required that data satisfy

∑
k xk =

∑
i yi. We shall

refer to conditions (1) as ’accounting constraints’.
We assume that output vectors, xxx and yyy, are known, while ΛΛΛ is estimated. Therefore,
the purpose is not transformation of output itself, as data in both NACE Rev. 1.1
and NACE Rev. 2 breakdowns are available for certain time window (6-year, in the
case of Poland). Rather the recovered ΛΛΛ matrix may be used to transform data on
other categories ‘linked’ to output (e.g. intermediate inputs) which are not backward-
revised (’backcasted’) by statistical agencies after classification change. Worth noting,
λki coefficients could in principle be compiled from source micro data. In fact, behind
backward revisions of industry data made by statistical agencies, there must exist –
at least implicitly – some transformation matrix. Such information, however, is not
published, and thus the need for estimation. Finally, even though access to source data
and assumptions underlying data backcasting could ultimately nullify our estimation
problems, our considerations equally apply to similarly structured problems where the
estimand refers to non-existent data – at least at the time of performing estimation.
Consider a simple numerical illustration of problem (1):

NACE Rev. 1.1 (x)

λ11 · 200 λ12 · 200 200

λ21 · 50 λ22 · 50 50

NACE Rev. 2 (y′) 150 100

In the above example there are 3 independent linear equations (accounting constraints) and

4 variables, which implies that the system is underdetermined (indefinite). However, here one

can easily identify the lower and upper bounds of coefficients, as shown below:

λ11 ∈ 〈0.5, 0.75〉 λ12 ∈ 〈0.25, 0.5〉

λ21 ∈ 〈0, 1〉 λ22 ∈ 〈0, 1〉

It should also be noted that in the above case assigning a value to just one coefficient deter-

mines, through the accounting constraints (1), the values of all remaining coefficients.

In the context of the above example, the aim of applying Bayesian procedure can be twofold:

1. in the case of uninformative priors for coefficients, determine their lower and upper bounds,

based on data and accounting constraints;

2. in the case of informative priors for coefficients, update them using information from data

and accounting constraints.

We will consider both cases in turn. For the stylized example aim 1 has actually been achieved

already, but for larger problems, as well as for more general, and perhaps non-linear models, the

task will be non-trivial. We should stress that constraints form a system of simultaneous equa-

tions (plus the non-negativity constraints), and thus estimation cannot be split into individual

equations.

6

In the above example there are 3 independent linear equations (accounting
constraints) and 4 variables, which implies that the system is underdetermined
(indefinite). However, here one can easily identify the lower and upper bounds of
coefficients, as shown below:
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mines, through the accounting constraints (1), the values of all remaining coefficients.

In the context of the above example, the aim of applying Bayesian procedure can be twofold:

1. in the case of uninformative priors for coefficients, determine their lower and upper bounds,

based on data and accounting constraints;

2. in the case of informative priors for coefficients, update them using information from data

and accounting constraints.

We will consider both cases in turn. For the stylized example aim 1 has actually been achieved

already, but for larger problems, as well as for more general, and perhaps non-linear models, the

task will be non-trivial. We should stress that constraints form a system of simultaneous equa-

tions (plus the non-negativity constraints), and thus estimation cannot be split into individual

equations.

6

It should also be noted that in the above case assigning a value to just one coefficient
determines, through the accounting constraints (1), the values of all remaining
coefficients.
In the context of the above example, the aim of applying Bayesian procedure can be
twofold:

1. in the case of uninformative priors for coefficients, determine their lower and
upper bounds, based on data and accounting constraints;

2. in the case of informative priors for coefficients, update them using information
from data and accounting constraints.

We will consider both cases in turn. For the stylized example aim 1 has actually been
achieved already, but for larger problems, as well as for more general, and perhaps
non-linear models, the task will be non-trivial. We should stress that constraints form
a system of simultaneous equations (plus the non-negativity constraints), and thus
estimation cannot be split into individual equations.

3 Bayesian inference for the stylized example
Let λλλk denote row vectors of transformation matrix ΛΛΛ (each vector being of length
I). Since elements λλλk, for each k, are interpreted as shares (proportions) – they are
non-negative and sum to one – they can be thought of as realisations from Dirichlet
distribution (see Bolshev article from Encyclopedia of Mathematics; see also Ferguson,
1973, Darroch and Ratcliff, 1971):

λλλk ∼ Dirichlet
(
ck · λλλ(0)

k

)
(2)

where λλλ(0)
k are interpreted as mean prior coefficient values (satisfying the condition∑

i λ
(0)
ki = 1), and ck is concentration parameter (the higher ck, the more

concentrated are random draws from Dirichlet distribution around prior means).
When λ

(0)
k1 = . . . = λ

(0)
kI = 1/I and ck = I, the distribution of λλλk is (multivariate)

uniform across the simplex defined by conditions λki ≥ 0 and
∑I

i λki.
In formulating the likelihood function we follow the concept of Heckelei, Mittelhammer
and Jansson (2008, p. 9–10), who attribute the value 1 to all solutions ΛΛΛ that
satisfy accounting constraints, and 0 otherwise. Under such an approach, each specific
solution of (1) is viewed equally plausible. For our problem the likelihood function
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rewrites as:

L (ΛΛΛ;yyy,xxx) ≡ 1 when yyy = ΛΛΛ′xxx

L (ΛΛΛ;yyy,xxx) ≡ 0 when yyy 6= ΛΛΛ′xxx
(3)

Note that for specific, fixed ΛΛΛ, given xxx, there is only one valid yyy vector, characterised
by probability 1; that is the sampling distribution of yyy (given xxx) is degenerate,
concentrated at one point.
In order to be able to implement the model defined by (1)-(3) in Stan modelling
language (Carpenter et al., 2016), a ’noise’ component was added, leading to the
following model ultimately applied in simulation:

λλλk ∼ Dirichlet
(
ck · λλλ(0)

k

)
yyy = ΛΛΛ′xxx+ eee

eee ∼ N(000,ΣΣΣ)
ΣΣΣ = Diag

(
σ2

1 , . . . , σ
2
I

)∑
i

λki = 1

λki ≥ 0

(4)

where the standard deviation σi is set arbitrarily to a small value (we chose σi = 0.1 for
all i). Adding small normal errors ei should be treated as a workaround to overcome
the lack of sampling statements adequate for the peculiar likelihood formulation (3).
Figure 1 shows marginal posterior distributions of individual λki parameters for
the stylized 2 × 2 example. As a consequence of using uninformative priors,
combined with ‘flat-surface’ likelihood function, the posteriors are approximately
uniform (the fact that minor non-zero density appears just outside the bounds is
the result of small normal error terms, and does not change the general picture).
The simulation correctly identifies parameter bounds – they are equal to the bounds
derived analytically. Nevertheless, as mentioned above, Bayesian MCMC sampling
may prove useful in cases where analytical solutions are unavailable or difficult.
Consider now the case of informative priors. It might be (and in fact often is, as
we shall see in the next section) the case that one can identify ‘natural’ counterparts
of certain NACE Rev. 1.1 industries in the NACE Rev. 2 classification. Then it
is reasonable to presume a priori that the majority of output of a NACE Rev. 1.1
industry will be classified to the corresponding NACE Rev. 2 industry. A convenient
way of operationalizing such assumption is to formulate the mean of prior share
(transformation coefficient), along with its standard deviation. Note that expressing
prior information in terms of both mean and standard deviation is only available for
one element of each vector λλλk, while for the remaining elements only the means can
be specified. This feature can be considered a limitation of the Dirichlet distribution,
and points towards possibility of using more elastic distributions, appropriate for
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Figure 1: Posterior distribution of λki for 2× 2 example with uninformative priors
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0.50 0.55 0.60 0.65 0.70 0.75

Lambda12

0.25 0.30 0.35 0.40 0.45 0.50

Lambda21

0.0 0.2 0.4 0.6 0.8 1.0

Lambda22

0.0 0.2 0.4 0.6 0.8 1.0

Lambda11

0.50 0.55 0.60 0.65 0.70 0.75

Lambda12
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compositional data. A major alternative is the additive logistic normal (ALN) class
(see Aitchison and Shen, 1980; Aitchison, 1982). For example, the ALN distrubution
was used by Osiewalski (2001, p. 146–165) in the Bayesian estimation of complete
demand system, being a model that explains the structure of household consumption
expenditures.
In order to translate prior assumptions about the mean and standard deviation of
a distinguished element of a λλλk vector, λkd, consider the fact that the marginal of
Dirichlet distribution (2) is the beta distribution (Ferguson, 1973, p. 211):

λkd ∼ Beta
(
ck · λ(0)

kd , ck − ck · λ(0)
kd

)
(5)

Denoting by skd the standard deviation of λkd, the concentration parameter ck can
be determined as follows:

ck =

λ(0)
kd ·

(
1− λ(0)

kd

)
s2

kd

− 1

 (6)
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For the stylized 2× 2 example we assumed prior λ(0)
11 = 0.8, and the related standard

deviation s11 = 0.05; we also assumed λ
(0)
22 = 0.7 and s22 = 0.1; prior assumptions

concerning λ(0)
12 and λ

(0)
21 are then implicit. Results – in the form of posterior and

prior marginal distributions (illustrated by histograms and densities, respectively) –
are shown in figure 2.

Figure 2: Posterior distribution of λki for 2× 2 example with informative priors
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4 Estimating 44× 63 transformation matrix based
on actual data

In the actual, practical estimation problem we have industry-level nominal output
data for Poland for the years 2000-2005 (available from Eurostat) under both NACE
Rev. 1.1 and NACE Rev. 2. Here we present estimation based on single year (2000)
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data only. NACE Rev. 1.1 data cover 44 industries, while NACE Rev. 2 – 63
industries, both mostly at the two-digit classification level, with some industries being
aggregated into larger groups. In such a case, the coefficient estimated matrix ΛΛΛ is
of 44 × 63 size. There are two notable differences compared to the stylized case
considered above.

1. Matrix ΛΛΛ is sparse. At the discussed disagrregation levels, output of a particular
NACE Rev. 1.1 industry can usually be reclassified into one of only few
NACE Rev. 2 industries, according to the so called correspondence tables
between the two classifications. In the considered case, ΛΛΛ contains 198 non-
zero elements (i.e. elements subject to estimation), which implies that it is
approximately 7% dense. Correspondence tables also facilitate specification of
prior assumptions, by restricting the number of potential links between NACE
Rev. 1.1 and NACE Rev. 2 industries, and also by providing additional sector-
specific information on the relationships (see for example correspondence tables
available from Eurostat at http://ec.europa.eu/eurostat/web/nace-rev2/
correspondence_tables). Worth noting, matrix sparsity also differentiates the
considered problem from the typical setting of matrix balancing task, referring
to dense matrices such as input-output tables.

2. Data are not fully consistent. Inconsistencies become apparent when our data
are confronted with the correspondence tables. At the analysed disaggregation
level, according to correspondence tables, there are four cases of one-to-one
mapping between NACE Rev. 1.1 and NACE Rev. 2 industries. In these cases
output of the related industries should be identical under both classifications,
but actually there are differences (notably for the water collection, treatment
and supply sector the difference is as much as 40%). At the same time, data
satisfy the condition

∑
i yit =

∑
k xkt, implying that errors spread over to

other industries (and there may be as well other inconsistencies, not being that
evident).

Taking into account the sparsity of ΛΛΛ requires adjustments to the previous model
formulation, (4). This stems from the fact that Dirichlet-distributed random vector
cannot contain zero elements. Therefore we define as λ̃λλk vectors consisting of just the
non-zero elements of rows of ΛΛΛ matrix, λλλk. More precisely, λ̃λλk consists of those
components of λλλk that represent possible – according to correspondence tables –
transitions (’flows’) from NACE Rev. 1.1 to NACE Rev. 2 industries. Here the
Dirichlet distribution is in fact overly restrictive, as some of the possible connections
between classifications may appear void in reality and, consequently, λ̃λλk components
should be allowed to take zero values too. However, we view this limitation as merely
theoretical, since elements of λ̃λλk can take values arbitrarily close to zero which is
sufficient for practical applications.
The second feature – data inconsistencies – necessarily entails the use of error terms, in
this case playing the role beyond that of a ‘workaround’ needed to formulate sampling
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statements in the program implementation. One can add to this a more fundamental
reason, i.e. the fact that data supplied by statistical agencies are themselves subject
to uncertainties, and, in particular, backward revisions of data due to classification
changes involve problems related to inadequacy of sampling schemes used in older
business surveys to the new data requirements, thus leading to application of various
estimation techniques (van den Brakel, 2010, describes the related issues in the context
of the recent NACE revision).
Taking into account the above comments, the ultimate formulation of our model is as
follows:

λ̃λλk ∼ Dirichlet
(
ck · λ̃λλ

(0)
k

)
Jk∑

j=1
λ̃kj = 1

λ̃kj > 0
λki = fk(λ̃λλk) for (k, i) ∈ Ω
λki = 0 for (k, i) /∈ Ω
yyy = ΛΛΛ′xxx+ eee

eee ∼ N(000,ΣΣΣ)
ΣΣΣ = Diag

(
σ2

1 , . . . , σ
2
I

)

(7)

where fk() is a mapping of λ̃λλk vector to non zero elements of the full-length λλλk vector.
Note that for each k – i.e. for each NACE Rev. 1.1 industry – the vector λ̃λλk (and,
accordingly, λ̃λλ(0)

k ) will in general have different length, Jk, equal to the number of
corresponding NACE Rev. 2 industries. Information from correspondence tables is
represented by the Ω set, comprising of pairs (k, i), indicating the possible paths
of output reclassification. The distribution of error terms is specified explicitly as
multivariate normal with a diagonal covariance matrix, ΣΣΣ.
It should be underlined that, regarding error terms, their standard deviations are
assumed fixed, rather than estimated. Intuitively, single-year data are insufficient
for joint estimation of transformation coefficients and the scale of resulting errors.
Estimation of ΛΛΛ seems meaningful only upon belief that errors are in some way
restricted – otherwise the data, together with accounting restrictions, would not be
informative enough from the point of view of recovering unknown ΛΛΛ. We chose to set
standard deviations σi to 1% of observed output of individual NACE Rev. 2 industries,
yi. This reflects prior belief that overall the inconsistencies in official data are in fact
relatively small. According to an alternative interpretation (had the previous one
seemed unjustified), the assumed scale of error terms is just enough to accommodate
the apparent inconsistencies (discussed above) alone. Worth to add, in the four cases
of one-to-one relationship between NACE Rev. 1.1 and NACE Rev. 2 industries, the
corresponding coefficients were exogenously set to one, effectively eliminating output
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data for those industries from the estimation procedure.
A more standard approach to the modelling of error terms would be to assign
a prior distribution to the covariance matrix, ΣΣΣ, rather than treat that matrix as
fixed. However, with such an approach we have encountered serious computational
difficulties in the posterior sampling for our model – in fact we managed to find
satisfactory solutions only for special cases, using a small, stylized case. Therefore we
treat the issue of error specification in matrix balancing problems as a topic for further
research. The formulation involving fixed error variances has proven practical from the
point of view of computational efficiency. In order to illustrate how estimation results
are affected by the choice of error scale, the study is supplemented with sensitivity
analysis – along with the central case of σi’s equal to 1% of observed output, we also
consider alternative values: 0.2%, 5%, and 25%. The results of sensitivity analysis
are discussed in the concluding part of the current section.
As with the stylized 2 × 2 example, we begin with the uninformative priors case,
i.e. we employ the assumption that the prior distribution of each individual λ̃λλk is
multivariate uniform. The marginal posterior distributions are illustrated in figure
3, using as an example 9 out of 198 non-zero transformation coefficients. Compared
to the 2× 2 case, the resulting posterior distributions now usually take trapezoid or
triangular shapes (not strictly so, partly due to existence of small normal error terms
in the model), rather than strictly rectangular (uniform), which is the effect of more
complex relationships between different coefficients in the current higher-dimension
case. Still, however, with such shapes of histograms, it is justified to report the results
in terms of ranges – the maximum minus the minimum MCMC sample value.
Absolute values of those ranges are graphically presented in figure 4. In this figure,
as in the remaining similar figures in this paper, table rows and columns represent
NACE Rev. 1.1 and NACE Rev. 2 industries, respectively. Both rows and columns are
labelled by standard two-digit NACE codes, from respective revisions. The framed
cells show correspondence between NACE Rev. 1.1 and NACE Rev. 2 industries, and
hence indicate which cells of the ΛΛΛ coefficient matrix were subject to estimation (the
remaining coefficients being zero by definition). In figure 4, the dark gray indicates
absolute range equal to 1 (an extreme case for coefficient values ranging from 0 to 1)
whereas white indicates range equal to 0 (the no-uncertainty case). Therefore, the
darker the hue, the greater the uncertainty about a respective coefficient. As can
be seen from figure 4, results are mixed, with areas of small uncertainty – mostly
regarding services – and areas of medium to large uncertainty – mostly regarding
the manufacturing industries. One can see from the placement of the non-zero cells
that lower and upper bounds of at least some coefficients could easily be deduced,
rather than simulated. Perhaps this even applies to all unknown coefficients, but
it was not our purpose to explore that possibility. Rather, we wanted to show an
application of simulation-based approach that also easily extends to more complex
formulations. Still it is also clear from the picture that results are overall rather
unusable, in terms of direct application to the transformation of input-output tables,
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Figure 3: Posterior distribution of selected λki coefficients under uninformative priors
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unless heavy aggregation is performed. However, they point to areas (industries) on
which efforts to acquire additional information should be focused.
As a next step, we introduced informative priors, in line with the approach proposed
for the stylized example. For each NACE Rev. 1.1 industry we attempted to identify
an explicit match among NACE Rev. 2 industries, in terms of primary activity profile
(which usually entails identical or similar industry name). Whenever such a match
was found, we assumed that 90% (as a mean value) of output of a given NACE Rev.
1.1 industry is ‘transferred’ to its NACE Rev. 2 counterpart, with standard deviation
being equal to 5 percentage points. In all, 26 such cases were identified (out of the
total 44). In additional 7 cases, NACE Rev. 1.1 industry has only one corresponding
NACE Rev. 2 industry, leading to coefficient being 1 by identity. In the other 11
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industries, no single explicit match could be identified, so we remained with uniform
Dirichlet distribution for the respective λ̃λλk vector. In figures 6-7, the explicit matches,
as well as the 7 cases of full certainty, are indicated by bold cell frames.

Figure 5: Posterior distribution of selected λki coefficients under uninformative priors
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Illustration of how prior distributions are updated to posterior distributions are shown
in figure 5, with prior densities being represented by solid lines. For industry No. 1
(row 1 in figure 5), we can notice that uncertainty is reduced somewhat, at least for two
coefficients, and also the mean of the major one changes slightly. Estimation hardly
adds any information on coefficients for industry No. 18 (row 3). We can observe,
however, how the uninformative priors for industry No. 12 (row 2) get significantly
modified due to information supplied elsewhere in the system.
Figure 6 shows absolute changes of posterior versus prior means of all transformation
coefficients. The largest observed change was approximately 0.5 and is represented
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by dark gray, whereas white indicates no change. Again, the pattern of results is
mixed, but for nearly 20% of non-zero coefficients the absolute change is larger than
0.1, pointing to a significant insight coming from the model.
Finally, figure 7 shows how prior uncertainty about coefficient values is changed
through Bayesian inference. The contribution is measured as percentage reduction
in standard deviation of the marginal posterior distribution versus the prior – dark
gray indicating 100% reduction, and white – no change. Uncertainty is dramatically
reduced for service industries (consistent with the results for uninformative priors,
and a consequence of relatively straightforward links between service activities under
both NACE versions; in fact, one could treat formulation of priors for each industry
in isolation naive, and so initial uncertainty could be viewed naively high). For
manufacturing industries the outcomes are more diverse, although a general reduction
of coefficient variances is also quite evident. That general picture does not change
much even having taken into account that for approximately 20% of coefficients
uncertainty has actually increased (indicated by cells with dotted pattern). The latter
result is a consequence of dependencies between individual coefficients, imposed by
the likelihood function. Consider for example a 7-element vector of shares, having
Dirichlet distribution, with mean 0.9 and standard deviation 0.05 for the first element,
and equal means for the remaining components. Revision of the first component’s
mean to 0.8, with standard deviation unchanged, leads to an approximately 5%
increase of standard deviations for all the remaining shares. A similar effect might
arise e.g. when mean prior share is updated in the estimation process, and there is
little information in the data to directly revise the remaining shares.
Results of sensitivity analysis, involving different choices of error standard deviations
(0.2%, 5%, and 25% of observed output, yi, respectively), are presented in figures
8-10 (the plots summarise results for 198 estimated non-zero λki coefficients). Under
uninformative prior for ΛΛΛ, ranges between 1st and 99th percentile of posterior
distribution for each λki are first computed. Next, differences (changes) are calculated
between the ranges obtained in sensitivity runs, and their base-case estimates
(i.e. estimates obtained with error standard deviations set to 1% of observed industry
output) – the distributions of those differences are plotted in figure 8. It can be seen
that choosing smaller standard deviations (0.2%) changes the results only slightly –
the majority (83%) of ranges for λki are revised by no more than −0.01 to 0.01; also, in
most cases (63%) the ranges become slightly narrower. It should be added that it was
hardly possible to compute the solution for 0.2% standard deviations (the sampling
process was significantly prolonged), indicating that such an error scale was perhaps to
small to accommodate inconsistencies in the data. For the 5% case, results for most
coefficients do not change much either – the posterior ranges for 75% of them are
revised by no more than −0.02 to 0.02. However, there is also a significant proportion
of cases in which the ranges become considerably wider. In turn, the choice of 25%
standard deviations implies a substantial increase in posterior uncertainty about λki

coefficients, as the third plot in figure 8 shows.
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Similar conclusions also apply to the case of informative priors for ΛΛΛ. Here it is more
appropriate to carry out the analysis in terms of sensitivity of posterior means and
standard deviations rather than ranges of λki coefficients, since their distributions are
now ’less uniform’. Distributions of changes in these posterior means and standard
deviations, caused by alternative choices of error scale, are shown in figures 9 and 10,
respectively. In the 0.2% case, the results are largely unaffected compared to the base,
1% case (nearly 100% of posterior λki means and standard deviations are revised by
no more than −0.01 to 0.01). Increase in error standard deviations leads to a rise in
uncertainty concerning λki and changes in their mean values, although even for the
largest error scale (25%) there remains a significant proportion of coefficients that are
hardly affected. A general observation from sensitivity analysis (including the runs
not reported here) is that ever increasing the assumed error scale eventually leads to
posterior distribution of ΛΛΛ being indistinguishable from the prior – the data become
uninformative.

Figure 8: Sensitivity analysis for uninformative prior case: distribution of changes
in posterior ranges (1st to 99th percentile) of λki coefficients under alternative error
scale choices
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Figure 9: Sensitivity analysis for informative prior case: distribution of changes in
posterior means of λki coefficients under alternative error scale choices
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Figure 10: Sensitivity analysis for informative prior case: distribution of changes in
posterior standard deviations of λki coefficients under alternative error scale choices
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5 Conclusions
In the paper we have shown how Bayesian inference, with MCMC sampling,
can address practical data problems arising in the field of multi-sector economic
modelling. The specific problem being solved consisted in estimating transformation
matrix, allowing to convert vectors of industry data between different classifications
– the previous NACE Rev. 1.1 and the current NACE Rev. 2. The proposed
formulations directly apply to similarly structured problems of input-output table
updating, disaggregation etc., very commonly appearing in the literature, and
usually solved using bi-proportional or entropy-based techniques. We believe that
Bayesian approach, as demonstrated in this paper, adds the important dimension
of comprehensive uncertainty analysis, allowing to better understand the relative
importance of prior knowledge versus data and accounting restrictions, indicate areas
where acquiring additional information is particularly needed etc. Such an approach
fits multi-sector modelling problems, characterised inevitably by limited data and
important role of prior assumptions.

At this point we may attempt to sketch agenda for further developments, including:

1. model extension that would allow for joint use of data for several periods in
the estimation process, supported by assumptions of invariability or a certain
pattern of evolution of the estimated coefficients; in similar line, multiple data
categories (beyond output) could be jointly used in estimation.

2. a possible switch to additive logistic normal distributions (replacing Dirichlet
distribution), allowing for more flexibility in modelling of compositional data;

3. formulating assumptions concerning errors in terms of an informative prior;

4. applying the proposed approach to other multi-sector data problems;
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5. explicitly incorporating uncertainty resulting from data estimation into
simulation exercises using derived multi-sector models.
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