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Abstract

The first so-called hybrid MSV-MGARCH models were characterized by
the conditional covariance matrix that was a product of a univariate latent
process and a matrix with a simple MGARCH structure (Engle’s DCC or scalar
BEKK). The aim was to parsimoniously describe volatility of a large group
of assets. The proposed hybrid models, similarly as pure MSV specifications
(and other models based on latent processes), required the Bayesian approach
equipped with efficient MCMC simulation tools. The numerical effort has
payed – the hybrid models seem particularly useful due to their good fit
and ability to jointly cope with large portfolios. In particular, the simplest
hybrid, now called the MSF-SBEKK model, has been successfully used in
many applications. However, one latent process may be insufficient in the case
of a highly heterogeneous portfolio. Thus, in this study we discuss a general
hybrid MSV-MGARCH model structure, showing its basic characteristics
that explain greater flexibility of such hybrid structure with respect to the
corresponding MGARCH class. From the empirical perspective, we advocate
the GMSF-SBEKK specification, which uses as many latent processes as there
are relatively homogeneous groups of assets. We present full Bayesian inference
for such models, with the use of an efficient MCMC simulation strategy. The
approach is used to jointly model volatility on very different markets. Joint
modelling is formally compared to individual modelling of volatility on each
market.
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1 Introduction
In recent years there has been growing interest in the analysis of not only financial
markets, but also commodity markets - in particular oil and natural gas, gold,
silver and copper, and other raw materials crucial for economic development; see
Marimoutou, Raggad and Trabelsi (2009). There are studies of interrelations and
shock transmissions among these markets; see Vo (2011). The importance of
joint analysis of many different markets lies in globalization and the integration of
commodity and financial markets. Also, investors seek new opportunities to make
profits and diversify their risk. Thus, it is more and more important to propose
new tools that enable simple (but appropriate and efficient) modelling of prices and
returns on many markets, in order to describe and measure their volatilities and
relationships.
Most of n-variate volatility models used in financial econometrics belong to either
the MGARCH or MSV (multivariate stochastic volatility or variance) class, or are
based on copulas; see, e.g., Bauwens, Laurent and Rombouts (2006), Tsay (2005),
Pajor (2010), Jondeau and Rockinger (2006), Patton (2006, 2012), Doman (2011),
Hafner and Manner (2012), and Almeida and Czado (2012). Only some of them are
simple, practical tools for analysing large portfolios, e.g. the Scalar BEKK (SBEKK)
model and, in particular, the Dynamic Conditional Correlation (DCC) structure of
Engle (2002). Both cases represent the MGARCH class and in each we can use
variance targeting and approximate methods to estimate the parameter vector of
dimension growing with the portfolio size; the remaining parameters, requiring more
numerical effort, form a vector of fixed dimension irrespective of the number of
assets. Latent AR(1) processes, used in the MSV class to describe volatility, are
very efficient in dealing with outliers and, thus, in modelling tail behaviour. Since
such modelling is crucial for any risk assessment, the MSV class should be kept under
consideration in spite of the fact that MSV structures with many latent processes
are too complicated to be practical in highly dimensional problems. Easier way of
modelling was proposed by Osiewalski and Pajor (2007) through a hybrid model,
based on Engle’s DCC structure and the simplest MSV structure, the Multiplicative
Stochastic Factor (MSF, or Stochastic Discount Factor, SDF) specification. However,
the MSF-DCC (previously called SDF-DCC) model was still too complex and, thus,
Osiewalski (2009) and Osiewalski and Pajor (2009) proposed the MSF-SBEKK hybrid
models.
The simplest MSF-SBEKK model, based on a multivariate Gaussian white noise,
proved quite flexible in modelling portfolios of high dimension; see Osiewalski and
Pajor (2009, 2010), and Pajor and Osiewalski (2012). It also successfully competes
with pure MGARCH and MSV specifications in terms of the marginal data density
value, which is the natural Bayesian measure of model fit; see Pajor (2010). The MSF-
SBEKK model has been already used to analyse the problem of missing observations
in individual daily returns within multivariate framework as well as to examine the
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presence of a long-run relation between two markets; see Osiewalski and
Osiewalski (2012b, 2013).
The simplicity of the MSF-SBEKK specification is its clear virtue. However, it means
that volatilities of all individual time series are driven by one common latent stochastic
process. If we model different markets or a heterogeneous portfolio we would prefer to
use as many latent processes as there are relatively homogeneous groups of markets or
assets. This idea was adopted in some our earlier works, see Osiewalski and Osiewalski
(2012a, 2011), then gradually elaborated as a generalisation of the MSF-SBEKK
model and discussed at many conferences. It was formally presented in Osiewalski
(2015), where statistical and numerical details as well as new empirical illustrations
were worked out. This paper is a distillation of our earlier works, which were written
in Polish, with adding a more mature and holistic perspective on the hybrid models
(that can rely on several latent processes).
In order to summarize the research on hybrid specifications, we aim in this paper
at describing foundations and general features of MSV-MGARCH models, and we
present the generalised version of the n-variate MSF-SBEKK specification - the n-
variate GMSF-SBEKK model that uses k latent processes for k groups of assets or
markets, where k   n. Our approach to statistical inference is fully Bayesian for
both fundamental and practical reasons. As regards the latter, it is quite easy to
analyse models with latent processes using Bayesian statistical framework equipped
with MCMC simulation tools; see, e.g., Pajor (2010).
It is important to stress that the hybrid MSV-MGARCH specifications have been
proposed on purely empirical grounds, as ad hoc extensions that are flexible and
well-fitted to the analysed data. Any formal properties of the underlying hybrid
multivariate stochastic processes (like covariance stationarity) have not been proven
yet. In this paper we do not present any such results either. However, we discuss
some deeper links between MSV-MGARCH and pure MGARCH or MSV models, in
particular through their forms of the conditional n-variate sampling density given
past observations. For example, we explain the source of additional flexibility of
the MSF-MGARCH counterpart of a MGARCH model with the same form of the
conditional sampling density. We also show that MSF-MGARCH models based on
the n-variate Gaussian white noise keep the ellipsoidal form of this density (like, e.g.,
t-MGARCH models), while GMSF-MGARCH models with k ¡ 2 may lead to non-
ellipsoidal density contours.
In this paper we focus not only on the distributional form of the conditional sampling
density, but also on the specification of the conditional mean. Thus, the traditional
VAR(1) form for n logarithmic return rates is extended to competing VAR(2) forms
(for n logged prices) with the reduced rank long-run multiplier matrix. This enables
considering relations among prices themselves, and not only between returns on
different markets.
The paper is organised as follows. The next section (Section 2) is devoted to the
presentation and general discussion of MSV-MGARCHmodels and the construction of
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the GMSF-MGARCH specifications. In Section 3 we consider the Bayesian VAR(2)-
GMSF-SBEKK model framework as well as the general form of the posterior density
function and its conditionals that enable to construct appropriate Gibbs samplers
with Metropolis-Hastings steps. In Section 4 we present the empirical example,
where six time series from three groups of markets are modelled using different
MSF-SBEKK and GMSF-SBEKK specifications; the usefulness of the latter models
is clearly illustrated. Concluding remarks are grouped in Section 5.

2 MSV-MGARCH models: a general form and the
GMSF-MGARCH case

In this paper we focus on a new class of models for a n-variate time series of asset
prices. Assume that st is an (n� 1) vector of (multiplied by 100) natural logarithms
of n asset prices, observed at time t, and rt � st � st�1 is the corresponding vector
of logarithmic return rates in percentage points. Let xt � st � s0; now n prices are
measured relatively to the period t � 0, so they are of similar orders of magnitude, but
the return rates remain unchanged: rt � xt � xt�1. Consider the following VAR(2)
model for xt:

rt � λ� Λrt�1 � Πxt�1 � εt pt � 1, 2, . . . , T, . . . , T � hq (1)

where Π � 0 corresponds to the usual (standard) VAR(1) specification for rt, but
non-zero reduced rank Π matrices are also considered here. The (n� 1) error term εt
has the hybrid MSV-MGARCH form iff

εt � G
1
2
t H

1
2
t ξt, (2)

where

1. tξtu is a strict n-variate white noise with unit covariance matrix, i.e.
ξt � iiDpnq p0, Inq;

2. Gt and Ht are square matrices of order n, symmetric and positive definite for all
t in the observation period (t � 1, 2, . . . , T ) as well as in the forecasting period
(t � T � 1, . . . , T � h);

3. Ht � fMGARCH pεt�1, εt�2, . . . q is a non-constant function of the past of
εt, corresponding to the conditional covariance matrix of some MGARCH
specification;

4. Gt � fMSV pgtq is a non-constant function of a k-variate non-trivial
(i.e., assuming dependence over time) unobserved stochastic process tgtu,
independent of tξtu.
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Under these assumptions, the conditional distribution of rt – given the past of xt,
denoted by ψt�1, and the k-dimensional current random variable gt – is determined
by the particular form ofDpnq p0, Inq, and has mean vector µt � λ�Λrt�1�Πxt�1 and
covariance matrix Ωt � G

1
2
t HtG

1
2
t . The conditional covariance matrix Ωt depends on

current latent variables gt1, . . . , gtk (throughG
1
2
t ) as well as on the past of observations,

through Ht � fMGARCH prt�1 � µt�1, rt�2 � µt�2, . . . q. Thus Ωt has a hybrid form,
joining basic features of pure MSV and pure MGARCH specifications.
In order to explain the specific conditions imposed through assumptions 3 and 4, let
us consider their violation and its consequences.

(i) Constant Ht and Gt (Ht � H, Gt � G) lead to εt that are iid with mean vector
zero and covariance matrix Ω � G

1
2HG

1
2 ; neither ARCH nor SV structure is

present; the VAR(2) specification with iid errors cannot model (e.g.) volatility
clustering, even if heavy-tailed error distributions (like Student t or α-stable)
are employed.

(ii) Constant Ht (Ht � H) together with time-varying Gt, a function of latent
variables gt that are independent over time, lead to essentially the same case
as in (i); neither ARCH nor SV structure is present. Independence of both ξt
and gt over time results in independence of εt over time – only its distribution
may be time-varying and belongs to a different class than the distribution of
ξt. As an example assume that ξt � iiN pnq p0, Inq, k � 1, Gt � gtIn and g�1

t

are independent gamma variables with mean 1 and variance 2
ν ; then Ωt � gtH

and εt are independent n-variate Student t variables with ν degrees of freedom,
zero location vector and precision matrix H�1. Remind that each n-variate
Student t variable is a continuous scale mixture of n-variate normal variables.
Let us mention another member of this scale mixture family, obtained under the
assumption that ln gt � iiN

�
0, σ2�; the log-normal scale mixture of n-variate

normal distributions is interesting as it naturally appears in the context of MSV
models.

(iii) Non-constant Ht � fMGARCHpεt�1, εt�2, . . . q and constant Gt (Gt � G) lead
to an MGARCH specification with the conditional distribution from the family
determined by ξt and the conditional covariance matrix G 1

2HtG
1
2 .

(iv) Non-constant Ht and Gt, with Gt depending on gt, but gt independent over
time, lead to the MGARCH model with the conditional distribution modified
by the presence of latent gt; there is no SV structure as there is no dependence
of latent variables over time (the latent process tgtu is trivial). For example, if
ξt � iiN pnq p0, Inq, k � 1, Gt � gtIn and g�1

t are independent gamma variables
with mean 1 and variance 2

ν , then εt � H
1
2
t ξ

�
t and ξ�t �

?
gtξt has the Student t

n-variate distribution with ν degrees of freedom, zero location vector and unit
precision matrix. That is, in this example we obtain the pure MGARCH model
with the Student t conditional distribution with covariance matrix ν

ν�2Ht.
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(v) ConstantHt (Ht � H) and Gt � fMSV pgtq, with gt dependent over time, lead to
pure MSV models. The simplest specification, the so-called MSF (Multiplicative
Stochastic Factor) model, amounts to assuming: k � 1, Gt � gtIn and
ln gt � ϕ ln gt�1 � τ�1ηt, with τ P R�, ϕ P p�1, 1qz t0u, ηt � iiN p0, 1q
and ηt K ξs for all pt, sq. If ξt � iiN pnq p0, Inq, the conditional distribution
of εt (given its past and gt) is n-variate normal with mean vector zero and
covariance matrix gtH. Since tln gtu is a Gaussian AR(1) stationary and
causal process, the marginal distribution of each ln gt is (assuming infinite past)
Np0, �τ �1 � ϕ2���1q and gt is a log-normal variable. So we have εt � H

1
2 rξt withrξt � ?

gtξt, where εt are dependent over time due to the AR(1) structure of ln gt,
but the marginal n-variate distribution of εt is always the same scale mixture
of N p0, gtHq distributions with the appropriate log-normal distribution as the
mixing one. The crucial difference between this particular MSV (namely MSF)
specification and the case considered at the end of point (ii) lies in stochastic
dependence of εt over time; independence appearing in (ii) corresponds to ϕ � 0,
which is excluded in the proper MSV framework.

These considerations explain that we have formulated assumptions 3 and 4 in order
to create truly hybrid MSV-MGARCH models, which would not reduce to either
pure MSV or pure MGARCH or just independent error terms εt. The main goal of
such hybrid modelling amounts to exploiting advantages of both model classes, while
keeping Ht and Gt as simple as possible. A particularly simple MSV-MGARCH
specification, the MSF-MGARCH structure corresponds to Gt � gtIn pk � 1) and
εt � H

1
2
t
?
gtξt with tln gtu – a Gaussian AR(1) process as defined above in (v).

Two simple MGARCH forms of Ht has been considered in this framework, the
DCC structure of Engle (2002) and the simple scalar BEKK (SBEKK) structure,
see Osiewalski and Pajor (2007, 2009), Osiewalski (2009), Pajor (2010). In particular,
the MSF-SBEKK specification with conditional normality can be effectively applied
in modelling large portfolios (of, e.g., n � 50 assets).
The MSF-MGARCH specification can be used to clarify the similarities and differences
between MSV-MGARCH and pure MGARCH models. As we have already stressed in
(iv), if the latent process tgtu is trivial – i.e., if gt � iid – then it only serves to make
the tails of p prt|ψt�1; θq heavier, but we stay within the class of pure MGARCH
models. If, however, the latent process tgtu is non-trivial – i.e., if latent variables
gt are stochastically dependent – then we obtain the same effect of heavier tails of
p prt|ψt�1; θq, but we also get an additional source of dependence within the observed
time series and some extra parameters describing dependence in tgtu, like ϕ in the
MSF-MGARCH example in (v). This is the explanation of greater flexibility of hybrid
models in comparison to MGARCH models.
Note that in order to define the exact hybrid extension of any MGARCH model
with Student t conditional distribution, we should consider different latent processes
than in the MSF specification. A latent process that suits the purpose has the form
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ln gt � ϕ ln gt�1 � ln γt, where γt are independent gamma variables with mean 1 and
variance 2

ν ; if ϕ � 0 we are back in (iv) with conditionally t MGARCH model, but if
ϕ � 0 we have its true hybrid MSV-MGARCH generalization. Although such a model
can be an interesting competitor to the MSF-MGARCH structure, in this paper we
do not go in this direction, leaving it to future research. Instead, we focus on hybrids
with more latent processes.
The initial idea behind the MSF-MGARCH specification lies in using only one
latent AR(1) process in order to add flexibility into volatility modelling with simple
MGARCH structures. Note that the conditional covariance matrix in MSF-MGARCH
models takes the form gtHt, where the latent process affects all the variances
and covariances in the same way. Intuitively, it should be enough when the
analysed portfolio consists of assets that are homogeneous as regards main sources
of their volatility – e.g., they represent the same market or the same sector of an
economy. If, however, the portfolio is built of k separate groups, each with ni
assets pi � 1, . . . , k;n1 � � � � � nk � nq, then it seems reasonable to use k different
latent processes tgt,iu pi � 1, . . . , kq. Thus, the GMSF-MGARCH (Generalised MSF-
MGARCH) hybrid model structure is defined by a block-diagonal form of Gt with k
scalar blocks:

Gt �

��� gt,1In1

. . .
gt,kInk

��� , ķ

j�1
nj � n, (3)

where
ln gt,i � φi ln gt�1,i �

b
τ�1
i ηt,i, g0,i � 0, φi P p0, 1q, τi ¡ 0 (4)

ηt,i K ηs,j , t, s P t1, . . . , T u , i, j P t1, 2, . . . , ku . (5)

Independence holds, of course, except the case when s � t and i � j jointly.
The conditional covariance matrix of any GMSF-MGARCH specification takes the
form

Ωt � G
1
2
t HtG

1
2
t �

�

�������
gt,1 pHtq1:n1,1:n1

� � � ?
gt,1gt,k pHtq

1:n1,

�
k�1°
i�1

ni�1
�

:n

� � � � � � � � �?
gt,kgt,1 pHtq�k�1°

i�1
ni�1

�
:n,1:n1

� � � gt,k pHtq�k�1°
i�1

ni�1
�

:n,
�

k�1°
i�1

ni�1
�

:n

������� ,
(6)

where Ma:b,c:d is a block of matrix M formed by its rows from a to b and columns c
to d.
Imposing restrictions on the latent processes gt,1 � gt,2 � � � � � gt,k � gt will reduce
the model to the MSF-MGARCH one. Although the conditional covariances depend
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on the latent variables gt,i, it is not the case for the conditional correlations, as they
collapse to the form given in the Ht part of the specification:

ρt,kl � ht,kla
ht,kkht,ll

, k, l � 1, . . . , n. (7)

As regards distributional assumptions, we stay with conditional normality. That is,
we assume that the pn�kq-variate process tζtu, where ζt � rξ1t η1t s1 � rξ1t ηt,1 . . . ηt,ks1
is a Gaussian white noise with unit covariance matrix: ζt � iiN pn�kq p0, In�kq. Thus,
the conditional distribution of rt, given ψt�1 and gt, is N pnq pµt,Ωtq with Ωt in (6)
and the density function

p prt|ψt�1, gt,1, . . . , gt,k; θq � fnN prt|µt,Ωtq � p2πq�n
2 pdet Ωtq�

1
2 exp

�
�1

2ε
1
tΩ�1

t εt



,

(8)
where θ is a sufficient parametrization and εt � rt � µt. The density function of the
conditional distribution of rt given its own past alone is the following k-dimensional
integral

p prt|ψt�1; θq �
»
Rk
�

fnN pεt|0,Ωtq
k¹
i�1

fLN

�
gt,i|0,

�
τi
�
1 � ϕ2

i

���1
	
dgt,1 . . . dgt,k, (9)

where fLN p�|a, bq denotes the log-normal density function corresponding to theN pa, bq
distribution. That is, if z � N pa, bq then the density function of the log-normal
variable ez is denoted as fLN p�|a, bq. In the special case of just one latent variable
gt,1, i.e. in the MSF-MGARCH model, Ωt � gt,1Ht and

p prt|ψt�1; θq �
» 8

0
fnN pεt|0, gt,1Htq fLN

�
gt,1|0,

�
τ1
�
1 � ϕ2

1
���1

	
dgt,1 (10)

Note that p prt|ψt�1; θq is the density of a continuous scale mixture of n-variate
normal distributions with the log-normal marginal distribution of the variance
factor gt,1 as the mixing distribution. Because ln gt,i and � ln gt,i have the same
N
�

0,
�
τi
�
1 � ϕ2

i

���1
	

marginal distribution, the random precision factor g�1
t,1 of

N pnqp0, gt,1Htq has the same log-normal distribution as the random variance factor
gt,1. Thus we can compare (10) to the Student t class, which corresponds to gamma
mixing distributions for the precision factor. Since scale mixtures of normals form a
subclass of ellipsoidal distributions, the conditional distribution of rt given ψt�1 alone
is ellipsoidal. By extending any conditionally normal MGARCH specification to the
MSF-MGARCH model, we keep the original ellipsoidal structure of that MGARCH
model, but make the tails of the conditional distribution heavier. However, when we
assume some GMSF-MGARCH model with at least two latent processes pk ¥ 2q, the
representation Ωt � gt,1Ω�

t leaves k � 1 random variables ( gt,2
gt,1

, . . . ,
gt,k

gt,1
q in Ω�

t and
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p prt|ψt�1; θq cannot be represented as a scale mixture of n-variable normal densities.
Using GMSF-MGARCH specifications with k ¥ 2 may significantly increase flexibility
of the shape of the contours (isodensity lines) of p prt|ψt�1; θq.
In spite of all these considerations, the conditional normality of our general GMSF-
MGARCH framework may be seen as a restrictive assumption. Remind, however, that
we condition not only on the past observations, but also on current latent variables,
which – as it was explained above – lead to non-normal distributions with heavier
tails on the level of p prt|ψt�1; θq. By using simple hybrid structures with conditional
normality we are already on a similar level of tail modelling as in e.g. MGARCH
models with the conditional Student t distribution; the source of this property (and
the price we pay for it in computations) lies in employing non-trivial latent processes.
Obviously, we can go further and assume (within our hybrid structure) non-Gaussian
ξt with heavy tails. In fact, Osiewalski (2015) considers the MSF-SBEKK model
with n-variate Student t strict white noise tξtu and finds it a useful, but not crucial
extension in his application. In this work we assume that tξtu � iiN p0, Inq.

3 Bayesian VAR(2)-GMSF-SBEKK models
In Bayesian statistical analysis of GMSF-MGARCH models we focus on the simplest
possible choice for the MGARCH structure of Ht, namely the SBEKK one. So we
assume

Ht � p1 � β � γqA� βεt�1ε
1
t�1 � γHt�1, (11)

where A is a free symmetric positive definite square matrix of order n, β ¡ 0,
0   γ   1, β�γ   1 and H0 � h0In, with h0 ¡ 0 either assumed arbitrarily or treated
as one more free parameter of the SBEKK structure in (11). Our sampling model for
T observations and T �k latent variables has a hierarchical structure described by the
following density functions

p
�
r, gp1q, . . . , gpkq|ψ0, θ

	
�

T¹
t�1

�
p prt|ψt�1, gt,1, . . . , gt,k, θq

k¹
i�1

ppgt,i|gt�1,i, θq
�
, (12)

where r � rr1 . . . rT s, gpiq � rg1,i . . . gT,is1, ψ0 consists of initial observations on prices
px�2, x�1, x0q,

p prt|ψt�1, gt,1, . . . , gt,k, θq � fnN prt|µt,Ωtq , (13)

p pgt,i|gt�1,i, θq � g�1
t,i f

1
N

�
ln gt,i|ϕi ln gt�1,i, τ

�1
i

�
, (14)

g0,i � 1 (arbitrarily) and θ groups all the parameters in µt and Ωt together with k
pairs pϕi, τiq.
Note that in the conditional mean of rt, µt � λ � Λrt�1 � Πxt�1 appearing in (1)
and (13), we can assume Π � 0 (as usual) or introduce an error correction term
(ECT) through a non-zero reduced rank matrix Π. It seems natural to treat such
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reduced rank Π as representing one or more co-integration relationships in levels of
xt. However, any white noise conditions for the process tεtu in (1) and (2) have
not been derived yet, so formally we cannot say that the variables xt,1, . . . , xt,n are
individually integrated and jointly co-integrated. Nevertheless, using reduced rank
Π (and ECT) in the conditional mean µt enlarges the set of specifications that may
appear useful in empirical modelling.
In this section, in order to cover Bayesian models with different assumptions on Π,
we divide θ into θp1q and θp2q:

θp1q �
�
λ1,
�
vecΛ1

�1
,
�
vechA�1�1 , β, γ, h0, φ1, . . . , φk, τ1, . . . , τk

	1
,

which groups all the parameters except Π (i.e., all that appear in the standard case
with Π � 0) and θp2q, which denotes an appropriate sufficient parametrization of
reduced rank Π. We also assume that Π � 0 can be obtained using a particular value
of θp2q.
The Bayesian VAR-GMSF-SBEKK model is represented by the product of the
sampling density function p

�
r, gp1q, . . . , gpkq|ψ0, θ

�
in (12), which keeps the same

general structure irrespective of the particular form of Π, and the prior density
function

ppθq � ppθp1qqppθp2qq, (15)

where

ppθp1qq � ppλqppvecΛqppA�1qppβ, γqpph0q
k¹
i�1

rppφiqppτiqs , (16)

and the form of ppθp2qq will be presented at the end of this section. In (16) we carefully
choose rather diffuse prior densities for particular groups of parameters:

i) ppλq � fnN pλ|0, 1
9Inq – n-dimensional normal distribution with zero mean and 1

9In
as the covariance matrix. Thanks to such construct, we can assure P p|λi|   1q is
high enough (0.9973). This is a reflection of a prior belief that the unconditional
expectation (Eprtq � pIn � Λq�1λ when Π � 0) of each portfolio component
should exceed (in absolute value) one percentage point with a low probability.
Given the prior distribution of Λ as below, we can simulate the prior probability
P pEprtq P r�1, 1snq, which is shown in Figure 1. As one can see, the probability
decreases monotonically in both cases, however, very slowly for the covariance
matrix 1

9In. In the case of n � 6 and the unit covariance matrix, it drops to as
low as 0.091 – which is not reasonable.

ii) ppvecΛq9fn2

N pvecΛ|0, 1
9nIn2q1tM : ρpMq 1upΛq – multivariate normal distribution

truncated by the VAR stability restriction when Π � 0 (i.e. all eigenvalues of the
matrix Λ lie within a unit ball); ρpMq denotes the spectral radius of matrix M

and 1Spxq stands for the indicator function of the set S: 1Spxq �
"

1, x P S
0, x R S .
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Figure 1: Probability a priori of the condition Eprtq P r�1, 1sn
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Thus, in this prior distribution we assume that the covariances of the vector
vecΛ decrease when the portfolio dimension increases. As a result, the stability
restriction does not effectively truncate the prior distribution. In the case of
the unit covariance structure, probability a priori of the restriction ρpΛq   1 is
numerically close to zero when n ¥ 5, see Figure 2.

iii) ppA�1q � fWishartpA�1|In, n�2q – Wishart distribution with a shape parameter
In and n� 2 degrees of freedom,

iv) ppβ, γq91tpx,yqPr0,1s2: x�y 1upβ, γq – uniform distribution over the unit simplex,

v) pph0q � fExpph0|1q – exponential distribution with mean (and standard
deviation) 1,

vi) ppφiq9fN pφi|0, 100q1tx: |x| 1upφiq,
vii) ppτiq � fExppτi|200q – exponential distribution with mean (and standard

deviation) 200.

The joint posterior distribution of all parameters and latent variables has the density
function

p
�
θ, gp1q, . . . , gpkq|ψ0, r

	
� p

�
r, gp1q, . . . , gpkq|ψ0, θ

�
ppθq

p pr|ψ0q

9 ppθp1qqppθp2qq
T¹
t�1

�
fnN pxt|xt�1 � µt,Ωtq

k¹
i�1

g�1
t,i f

1
N

�
ln gt,i|ϕi ln gt�1,i, τ

�1
i

��
,

(17)
which is highly multivariate and non-standard. The joint posterior will be analysed
through MCMC simulation, using Gibbs sampling with Metropolis-Hasting steps.
For the sake of clarity, let us use the following notation: g � �

gp1q . . . gpkq
�
groups

all latent variables (in both spatial and temporal dimensions), φ � pφ1 . . . φkq and
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Figure 2: Probability (a priori) of the stability restriction ρpΛq   1
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τ � pτ1 . . . τkq group all the AR(1) and precision parameters of latent processes, and
µ�t � xt�1 � µt is the conditional mean of xt.

i) Parameters of the VAR(1) structure (λ and Λ) have following conditional
posterior distributions:

ppλ|x, g,Λ, A, β, γ, h0, φ, τ, θ
p2qq9ppλq

T¹
t�1

fnN pxt|µ�t ,Ωtq , (18)

ppvecΛ|x, g, λ,A, β, γ, h0, φ, τ, θ
p2qq9ppvecΛq

T¹
t�1

fnN pxt|µ�t ,Ωtq , (19)

where x � px1, . . . , xT q. Due to the fact that the MGARCH structure ties
together all of the points in time, it is not possible to directly sample from the
conditional distributions presented in (18) and (19). To obtain a (pseudo)random
sample from these conditionals, we suggest using a random walk Metropolis-
Hastings algorithm. The proposal distribution, used for obtaining candidate
draws, can be multivariate normal parametrised by the previous state as the
mean and an arbitrary (but dispersed enough) covariance matrix, tuned on the
initial cycles of the algorithm to achieve the acceptance rate between 3-7%.

ii) Parametrs of the SBEKK structure, i.e. A, pβ, γq and h0 have the following
conditional distributions:

ppA|x, g, λ,Λ, β, γ, h0, φ, τ, θ
p2qq9ppAq

T¹
t�1

fnN pxt|µ�t ,Ωtq , (20)

ppβ, γ, h0|x, g, λ,Λ, A, φ, τ, θp2qq9ppβ, γqpph0q
T¹
t�1

fnN pxt|µ�t ,Ωtq . (21)

J. Osiewalski, K. Osiewalski
CEJEME 8: 241-271 (2016)

252



Hybrid MSV-MGARCH Models . . .

Again, we suggest using a random walk Metropolis-Hastings algorithm. For
the matrix A�1, the candidates are drawn from the Wishart distribution with
m degrees of freedom and the parameter of scale being set to the previous state
multiplied by 1

m , so that the previous state is the expected value of the candidate
one. As in the previous case, the value of m is tuned to achieve the acceptance
rate around 5%. We use the similar method to draw samples from the conditional
distribution of pβ, γq. In this case, the proposal distribution is normal, truncated
by the restrictions: β�γ   1, β ¡ 0 and γ ¡ 0. For the parameter h0, describing
the initial condition for the MGARCH part of the conditional covariance matrix,
we use the same procedure with a normal proposal distribution, truncated to R�.

iii) In the case of φ1, . . . , φk and τ1, . . . , τk, the parameters ruling the latent processes,
direct sampling from the conditional posteriors is possible - see Pajor (2003):

ppφi|x, g, λ,Λ, A, β, γ, h0, φ1, . . . , φi�1, φi�1, . . . , φk, τ, θ
p2qq

9ppφiq
T±
t�1

fN
�
ln gt,i|φi ln gt�1,i, τ

�1
i

�
9fN

�
φi|φ�i , s2

i
�
	

1p�1,1qpφq,
(22)

ppτi|x, g, λ,Λ, A, β, γ, h0, φ, τ1, . . . , τi�1, τi�1, . . . , τk, θ
p2qq

9ppτiq
T±
t�1

fN
�
ln gt,i|φi ln gt�1,i, τ

�1
i

�
9fG

�
τi|T2 � 1, β�i

�
,

(23)

where

s2
i
� �

�
0.01� τi

Ţ

t�1
pln gt�1,iq2

��1

, (24)

φ�i � s2
i
�
τi

Ţ

t�1
ln gt,i ln gt�1,i, (25)

β� �
�

0.005� 1
2

Ţ

t�1
pln gt,i � φi ln gt�1,iq2

��1

, (26)

and fGp�|a, bq stands for the density function of the gamma distribution with
mean a

b and variance a
b2 .

iv) For every t � 1, . . . , T � 1 and i � 1, . . . , k, gt,i has the following conditional
posterior density (where g�p�tiq denotes the set of all variables in g, except gt,i):

ppgt,i|x, g�p�tiq, λ,Λ, A, β, γ, h0, φ, τ, θ
p2qq

9fN
�
ln gt,i|φi ln gt�1,i, τ

�1
i

�
fN

�
ln gt�1,i|φi ln gt,i, τ�1

i

� � g�1
t,i � fnN pxt|µ�t ,Ωtq ,

(27)
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and for t � T :

ppgT,i|x, g�p�Tiq, λ,Λ, A, β, γ, h0, φ, τ, θ
p2qq

9fN
�
ln gT,i|φi ln gT�1,i, τ

�1
i

� � g�1
T,i � fnN pxT |µ�T ,ΩT q .

(28)

Drawing random samples from the conditional posteriors defined by (27) and (28)
is relatively straightforward in the case of k � 1, although Metropolis-Hastings
steps are required. If k � 1, we can decompose the factor pxt � µ�t q1 Ωt pxt � µ�t q
to a product of gt and pxt � µ�t q1Ht pxt � µ�t q, and thus use a gamma proposal
density function for g�1

t based on the normal density function of pxt � µ�t q. In
the general case, the proposal density we introduce is inspired by this simpler
case. If we treat the appropriate blocks of Ωt as the ones containing most of the
information about gt,i, then we arrive at the following proposal density:

pc
�
g�1
t,i

� � fG
�
g�1
t,i |ϕt,i, ηt,i

�
(29)

where
ϕt,i �

�
exp

�
σ2
i

�� 1
��1 � ni

2 , (30)

ηt,i �
�
ϕt,i � ni

2

	
exp

�
�st,i � σ2

i

2



�

�1
2 pxt � µ�t q1a:b,1:1

�
H�1
t

�
a:b,a:b pxt � µ�t qa:b,1:1 ,

(31)

a �
i�1°
j�1

nj � 1, b �
i°

j�1
nj . We then use only the information about assets a to b

of the portfolio – those associated with the latent process i.

All the conditional posterior densities presented above condition on θp2q, so they
appear in all Bayesian models considered in this section, irrespective of the
assumptions on Π. In the standard case of Π � 0 these conditional densities are
all what is needed to sample from the joint posterior distribution.
Now we present the forms of the priors and conditional posteriors for the cases of
reduced rank Π that will be considered in our empirical example, where n � 6 assets
are divided into three pairs (2 stock indexes, gold and silver, oil and natural gas).
Assume that the rank of Π is m, where 0   m   n; then

Π � ab1, (32)

with both a and b of dimension n �m and full rank m. Since the representation in
(32) is not unique, we use the identifying restriction

b1b � Im, (33)

which means that b is an element of the Stiefel manifold - see Strachan (2003), Koop,
León-Gonzalez and Strachan (2009), and Wróblewska (2010). Note that b can be
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parametrized in terms of its angular polar coordinates.
In the empirical part of this paper we consider only two obvious cases of rank reduced
Π, namely

i) three possible relationships (one for each pair of assets):

Π �
�� Πp1q 0r2�2s 0r2�2s

0r2�2s Πp2q 0r2�2s
0r2�2s 0r2�2s Πp3q

�� , (34)

where for i P t1, 2, 3u we assume:

Πpiq �
�
a2i�1
a2i

� �
cospκiq sinpκiq

�
, κi P r0, πs, a2i�1, a2i P R; (35)

ii) one global relationship linking all asset prices:

Π �

���������

a1
a2
a3
a4
a5
a6

���������

���������

cospκ1q cospκ2q cospκ3q cospκ4q cospκ5q
sinpκ1q cospκ2q cospκ3q cospκ4q cospκ5q

sinpκ2q cospκ3q cospκ4q cospκ5q
sinpκ3q cospκ4q cospκ5q

sinpκ4q cospκ5q
sinpκ5q

���������

1

(36)

where, for j P t1, 2, 3, 4, 5u and i P t1, 2, 3, 4, 5, 6u,

κj P r0, πs, ai P R. (37)

That is, in each case θp2q is the vector grouping n � 6 parameters ai and all the angles
κj (three in the first case, which is denoted VEC(3) in the empirical part, five in the
second case - denoted VEC(5)). Taking a � 0 would lead to Π � 0 (not considered
now). In both cases we assume that each individual angle is (a priori) independent of
other parameters and uniformly distributed over r0, πs and the vector a of dimension
n � 6 is a priori normally distributed with mean vector 0 and covariance matrix
1
9In. It is important to stress that, for the bi-variate portfolio (n � 2), the uniform
distribution over r0, πs (assumed for the only angular coordinate of b) corresponds to
the non-informative prior on the Stiefel manifold.
The full conditional posterior density of each individual angle takes the form

ppκj |x, g,Λ, A, β, γ, h0, φ, τ, a, κ1, . . . , κj�1, κj�1, . . . , κJq 9

9 1r0,πspκjq
T¹
t�1

fnN pxt|µ�t ,Ωtq ,
(38)
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while for the vector a we have

ppa|x, g,Λ, A, β, γ, h0, φ, τ, κ1, . . . , κJq9fnN
�
a|0, 1

9In

 T¹
t�1

fnN pxt|µ�t ,Ωtq , (39)

where J � 3 or J � 5 - depending on the case we consider. These conditional
posteriors require Metropolis-Hastings steps in order to sample from; for details see
Osiewalski and Osiewalski (2013), and Osiewalski (2015).

4 An empirical example
4.1 The data
As an empirical evidence of the usefulness of the GMSF-SBEKK specification, we
analyse a 6-dimensional portfolio (n � 6) composed of assets belonging to three
different types of markets:

a) stock markets: represented by the Warsaw Stock Exchange index (WIG) and the
American S&P500;

b) precious metals markets: represented by gold and silver in London fixing (PM)
prices in USD/Ounce (international troy ounce � 31.1 g);

c) energy commodities markets: represented by oil (West Texas Intermediate – WTI,
priced in USD per barrel; 1 bbl = 42 gallons � 159 liters) and natural gas (priced
as the Henry Hub spots (NYMEX) in USD per MMBTU, i.e. million British
thermal units; 1 BTU � 1055 J, which is the amount of energy required to raise
the temperature of one pound (454 g) of water by one degree Fahrenheit ( 5

9
�C)).

We analyse daily data from December 21, 2005 till December 16, 2013. This results
in T � 2066 days when at least one asset was valued. For all the time series, the
missing observations have been filled using linear interpolation – as recommended by
Osiewalski and Osiewalski (2012b). Such approach prevents from: loosing available

Table 1: Descriptive statistics of the logarithmic return rates

WIG SP500 GOLD SILVER OIL GAS
min -8.289 -9.47 -9.596 -18.693 -12.827 -25.529
max 6.084 10.957 6.841 18.279 16.414 28.391
average 0.019 0.017 0.043 0.04 0.026 -0.057
standard deviation 1.362 1.373 1.327 2.526 2.346 3.804
skewness -0.433 -0.286 -0.523 -0.599 0.066 0.379
kurtosis 3.243 10.002 4.412 7.841 5.918 6.801
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Figure 3: Modelled multivariate time series xt
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information, modifying time axis, creating artificial outliers and thus changing
volatility estimates within multivariate framework.
The descriptive statistics of the logarithmic returns can be found in Table 1, while in
Table 2 we show the above diagonal part of the empirical correlation matrix. Original
time series of logs of prices (or price indexes) are plotted in Figure 3.

Table 2: Correlation coefficients between the logarithmic return rates

WIG SP500 GOLD SILVER OIL GAS
WIG 0.418 0.167 0.183 0.342 0.064
SP500 0.002 0.007 0.355 0.018
GOLD 0.600 0.210 0.092
SILVER 0.150 0.136
OIL 0.072
GAS

4.2 Model comparison
Let us present the formal model comparison first, and then - in the next subsection -
the posterior results obtained in each individual model, as they explain the ranking
of our models.
Bayesian model comparison is based, for any pair of competing models, on the Bayes
factor, which is the ratio of the marginal data density (MDD) values for both models.
Each MDD value has been computed (within the MCMC simulation from the posterior
distribution) using exactly the same approach as in Osiewalski and Osiewalski (2013).
Namely, we have used the harmonic mean estimator (HME, Newton and Raftery,
1994), corrected in the spirit of Lenk (2009). Such approach, which amounts to
applying a particularly adjusted version of HME, is formally justified by Pajor and
Osiewalski (2013-14), although it does not have so good properties as the corrected
arithmetic mean estimator (CAME) proposed by Pajor (2016). However, the use
of CAME in dynamic models with latent processes is not easy at all, due to very
high dimension of the Monte Carlo simulation space (exceeding 6200 for our GMSF-
SBEKK models).
In Table 3 one can find the Newton-Raftery HME values, the Lenk corrections and
the final, adjusted HME values of the marginal data density. It is worth noting,
that for all of the 6-dimensional models the prior sizes of appropriate cubes resulting
from the Lenk corrections are almost identical for most of the common parameters
(Λ, A, pβ, γq, h0) and in the Π � 0 and Π � 0 cases for λ. Naturally, the
correction varies for the MSV part due to the dimension difference; not surprisingly,
the correction for g is higher for models with three latent processes, similarly for the
τ and φ parameters. Sum of all the corrections reduces the advantage of the GMSF-
SBEKK model over the MSF-SBEKK one by about 13 orders of magnitude, yet it is
still clear that the extended model explains the observations much better.
The comparison is not so clear in the case of the models with the ECM part versus the

J. Osiewalski, K. Osiewalski
CEJEME 8: 241-271 (2016)

258



Hybrid MSV-MGARCH Models . . .

GMSF-SBEKK with Π � 0. Although the original HME indicates a slight advantage
of the models with the ECM part, yet this advantage is wholly taken by the Lenk
correction (on the parameter a). It is worth mentioning that this also means high
fragility of the final result. As an example, if we reduce the prior standard deviation
of the parameter a from 1

3 to 1
10 , the correction size would be smaller by 3.1 orders of

magnitude and the final marginal data densities would be equal for models with Π � 0
and rankpΠq � 1. This means that the hypothesis of one global long-run relation,
linking prices on all six markets, cannot be strongly rejected (especially when it is
supported by prior beliefs). On the other hand, such global relation does not help in
explaining our data; the short-run effects and dependencies are crucial.

Table 3: MDD estimates and Bayes Factors for the competing models

MSF-SBEKK GMSF-SBEKK 3x 2-dimensional
Π � 0 VEC(3) VEC(5) Π � 0 MSF-SBEKK

log10 PrpAk|Mkq

λ �3.288 �1.626 �0.764 �3.095 �3.317
Λ �17.546 �17.767 �18.118 �18.266 �6.217
A �34.592 �31.247 �30.522 �30.706 �2.886

pβ, γq �3.612 �3.763 �3.788 �3.783 �8.852
h0 �0.042 �0.150 �0.187 �0.163 �0.251
ϕ �0.643 �1.846 �1.822 �1.793 �1.257
τ �2.947 �8.427 �8.440 �8.389 �8.127
g �19.237 �29.137 �28.131 �28.517 �18.972
a – �9.492 �8.576 – –
κ – 0.000 �0.010 – –

sum of Lenk’s correction
log10 Pr pAk|Mkq �81.907 �103.455 �100.358 �94.712 �49.878

Newton-Raftery estimator
log10 pNRpx|Mkq �9583.6 �9484.7 �9481.6 �9484.1 �9681.1

final estimates of the marginal data density
log10 ppx|Mkq �9665.5 �9588.2 �9582 �9578.8 �9731.3

log10pBFGMSF-SBEKK:MSF-SBEKKq � 86.7
log10pBFGMSF-SBEKK:3x 2-dim MSF-SBEKKq � 152.5
log10pBFVEC(5)-GMSF-SBEKK:GMSF-SBEKKq � �3.2

log10pBFVEC(3)-GMSF-SBEKK:VEC(5)-GMSF-SBEKKq � �6.2

Our competing models reflect two main aspects of modelling short-run dependencies
between - and volatility of - different groups of markets. Firstly, we model each group
separately, assuming complete independence and using three unrelated bivariate MSF-
SBEKK models. Secondly, we apply a joint MSF-SBEKK specification, which allows
for parsimonious modelling of dependencies between different types of markets, but it
does not distinguish their volatility patterns strongly enough. The third option, that
is the joint GMSF-SBEKK specification, is based on separate latent processes and
thus it allows for deep differences in volatility patterns. The values of Bayes factors
clearly indicate that joint modelling of prices on different markets leads to much,
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much better statistical explanation of the multidimensional data. The case of three
separate bivariate MSF-SBEKK models is very strongly rejected. Using one or three
latent processes seems a secondary issue, when we look from the perspective of joint
or independent modelling of different prices. However, when we adopt the strategy of
joint modelling, then using the GMSF-SBEKK structure appears inevitable, although
it is numerically more demanding than the MSF-SBEKK specification.

4.3 Posterior results within the main models
In this subsection we present the marginal posterior distributions of the model
parameters, focusing on the differences between the analysed models, namely the
basic MSF-SBEKK specification and the proposed GMSF-SBEKK extensions (with
and without the ECM terms). Since, looking at the marginal data density values
(see subsection 4.2), the case of rank one matrix Π, representing one global relation
among price levels, seems more relevant than the case of three relations (one per
each type of markets), we will only present the results for the case of rankpΠq � 1,
denoted VEC(5). In the following tables, the posterior expectation value was marked
with bold whenever zero was not in the 95% highest posterior density (HPD) interval.
Let us discuss the conditional mean parameters first. After introducing more latent
processes, the posterior of λ in the GMSF-SBEKK model with Π � 0 is very similar
to its counterpart in the MSF-SBEKK model. The situation changes in the case of
the GMSF-SBEKK models with non-zero Π. This is expected, as the interpretation
of λ changes due to the presence of the ECM term.

MSF-SBEKK model:
WIG S&P500 GOLD SILVER OIL GAS

Epλ1|xq
pDpλ1|xqq

�
�

0.057
p0.022q

0.088
p0.018q

0.055
p0.023q

0.060
p0.041q

0.101
p0.036q

�0.059
p0.059q

�
,

GMSF-SBEKK model:
WIG S&P500 GOLD SILVER OIL GAS

Epλ1|xq
pDpλ1|xqq

�
�

0.055
p0.021q

0.087
p0.018q

0.080
p0.022q

0.079
p0.037q

0.080
p0.036q

�0.043
p0.061q

�
,

VEC(5)-GMSF-SBEKK model:
WIG S&P500 GOLD SILVER OIL GAS

Epλ1|xq
pDpλ1|xqq

�
�

0.141
p0.097q

0.115
p0.057q

0.039
p0.081q

0.144
p0.104q

0.293
p0.137q

�0.318
p0.185q

�
,

As expected, the matrix Λ has very similar posteriors in each case. In some cases there
exist minor differences: an interesting example is the case of Λ66, where due to slightly
increased dispersion of the posterior in the GMSF-SBEKK model with Π � 0, zero
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crossed the border of the HPD interval, causing the parameter to be “insignificant”.
One important conclusion we can make is that there exist significant parameters
outside block-diagonal market division, e.g. lagged gold return significantly influences
the current S&P500 return. This is another evidence in favour of modelling these
assets jointly.

MSF-SBEKK model:
WIG�1 S&P500�1 GOLD�1 SILVER�1 OIL�1 GAS�1

EpΛ|xq
pDpΛ|xqq

�

���������������

�0.019
p0.024q

0.209
p0.026q

�0.034
p0.024q

0.012
p0.012q

0.012
p0.013q

�0.014
p0.007q

0.033
p0.019q

�0.064
p0.023q

�0.052
p0.020q

0.015
p0.010q

�0.005
p0.011q

0.003
p0.005q

�0.039
p0.022q

0.043
p0.025q

�0.041
p0.025q

�0.005
p0.012q

0.073
p0.013q

0.005
p0.006q

0.002
p0.037q

0.144
p0.040q

0.587
p0.039q

�0.313
p0.022q

0.192
p0.022q

0.013
p0.011q

�0.024
p0.035q

0.067
p0.040q

0.018
p0.038q

�0.004
p0.020q

�0.025
p0.024q

0.002
p0.011q

�0.091
p0.050q

0.075
p0.056q

�0.073
p0.056q

�0.009
p0.031q

0.147
p0.034q

0.045
p0.022q

���������������

WIG

S&P500

GOLD

SILVER

OIL

GAS

GMSF-SBEKK model:
WIG�1 S&P500�1 GOLD�1 SILVER�1 OIL�1 GAS�1

EpΛ|xq
DpΛ|xq

�

���������������

�0.021
p0.024q

0.215
p0.026q

�0.030
p0.023q

0.015
p0.011q

0.011
p0.013q

�0.015
p0.006q

0.030
p0.019q

�0.059
p0.024q

�0.053
p0.019q

0.015
p0.009q

�0.012
p0.011q

0.004
p0.005q

�0.035
p0.021q

0.041
p0.025q

�0.037
p0.025q

�0.004
p0.012q

0.068
p0.012q

�0.002
p0.006q

0.007
p0.035q

0.159
p0.040q

0.593
p0.040q

�0.310
p0.023q

0.174
p0.020q

0.005
p0.010q

�0.037
p0.034q

0.097
p0.040q

0.024
p0.036q

0.003
p0.020q

�0.033
p0.024q

0.005
p0.011q

�0.094
p0.052q

0.079
p0.056q

�0.043
p0.055q

�0.022
p0.031q

0.143
p0.034q

0.045
p0.023q

���������������

WIG

S&P500

GOLD

SILVER

OIL

GAS

VEC(5)-GMSF-SBEKK model:
WIG�1 S&P500�1 GOLD�1 SILVER�1 OIL�1 GAS�1

EpΛ|xq
pDpΛ|xqq

�

���������������

�0.022
p0.024q

0.215
p0.027q

�0.032
p0.023q

0.015
p0.011q

0.011
p0.013q

�0.015
p0.006q

0.030
p0.019q

�0.058
p0.024q

�0.054
p0.019q

0.016
p0.010q

�0.012
p0.011q

0.004
p0.005q

�0.033
p0.021q

0.036
p0.025q

�0.041
p0.025q

�0.006
p0.012q

0.066
p0.012q

0.000
p0.006q

0.007
p0.035q

0.157
p0.038q

0.588
p0.041q

�0.311
p0.023q

0.175
p0.020q

0.005
p0.010q

�0.037
p0.035q

0.100
p0.040q

0.023
p0.036q

0.003
p0.020q

�0.033
p0.023q

0.004
p0.011q

�0.094
p0.051q

0.084
p0.053q

�0.041
p0.055q

�0.023
p0.029q

0.136
p0.036q

0.046
p0.023q

���������������

WIG

S&P500

GOLD

SILVER

OIL

GAS
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MSF-SBEKK model:
WIG S&P500 GOLD SILVER OIL GAS

EpA|xq
pDpA|xqq

�

���������������

1.009
p0.104q

0.277
p0.054q

0.183
p0.062q

0.320
p0.108q

0.305
p0.101q

0.000
p0.168q

0.638
p0.068q

0.041
p0.049q

0.067
p0.087q

0.396
p0.086q

�0.086
p0.139q

1.070
p0.111q

1.086
p0.146q

0.322
p0.102q

0.158
p0.172q

3.252
p0.343q

0.303
p0.172q

0.436
p0.307q

2.622
p0.271q

0.208
p0.276q
8.292
p0.868q

���������������

WIG

S&P500

GOLD

SILVER

OIL

GAS

Epβ|xq
pDpβ|xqq

� 0.026
p0.002q

Epγ|xq
pDpγ|xqq

� 0.956
p0.003q

Eph0|xq
pDph0|xqq

� 0.980
p0.342q

GMSF-SBEKK model:
WIG S&P500 GOLD SILVER OIL GAS

EpA|xq
pDpA|xqq

�

���������������

1.079
p0.156q

0.320
p0.065q

0.204
p0.059q

0.353
p0.100q

0.370
p0.096q

0.029
p0.153q

0.704
p0.104q

0.057
p0.046q

0.090
p0.079q

0.470
p0.085q

�0.089
p0.125q

0.848
p0.095q

0.823
p0.127q

0.321
p0.091q

0.188
p0.150q

2.383
p0.285q

0.368
p0.153q

0.535
p0.264q

2.413
p0.286q

0.191
p0.245q
6.988
p0.839q

���������������

WIG

S&P500

GOLD

SILVER

OIL

GAS

Epβ|xq
Dpβ|xq

� 0.020
p0.002q

, Epγ|xq
Dpγ|xq

� 0.964
p0.003q

, Eph0|xq
Dph0|xq

� 1.411
p0.383q

VEC(5)-GMSF-SBEKK model:
WIG S&P500 GOLD SILVER OIL GAS

EpA|xq
pDpA|xqq

�

���������������

1.077
p0.159q

0.317
p0.066q

0.198
p0.060q

0.342
p0.102q

0.362
p0.097q

0.033
p0.156q

0.702
p0.105q

0.054
p0.046q

0.083
p0.080q

0.465
p0.086q

�0.086
p0.129q

0.816
p0.096q

0.783
p0.129q

0.315
p0.093q

0.195
p0.154q

2.289
p0.288q

0.353
p0.155q

0.531
p0.268q

2.397
p0.283q

0.192
p0.250q
6.949
p0.827q

���������������

WIG

S&P500

GOLD

SILVER

OIL

GAS

Epβ|xq
Dpβ|xq

� 0.020
p0.002q

, Epγ|xq
Dpγ|xq

� 0.964
p0.003q

, Eph0|xq
Dph0|xq

� 1.401
p0.370q
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Now let us move to the MGARCH parameters. Differences in the posterior
expectations of the parameters of matrix A can bee seen in the cases of A33, A66,
A45 and A46, and only between the models with one versus three latent processes
(practically the cases of GMSF-SBEKK and VEC(5)-GMSF-SBEKK are identical).
The diagonal elements of A, which were mentioned before, are both lower in the
case when more latent processes are present. This suggests that newly introduced
stochastic components may partially explain specific volatility patterns in gold and
natural gas markets. It is also interesting that the non-diagonal elements of A are
higher (in absolute value) when the number of latent processes increases. Finally, let
us focus on the MSV part of the GMSF-SBEKK model. The basic characteristics
of the parameters φ and τ can be found below. Posterior densities are plotted in
Figure 4. It is worth analysing Figures 4 and 5 jointly: we can observe a significantly
different behavior of the latent process associated with the precious metals market
(spikes, low persistence), which is reflected in a different location and dispersion of the
parameters associated with it. The highest auto-correlation is present in the latent
process describing the stock markets – it is driven by the posterior of φ1 close to 1
(expected value of 0.920, comparing to 0.370 and 0.753 for precious metals and energy
commodities, respectively). Also, for the latent process describing the stock markets,
the posterior mean of the unconditional variance, E

��
τ�1
1 {p1 � φ2

1q
� |x�, is somewhat

smaller than in other cases: 0.293, comparing to 0.370 for precious metals and 0.299
for energy commodities.
An interesting conclusion can be drawn when we compare the latent processes that
appear in different models. The single process in the MSF-SBEKK case looks like
an average of the three very different processes in the GMS-SBEKK model. This
is another evidence that the three latent processes (corresponding to three types of
markets) should not be collapsed to one, “global” or “average”, latent process. As
one might anticipate, the ECM term does not have any visible impact on the GMSF-
SBEKK latent processes’ structures.

MSF-SBEKK model:
Epφ|xq
pDpφ|xqq

� 0.606
p0.044q

Epτ�1|xq
pDpτ�1|xqq

� 0.195
p0.022q

GMSF-SBEKK model:
Epφ1|xq
Dpφ1|xq

� 0.920
p0.023q

, Epφ2|xq
Dpφ2|xq

� 0.370
p0.084q

, Epφ3|xq
Dpφ3|xq

� 0.753
p0.060q

Epτ�1
1 |xq

Dpτ�1
1 |xq

� 0.044
p0.014q

, Epτ�1
2 |xq

Dpτ�1
2 |xq

� 0.440
p0.057q

, Epτ�1
3 |xq

Dpτ�1
3 |xq

� 0.130
p0.035q

VEC(5)-GMSF-SBEKK model:
Epφ1|xq
Dpφ1|xq

� 0.919
p0.024q

, Epφ2|xq
Dpφ2|xq

� 0.305
p0.080q

, Epφ3|xq
Dpφ3|xq

� 0.747
p0.062q

Epτ�1
1 |xq

Dpτ�1
1 |xq

� 0.045
p0.015q

, Epτ�1
2 |xq

Dpτ�1
2 |xq

� 0.504
p0.057q

, Epτ�1
3 |xq

Dpτ�1
3 |xq

� 0.132
p0.037q
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Figure 4: Histograms of the posterior distributions of the parameters ruling the latent
processes in the GMSF-SBEKK and MSF-SBEKK models; prior distributions are
marked with dashed lines
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Figure 5: Posterior expectations (and posterior expectations plus one posterior
standard deviation) of the latent variables gt

Epgt|xq – MSF-SBEKK model
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Epgt,i|xq, i � 1, 2, 3 – GMSF-SBEKK model
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Figure 6: Posterior expectations of the conditional correlation coefficient (� two
posterior standard deviations) in the GMSF-SBEKK model
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Table 4: Averages over time of posterior means (and standard deviations) of the
conditional correlation coefficients ρt,ij in MSF-SBEKK (above diagonal) and GMSF-
SBEKK (below diagonal) models

WIG S&P500 GOLD SILVER OIL GAS
WIG 0.405

p0.12q
0.183
p0.148q

0.189
p0.115q

0.254
p0.148q

0.025
p0.089q

S&P500 0.409
p0.111q

0.06
p0.142q

0.074
p0.124q

0.315
p0.202q

�0.006
p0.086q

GOLD 0.194
p0.139q

0.068
p0.131q

0.609
p0.079q

0.217
p0.118q

0.068
p0.093q

SILVER 0.203
p0.11q

0.082
p0.116q

0.607
p0.083q

0.151
p0.108q

0.105
p0.102q

OIL 0.268
p0.136q

0.335
p0.187q

0.227
p0.108q

0.168
p0.1q

0.066
p0.089q

GAS 0.029
p0.078q

�0.006
p0.074q

0.076
p0.084q

0.121
p0.095q

0.066
p0.08q
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Table 5: Averages over time of posterior means (and standard deviations) of
conditional standard deviations σt,i in MSF-SBEKK and GMSF-SBEKK models

WIG S&P500 GOLD SILVER OIL GAS
MSF-SBEKK 1.225

p0.492q
1.121
p0.721q

1.232
p0.475q

2.142
p0.848q

2.049
p1.051q

3.401
p1.339q

GMSF-SBEKK 1.222
p0.504q

1.127
p0.737q

1.195
p0.434q

2.055
p0.781q

2.04
p0.994q

3.372
p1.379q

correlation coefficient 0.980 0.989 0.976 0.979 0.979 0.979

In order to conclude the discussion of our empirical example, we may say that both
the model comparison (see subsection 4.2) and the posterior results within individual
models prove that joint analysis of different types of markets is clearly preferred. Their
analysis should not be reduced to three independent 2-dimensional models – due to
e.g. significant off block-diagonal elements in the matrices A and Λ. This conclusion
is also supported by the conditional correlations between different markets. In Figure
6 we can see that, e.g., conditional correlation between the returns of gold or oil and
S&P500 remains strongly different from zero for long periods. Positive correlation
between these assets since second half of 2009 suggests that there were limited risk
diversification opportunities within such constructed portfolio. This means, again,
that these markets did not operate independently in the analysed time frame.
The model choice (and thus the number of latent processes) does not impact the
conclusions above: one can see in Table 4 that the estimates (posterior expectations)
of the conditional correlation coefficients are very similar in both cases (one or
three latent processes). The same happens with the conditional standard deviations
(see Table 5). Apart from similar levels, the co-movements of conditional standard
deviations do not significantly vary between the models (see bottom row of Table 5) –
which is also true for conditional correlations, where the lowest correlation coefficient
between posterior expectations of conditional correlation coefficients was 0.981.
Again, introducing the ECM part to the conditional mean of the GMSF-SBEKK
model did not change the volatility estimates. Thus, for the sake of clarity we skip
the VEC(5)-GMSF-SBEKK model in these final considerations, figures and tables.

5 Concluding remarks
The hybrid MSV-MGARCH structures (for VAR error terms) enable using only very
simple MGARCH and MSV specifications to jointly describe volatilities of many assets
(or markets) as well as their relationships. The simplest versions of MSV-MGARCH
structures, namely the MSF-MGARCH models, amount to multiplying the MGARCH
conditional covariance matrix by a non-trivial scalar latent process. When compared
to a pure MGARCH model, its MSF-MGARCH extension leads to heavier tails of the
conditional distribution (given the past of the observed process) and introduces extra
parameters as well as an additional source of dependence over time.
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In this paper we focus mainly on the GMSF-MGARCHmodels that use as many latent
processes as there are groups of assets (or markets); they lead to even more flexibility
and enable to capture differences in volatility of assets from different groups – at a
relatively low computational cost. We also show that extending standard volatility
models in order to capture long-run relationships among price levels is straightforward
within the proposed VAR(2)-GMSF-SBEKK framework. It is stressed that our
Bayesian VAR(2)-GMSF-SBEKK models require relatively careful prior elicitation,
but simple MCMC tools are sufficient for simulating posterior distributions; Gibbs
chains with easy Metropolis-Hastings steps are constructed and programmed.
For Bayesian model comparison through posterior model probabilities, Newton and
Raftery’s harmonic mean estimator (of the marginal data density value, MDD) needs
the important correction in the spirit of Lenk (2009). This, however, is not a final
solution and further research is required to find other – feasible but more reliable –
numerical tools for MDD evaluations in models with latent processes.
While MSF-SBEKK and GMSF-SBEKK specifications successfully compete with even
more complicated pure MGARCH or MSV structures, their empirical comparison
(using formal Bayesian approach) to models based on dynamic copulas is required.
The main question is whether good fit and relative simplicity of our hybrids can justify
their use instead of copulas (at least for large porfolios). Also, theoretical work on
hybrid stochastic processes is needed in order to find conditions of their covariance
stationarity and establish other properties.
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