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Abstract
We develop a fully Bayesian framework for analysis and comparison of two

competing approaches to modelling daily prices on different markets. The
first approach, prevailing in financial econometrics, amounts to assuming that
logarithms of prices behave like a multivariate random walk; this approach
describes logarithmic returns most often by the VAR(1) model with MGARCH
(or sometimes MSV) disturbances. In the second approach, considered here,
it is assumed that daily price levels are linked together and, thus, the error
correction term is added to the usual VAR(1)–MGARCH or VAR(1)–MSV
model for logarithmic returns, leading to a reduced rank VAR(2) specification
for logarithms of prices. The model proposed in the paper uses a hybrid MSV-
MGARCH structure for VAR(2) disturbances. In order to keep cointegration
modelling as simple as possible, we restrict to the case of two prices representing
two different markets.
The aim of the paper is to show how to check if a long-run relationship between
daily prices exists and whether taking it into account influences our inference
on volatility and short-run relations between returns on different markets. In
the empirical example the daily values of the S&P500 index and the WTI oil
price in the period 19.12.2005 – 30.09.2011 are jointly modelled. It is shown
that, although the logarithms of the values of S&P500 and WTI oil price seem
to be cointegrated, neglecting the error correction term leads to practically the
same conclusions on volatility and conditional correlation as keeping it in the
model.
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1 Introduction
In financial econometrics it is usually assumed that vector autoregression (VAR) is the
basic model structure for logarithmic return rates with the disturbances following one
of multivariate volatility processes. This approach amounts to describing logarithms
of prices by (some generalization of) a multivariate random walk, so that price
levels are not linked. In order to capture possible long-run relationships among
price levels, we consider cointegration of logarithms of prices and introduce the error
correction mechanism (ECM) into the multivariate model for return rates. Long-term
relationships have already been introduced into volatility models by e.g. Chang C.,
Lai J. and Chuang I. (2010), Ji Q. and Fan Y. (2011), Mahadevan R. and Suardi
S. (2011). Before that, both approaches were usually separated, although applied to
daily data, e.g. Bekiros S. and Diks C. (2008) filtered the data by GARCH models
and then built the ECM specification for the residuals.
It is worth noting that much earlier Osiewalski J. and Pipień M. (2004) included the
ECM term in the conditional mean specification of bivariate VAR–MGARCH models
with competing MGARCH structures. However, their approach was completely
different from the one considered here as they used an obvious cointegration relation
without testing it. Also, their long-run relationship involved one more variable, which
was assumed exogenous and thus not modelled. Here we are interested in estimating,
testing and exploiting potential long-run relations linking these variables, which are
jointly modelled and forecasted - without any extra (external) variables, assumed
to be exogenous. Pajor A. (2011), illustrating her theory of exogeneity in Bayesian
VECM–MSV models, uses the same obvious cointegration relation as did Osiewalski
J. and Pipień M. (2004), but in the context of a full trivariate specification. Again,
the long-run relationship was assumed and not formally derived within the Bayesian
model. Also, the main comparison was between trivariate and bivariate VECM–MSV
models with the same ECM term, and not between bivariate models with or without
ECM.
In this work we consider a parsimonious model structure for joint analysis of long-
and short-run relationships among prices on different markets. In order to keep
cointegration modelling as simple as possible, we restrict here to the bivariate case -
with two prices representing two markets. To model the conditional covariance matrix
we use a simple hybrid MSV-MGARCH structure, namely the MSF-SBEKK one,
proposed by Osiewalski J. (2009) and Osiewalski J. and Pajor A. (2009). It shows
both parsimony and strengths of each basic class of multivariate volatility models.
Due to nonlinearities and latent processes, Bayesian statistics is the natural approach
to inference in our proposed models, which also enables us to formally compare
competing specifications and, thus, to check which elements of model structure are
most important for good fit to the observed data. We propose to conduct Bayesian
inference using a hybrid MCMC sampler that enables to efficiently simulate from the
posterior distribution. The marginal data density value, which is the main ingredient
of Bayesian model comparison, can be approximated with the Newton and Raftery
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(1994) harmonic mean estimator (HME), but adjusted according to the suggestion by
Lenk (2009). We propose a specific, practical way of computing Lenk’s correction in
our highly dimensional space of parameters and latent variables.
The aim of the paper is to formally test the long-run relationship between daily prices
and to check whether taking it into account (if it is present) influences (improves) our
inference on volatility and short-run relations between returns on different markets.
In the empirical example the daily values of the S&P500 index and the WTI oil
price in the period 19.12.2005 – 30.09.2011 are jointly modelled. It is shown that,
although the logarithms of both series are linked and the ECM term is "significant",
the model with no ECM term leads to practically the same conclusions on volatility
and conditional correlation. The paper is organized as follows. In the next section
details of our Bayesian VAR(2)–MSF-SBEKK model for daily prices are presented.
Section 3 is devoted to simulation from the posterior distribution and to numerical
problems of model comparison. Our empirical example is presented in Section 4.
Section 5 contains concluding remarks.

2 Bayesian VAR(2)–MSF-SBEKK model for prices

Let us denote the natural logarithm of the time t price of asset i P t1, . . . , nu by
0.01xt,i and the growth rate of the price of asset i at time t by rt,i � xt,i � xt�1,i,
for any time t P t1, . . . , T u. Then let us denote the n-variate vectors of hundreds
of logarithms of prices and logarithmic return rates (in percentage points) by
xt � pxt,1, . . . , xt,nq

1 and rt � prt,1, . . . , rt,nq
1, respectively. We will model the prices

using an n-variate VAR(2) process, which in terms of the rt series takes the form:

rt � λ� Λrt�1 �Πxt�1 � εt, t � 1, . . . , T, (1)

where either we assume Π � 0 (as usually) or matrix Π is further decomposed as
presented in subsection 2.1, and εt is described in subsection 2.2.

2.1 Imposing cointegration structure
Assuming that individual processes in xt are linked through m cointegration
relationships (1 ¤ m ¤ n� 1), we can decompose the n� n matrix Π in (1) as

Π � ab1, (2)

with full rank matrices b and a of dimensions n�m. As the data contain information
only about the cointegrating space (but not about vectors spanning it), for any
nonsingular matrix C the decompositions Π � ab1 and Π � paCq

�
b
�
C�1�1	1 are

equivalent. Therefore we impose the restriction

b1b � Im, (3)
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which means that the vector b belongs to the Stiefeld manifold Vm,n, see Strachan
R. (2003), Koop G., León-Gonzalez R. and Strachan R. (2009), and Wróblewska J.
(2010). Since in this paper we only discuss the bivariate case, we will use the fact that
for n � 2 introducing the uniform prior on the angle in polar coordinates is equivalent
to an uninformative prior on the manifold. That is, having n � 2, we assume m � 1
and represent b in (3) in terms of its polar coordinates:

b �

�
sinpκq
� cospκq

�
, κ P r0, πs. (4)

In such case, the uniform prior of κ is uninformative on the cointegrating space. Thus,
for the bivariate cointegrated series, we can write matrix Π explicitly as

Π1 �

�
sinpκq
� cospκq

� �
a1 a2

�
, κ P r0, πs, a1, a2 P R. (5)

2.2 MSF-SBEKK modelling framework for disturbances
In hybrid MSV-MGARCH structures, like the MSF-SBEKK specification proposed
by Osiewalski J. (2009) and Osiewalski J. and Pajor A. (2009), the error term can be
decomposed as follows:

εt � G
1
2
t H

1
2
t ξt pt � 1, . . . , T q, (6)

where Gt is the MSV component and Ht is the MGARCH one. The MSF case of the
MSV part amounts to assuming

Gt � gtIn, ln gt � φ ln gt�1 � ζt, (7)

i.e. that Gt depends on one AR(1) latent process (with stationarity restriction
|φ|<1). In the MSF-SBEKK model the MGARCH part is also represented by a
simple structure, i.e. by Ht coming from the scalar BEKK(1,1) model:

Ht � p1� β � γqA� βεt�1ε
1
t�1 � γHt�1, (8)

restricted to the covariance stationarity case (β, γ ¡ 0, β � γ   1), where A is a
positive definite n� n matrix. We assume that ξt and ζt are independent and follow
a multivariate Normal distribution:

�
ξ1t ζt

�1
� iiN pn�1q

�
0rpn�1q�1s,

�
In 0
0 τ�1

��
. (9)

The initial condition for Ht in (8) is taken as H0 � h0In with a scalar parameter
h0 ¡ 0 and we assume g0 � 1 to initialize (7).
Although we use two oversimplified structures (viewing from the pespective of
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each individual modelling framework they represent), combined together they can
outperform other more sophisticated representants of the MSV or MGARCH classes
by orders of magnitude in terms of Bayes factors, see Osiewalski J. and Pajor A.
(2009). Such hybrid approach enables us to both capture outliers well (due to the
presence of a latent process) and include information up to time t�1 in the conditional
covariance matrix at time t.
However, there is a theoretical problem with using the hybrid MSF-SBEKK structure
for the disturbance term in (1) in the context of cointegration analysis. We do not
know any stationarity conditions for the stochastic process defined by (6)-(9). It was
proposed ad hoc, in order to greatly improve model fit at relatively low computational
cost. It has worked very well in all applications considered until now, but we cannot
say that stationarity conditions imposed on the MSF special case (|φ|   1) and the
SBEKK special case (β � γ   1) are jointly sufficient for covariance stationarity of
the MSF-SBEKK process. Therefore, in the empirical part, we first conduct inference
on cointegration within the theoretically well defined framework of the covariance
stationary MSF and SBEKK processes for εt, considered separately. Only when
the hybrid MSF-SBEKK specification is much better in terms of Bayes factors, we
will focus on analysis within this framework - more general, but less theoretically
developped.

2.3 The prior distributions and Bayesian model
In the Bayesian approach, we treat as random all quantities that are unknown
prior to collecting the data. In the presence of latent variables (gt), we
are usually interested in making inference on both the parameter vector,
i.e. θ � pλ1 pvecΛq1 pvechAq1 β γ h0 φ τ, a, κq

1 and the latent variables vector:
g � pg1 . . . gT q

1. The joint density of observations, x � px11 . . . x
1
T q

1, latent variables
and parameters, which constitutes the Bayesian model, can be factorized as follows:

ppx, g, θq � ppθqppx, g|θq

� ppθq
T±
t�1

ppxt|ψt�1, gt, θqppgt|ψt�1, θq,
(10)

where ψt�1 denotes the past of both xt and gt. It is worth stressing here that the
MSF–SBEKK structure is based on two basic conditional independence assumptions,
which hold for any value of θ. Firstly, xt is independent of the past of gt, given gt
itself and the past of xt. Secondly, gt is independent of the past of xt, given the past
of gt. Thus in (10) we have

ppgt|ψt�1, θq � ppgt|gt�1, θq � g�1
t fN

�
ln gt|φ ln gt�1, τ

�1� , (11)

which is a univariate log-normal density, and, for µt � λ� Λrt�1 � pI �Πqxt�1,

ppxt|ψt�1, gt, θq � fnN pxt|µt, gtHtq , (12)
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which is a multivariate Normal density function.
In order to complete the Bayesian model, let us specify the prior distribution of
the parameter vector θ. We assume a proper joint prior and subjectively set the
marginal distributions of interest, which reflect our weak knowledge about the model
parameters (see Osiewalski J. and Pajor A. (2009)). Let us assume that:

ppθq � ppλqppvecΛqppA�1qppβ, γqpph0qppφqppτqppaqppκq, (13)

which means prior independence among blocks of parameters. Furthermore we take:

ppλq � fnN pλ|0, 1
10Inq – the n-variate Normal density with mean 0 and covariance

matrix 1
10In,

ppvecΛq9fn2

N pvecΛ|0, In2q1tM : ρpMq 1upΛq – a multivariate Normal distribution
truncated by the restriction that all eigenvalues of Λ lie inside the unit circle,
where ρpMq is the spectral radius of matrix M and 1Spxq is the indicator

function of the set S: 1Spxq �

#
1, x P S

0, x R S
,

ppA�1q � fWishartpA
�1|In, n� 2q – the Wishart distribution with mean In and

n� 2 degrees of freedom,

ppβ, γq91tpx,yqPr0,1s2: x�y 1upβ, γq – the uniform distribution over the unit
simplex,

pph0q � fExpph0|1q – the Exponential distribution with mean 1,

ppφq9fN pφ|0, 100q1tx: |x| 1upφq,

ppτq � fExppτ |200q – the Exponential distribution with mean 200,

ppaq � fnN pa|0, 1
100 q,

ppκq � 1
π1r0,πspκq.

We can write the joint density function that represents our bivariate Bayesian reduced
rank VAR(2)–MSF-SBEKK model as:

ppx, g, θq � ppaqppκqppλqppvecΛqppA�1qppβ, γqpph0qppφqppτq�

�
T±
t�1

g�1
t fN

�
ln gt|φ ln gt�1, τ

�1� fnN pxt|µt, gtHtq .
(14)

The posterior distribution of all unobservable quantities (i.e. latent variables and
parameters) is characterised by the conditional density function ppθ, g|xq, which is
proportional to ppθ, g, xq in (14).
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3 MCMC for inference and model comparison
3.1 Sampling from the posterior
The joint posterior distribution, represented by the density function ppθ, g|xq, is
highly dimensional and too complicated to obtain any analytical results. In this case,
Monte Carlo methods must be applied in order to generate a (pseudo) random sample
from the posterior distribution and to obtain estimates of posterior characteristics.
Following Osiewalski J. (2009) and Osiewalski J. and Pajor A. (2009), we use a
hybrid Markov Chain Monte Carlo method: the Gibbs sampler with Metropolis and
Hastings (MH) steps. The sampler sequentially draws from the conditional posterior
distributions that result from (14) under a natural block partition of all unknown
quantities in the model.
For the parameters λ, Λ, A, β, γ, h0, φ, τ and the latent process tgtut�1,...,T we use
the same sampling scheme as Osiewalski K. and Osiewalski J. (2012). The remaining
conditional posterior distributions, used to complete the algorithm, are listed below.

1. The bivariate adjustment parameter a has the following density:

ppa|λ,Λ, A, β, γ, h0, φ, τ, g, κ, xq9ppaq
T¹
t�1

fnN pxt|µt, gtHtq . (15)

Similarly as for VAR parameters, we cannot directly sample from this
conditional posterior distribution (as in pure MSV models) due to the presence
of the MGARCH (SBEKK) structure. Thus, the MH step is implemented. The
choice of the proposal distribution is arbitrary – it is set to be a bivariate Normal
distribution centered at the previous state of the Markov chain (Random Walk
MH). The covariance matrix of the proposal distribution is set to the "posterior"
covariance matrix (multiplied by a factor of 2) obtained from initial cycles, which
were performed to calibrate the sampling mechanism. The resulting acceptance
rate oscillated between 1 and 13 percent in the empirical example presented in
the next section.

2. For the angle κ we have:

ppκ|λ,Λ, A, β, γ, h0, φ, τ, g, a, xq9ppκq
T¹
t�1

fN pxt|µt, gtHtq . (16)

Here again an MH step enables sampling from this conditional distribution. We
sample candidate states from the univariate Normal distribution, but truncated
to the r0, πs interval. The parameters of the candidate generating distribution
are: previous state for the mean (Random Walk MH) and initial "posterior"
variance multiplied by 3. The acceptance ratio in the empirical example
oscillated around 6%.
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For such an algorithm as constructed above, the convergence is monitored via
standardised CUMSUM plots; see Yu B. and Mykland P. (1998) and Pajor A. (2003).
The chain length was set to 2.1 million states, in which the first 1.6 million were
considered as the burn-in period. The sampling speed was approximately 30% slower
than in the MSF-SBEKK model with no long run adjustments. Such a big difference
resulted from the requirement of re-computing all Ht, t � 1, . . . , T twice more in each
chain state (in addition to four more times, i.e. for λ, Λ, A and jointly pβ, γq). As
for the SV parameters φ and τ the formulas do not involve matrix calculation of Ht,
their drawing is far faster. All empirical results in the following section are based on
the last 500,000 MCMC states, treated as a sample from the posterior distribution.

3.2 Model comparison via HME with Lenk’s correction

Bayesian model comparison enables us to formally assess the relative explanatory
power of K competing specifications. The marginal data density of model Mk

(k � 1, . . . ,K), with all the parameters and latent variables collected in ωpkq P Ωk, is
defined as:

p px|Mkq �

»
Ωk

p
�
x, ωpkq|Mk

�
dωpkq �

»
Ωk

p
�
x|ωpkq,Mk

�
p
�
ωpkq|Mk

�
dωpkq. (17)

Within the MCMC sampler, under a proper prior, the value of ppx|Mkq for the
observed data can be approximated using the Newton and Raftery (1994) harmonic
mean estimator:

p px|Mkq �

�
� 1
N

S�Ņ

q�S�1

1
p
�
x|ω

pqq
pkq,Mk

	
�
�
�1

, (18)

where S is the number of the burn-in cycles, N – the number of drawings from the
posterior distribution, q – the index of a single Markov chain state (q � 1, . . . , S �N),
and ω

pqq
pkq – the draw of ωpkq from the q-th cycle. Although heavily used, the HME

suffers from both theoretical and empirical weaknesses. As it is widely known it has
the infinite asymptotic variance property. It was also shown by Lenk (2009) that in
practice the HM estimator may have a "pseudo bias" resulting from the difference in
the prior support and the posterior numerical support. In (17) we are integrating over
the parameter space, i.e. the whole support Ωk of the prior and posterior distributions.
Thus, in order to obtain the correct value of the HME, the MCMC chain should visit
all of the regions of the parameter space – which often does not happen, as the
posterior numerical support Ak (i.e., the region visited by the MCMC sampler) is
usually significantly smaller. To overcome this problem, Lenk (2009) splits Ωk into
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Ak and its compliment A1
k, which leads to:

p px|Mkq �

»
Ak

p
�
x|ωpkq,Mk

�
p
�
ωpkq|Mk

�
dωpkq�

�

»
A1

k

p
�
x|ωpkq,Mk

�
p
�
ωpkq|Mk

�
dωpkq.

(19)

We can then write the first integral in the sum as»
Ak

p
�
x|ωpkq,Mk

�
p
�
ωpkq|Mk

�
dωpkq

� Pr pAk|Mkq

»
Ak

p
�
x|ωpkq,Mk

� p �ωpkq|Mk

�
Pr pAk|Mkq

dωpkq

� Pr pAk|Mkq

»
Ak

p
�
x|ωpkq,Mk

�
p
�
ωpkq|Ak,Mk

�
dωpkq

(20)

and the second as»
A1

k

p px|Mkq p
�
ωpkq|x,Mk

�
dωpkq � p px|MkqPr

�
A1
k|x,Mk

�
. (21)

If the MCMC sampler converges to the posterior distribution and the generated
sample is large enough to represent this distribution sufficiently well, the numerical
support (Ak) contains practically all posterior probability mass. So, for A1

k it can be
assumed that its posterior probability and, thus, the second integral in the sum, are
negligible. Finally, we can then approximate the marginal data density as

p px|Mkq � Pr pAk|Mkq

»
Ak

p
�
x|ωpkq,Mk

�
p
�
ωpkq|Ak,Mk

�
dωpkq. (22)

Since the MCMC chain visits only Ak, the MHE is calculated as if Ak constituted the
whole parameter space, i.e. it is the integral in (22) that is numerically approximated
by the HME.
The question arises about the practical choice of set Ak, which prior probability has to
be calculated. Lenk (2009) suggests to take a subset for which the likelihood function
does not drop below a certain level:

Ak �
 
ωpkq P Ωpkq : p

�
x|ωpkq,Mk

�
¥ L

(
, (23)

where L � minqPtS�1,...,S�Nu p
�
x|ω

pqq
pkq,Mk

	
. Additionally, the Monte Carlo –

Importance Sampling (MC-IS) computational strategy is advocated to calculate the
prior probability of Ak. There are two objections towards this choice of Ak. First,
it can be computationally too demanding as the condition defining Ak binds all the
parameters and latent variables (about 1500 in the case of our models and data).
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Second, since the sampler output constitutes a set of measure zero in the parameter
space, the natural candidate for Ak is the set containing, and bounded by, the convex
hull of sampled points. As the relation of (23) to this convex hull is unclear, in this
paper we use the most direct approach, which is to assume Ak to be the intersection
of the parameter space and the cube limited by the range of the sampler output:

Ak � Ωk X
lk¡
l�1

�
min

q�1,...,N

�
ω
pqq
l,pkq

	
, max
q�1,...,N

�
ω
pqq
l,pkq

	�
, (24)

where lk denotes the parameter space dimension in the k-th specification (including
the number of latent variables). We then directly calculate by Monte Carlo (or
analytically whenever possible) the prior probability of the set Ak. Although the
dimension of the parameter space is large, we can benefit here from assumed prior
independence among blocks of parameters in (13). We can draw each block separately
and thus make our sampling from the prior distribution more efficient. Note that our
choice of Ak contains the convex hull of the sampler output, thus our version gives
an upper bound of Lenk’s correction. An example, related to the SBEKK parameters
pβ, γq, is given in Figure 1, where the grey area shows the parameter space, the black
points represent the sampler output from the last 200 000 MCMC draws and the dark
grey area shows our Ak based on all MCMC draws from the posterior.

4 Relationships between the U.S. stock market and
the price of oil

4.1 Data description
Daily observations from the period 21.12.2005 – 30.09.2011 and n � 2 different
markets are considered:

the U.S. stock market is represented by the S&P500 index (xt,1),

the crude oil market is represented by the WTI spot price in USD per barrel
(xt,2).

As one of the the objects of the study is a long term relationship between oil prices
and the U.S. economy, the WTI oil price was chosen. Although the Brent spot
price has recently been chosen as the reference price by the U.S. Energy Information
Administration (2013), this decision is motivated by the fact that the Brent price
better reflects the global oil demand and economic growth. However, when focusing
on the U.S. only, choosing WTI seems the natural choice.
Both markets function in the same country, however there were 5 days when only one
of the markets was in operation. As Osiewalski K. and Osiewalski J. (2012) suggest,
the missing data points were linearly interpolated to avoid potential consequences
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Figure 1: An example of the choice of Ak
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of introducing artificial jumps into the series. All the days when none of the assets
was valued were removed from the data set (38 in total). After these adjustments,
T � 1455 days were taken into the analysis. There are at least two important features

Table 1: Descriptive statistics of analyzed growth rates (rt)
min max mean sd skewness kurtosis correlation

S&P500 -9.47 10.957 -0.007 1.546 -0.294 8.364 0.329
OIL -12.827 16.414 0.024 2.661 0.072 4.606

of the empirical distribution of rt. The first one is a very high kurtosis of S&P500,
resulting mainly from abnormal volatility on the stock market at the end of 2008 (see
Figure 3). The second one is positive correlation (about 0.33) between logarithmic
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returns on both markets. The empirical correlation coefficient for levels (xt) is even
higher (0.386). This positive correlation in the logarithms of price levels is visible in
Figure 2 – especially during the sub-prime crisis, when both assets suffered from a
downward pressure resulting from economic perturbations.

Figure 2: Price data – hundreds of logarithms
S&P500
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Figure 3: Percentage return rates
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4.2 Empirical results
4.2.1 Model comparison and the long-run relationship

Let us focus on model comparison first. We compare two special cases of the
conditional mean specification in (1): M1 – VAR(1) for rt (Π � 0, no cointegration
between logarithms of prices) and M2 – the cointegrated VAR(2) for xt (i.e., Π as in
(5)). For bothM1 andM2 we consider three different assumptions about the volatility
structure for εt: the covariance stationary MSF process (β � γ � 0, |φ|   1), the
covariance stationary SBEKK process (gt � 1, β � γ   1) and the general MSF-
SBEKK process in (6)-(9) with |φ|   1 and β � γ   1. In total there are six
specifications to be formally compared. The results of Lenk’s adjustment and

Table 2: Lenk’s correction and harmonic mean estimates
MSF SBEKK MSF-SBEKK

M1 M2 M1 M2 M1 M2

log10 PrpAk|Mkq

λ �0.824 �0.004 �0.83 �0.092 �0.918 �0.039
Λ �3.301 �3.241 �3.793 �3.749 �3.620 �3.720
A �3.324 �3.367 �1.953 �1.976 �0.479 �0.519

pβ, γq – – �2.555 �2.555 �2.505 �2.458
h0 – – �0.036 �0.024 �0.009 �0.015
ϕ �1.750 �1.749 – – �0.196 �0.218
τ �0.372 �0.375 – – �1.089 �1.105
a – �2.217 – �2.232 – �2.241
κ – �0.301 – �0.301 – �0.301
g �351.2 �352.2 – – �0.764 �0.432

corrections in total
log10 Pr pAk|Mkq �360.771 �363.454 �9.167 �10.929 �9.58 �11.048

Newton and Raftery HM estimates
log10 pNRpx|Mkq �2339 �2336.9 �2975.8 �2973.6 �2275.9 �2273.3

final marginal data density estimate
log10 ppx|Mkq �2699.8 �2700.4 �2985 �2984.5 �2285.5 �2284.3

log10pBFM1:M2 q � �0.6 log10pBFM1:M2 q � 0.5 log10pBFM1:M2 q � 1.2

the HME values for the marginal data density are presented in Table 2. The number
of draws at each coordinate varies from 104 to 107, but each time the estimator’s
stability was ensured. Surprisingly, when the HME values are properly adjusted,
there is no evidence of cointegration in either the pure MSF or SBEKK framework.
However, these two simple specifications are hundreds of orders of magnitude less
probable a posteriori. So neither MSF nor SBEKK can compete with the hybrid
MSF-SBEKK specification, where the crude HM estimate of the Bayes factor is 102.6

in favor of M2. The correction proposed by Lenk (2009) diminishes it to 101.2, still
indicating data support for the presence of the ECM term in the bivariate model for
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growth (return) rates of S&P500 and the WTI oil price.
Remark that the adjustment proposed by Lenk (2009) is relatively small (in absolute
value) for these quantities, for which the marginal posterior distribution is dispersed
and similar to the prior distribution. This is particularly valid not only for h0 (almost
unchanged by the data in both models) and matrix A, but also for 1455 latent variables
gt in the MSF-SBEKK specification. It is not surprising as there is only one vector
observation per one latent variable – so the marginal prior distribution of gt cannot
be strongly modified by the data if there is no conflict between the data and the prior
information. Such a conflict is present (for the financial crisis period) in the case
of the pure MSF process, as the posterior distributions of some latent variables are
located in the tails of the prior distributions and, thus, Lenk’s correction is huge in
this case.
The posterior means and standard deviations of the original VECM parameters (in
brackets) in M2 are as follows

MSF

Epκ|xq � 0.679
p0.236q

, Epa|xq �

�
4.58 � 10�4
p1.20�10�3q

2.39 � 10�3
p2.52�10�3q

�1

SBEKK

Epκ|xq � 0.560
p0.143q

, Epa|xq �

�
4.449 � 10�4
p1.17�10�3q

4.85 � 10�3
p3.03�10�3q

�1

MSF-SBEKK

Epκ|xq � 0.610
p0.104q

, Epa|xq �

�
1.47 � 10�4
p1.22�10�3q

5.04 � 10�3
p2.89�10�3q

�1
,

When zero is not between the 0.05 and 0.95 posterior quantiles, the posterior mean
is marked with bold. The conclusion, based on the Bayes factors, that the pure MSF
and SBEKK specifications do not need the ECM term, is supported by the marginal
posterior distributions of a1 and a2; both distributions are located very close to zero.
The situation is completely different for the hybrid MSF-SBEKK case (which, in view
of model comparison, is the only reasonable specification); here zero is in the left tail
of the posterior distribution of a2. This indicates the relevance of the ECM term in
the equation describing the growth rate of the oil price. From now on we will only
consider the hybrid MSF-SBEKK specification as the one describing data much better
than its special cases (MSF and SBEKK).
Since the hypothesis that a1=0 cannot be rejected by a Lindley type test at any
reasonable posterior probability level, it is tempting to treat the S&P500 index as
the exogenous variable (for inference on long-run parameters) in our bivariate system,
although formal exogeneity testing in models with latent variables is quite complicated
– see Pajor (2011). Additional complication for inference on exogenity is the presence
of the GARCH structure in the model. However, it is convenient for the purpose of
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interpretation to write our long term relationship between logarithms of daily prices
in the form: xt,2= (tan κ) xt,1+νt, where the tangent of κ can be treated as the long-
run elasticity of the WTI oil price with respect to S&P500. Looking at the posterior

Figure 4: Posterior distribution of the tangent of κ in the MSF-SBEKK model with
ECM
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distribution of the tangent function of the angle κ (Figure 4) we see that it contains 1
in the 95% HPD interval, but not in the 90% one – the value 1 is the 0.96375 quantile.
The posterior odds ratio ppκ 1|rq

ppκ¡1|rq � 0.996 suggests that the angle κ is smaller than π
4 .

This means that the long-run elasticity of the WTI oil price with respect to S&P500 is
smaller than 1; its posterior median is 0.698 with 0.174 as the posterior interquartile
range (we do not report moments as the posterior distribution has a very fat tail
and some κ values near π

2 were drawn). In view of the posterior results for our best
model (MSF-SBEKK with ECM), 1% increase in the stock market index corresponds
in long-run to about 0.7% increase in the WTI oil price.
Finally let us present (in Figure 5) the marginal posterior distributions of the elements
of matrix Π, resulting from the posterior distribution of a and κ according to formula
(5) defining M2.

4.2.2 Short-run parameters and volatility analysis in the hybrid model

The only remarkable difference in the posterior distributions obtained in M1 and
M2 can be seen for the λ2 parameter, which in M2 goes together with – and thus
is modified by the presence of – the significant error correction term a2b

1xt�1 (with
parameters presented in the second row of Figure 5). The posterior means (and
standard deviations in brackets) of Λ in M1 and M2 are very close; in both models
they indicate significant impact of both assets’ lagged returns on the current stock
market return. However, there is no significant impact of lagged returns on the current
growth rate of the oil price.
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Figure 5: Posterior histograms of the elements of Π in the MSF-SBEKK model with
ECM

xt�1;S&P500 Ñ rt;S&P500 xt�1;OIL Ñ rt;S&P500

D
en

si
ty

−0.002 −0.001 0.000 0.001 0.002

0
10

0
20

0
30

0
40

0
50

0

● ●

D
en

si
ty

−0.002 −0.001 0.000 0.001 0.002 0.003

0
10

0
20

0
30

0

● ●

xt�1;S&P500 Ñ rt;OIL xt�1;OIL Ñ rt;OIL

D
en

si
ty

0.000 0.002 0.004 0.006 0.008

0
50

10
0

15
0

20
0

25
0

● ●

D
en

si
ty

−0.010 −0.008 −0.006 −0.004 −0.002 0.000
0

50
10

0
15

0

● ●

M1 M2

Epλ|xq �
�

0.086
p0.022q

0.087
p0.049q

�1
Epλ|xq �

�
0.088
p0.122q

�0.120
p0.296q

�1

EpΛ|xq �

�
�� -0.058

p0.025q
�0.012
p0.011q

0.153
p0.047q

�0.040
p0.026q

�
�� EpΛ|xq �

�
�� -0.060

p0.026q
�0.012
p0.011q

0.149
p0.047q

�0.038
p0.027q

�
��

The almost identical posterior moments (inM1 andM2) of the parameters describing
the latent process gt and the SBEKK matrixHt indicate that any analysis of volatility,
risk or contagion would lead to very similar conclusions, no matter what we assumed
about the long-run behaviour of the stock index and the oil price. For the empirical
finance aspects of our research it would be irrelevant whether we (properly) took the
error correction mechanism into account or assumed that logarithms of prices (xt)
behave like a bivariate random walk.
In fact, both M1 and M2 lead to the same conclusions as regards the conditional
standard deviation σt,i � D pxt,i|ψt�1, θ, gtq, which is the obvious volatility measure,
and the conditional correlation coefficient ρt,i�j � Corr pxt,i, xt,j |ψt�1, θ, gtq for
i, j P t1, 2u, which measures instantaneous relations between returns on both markets.
In Table 3 we report time averages of the posterior means (and standard deviations,
in brackets) of these volatility and correlation measures, as well as the empirical
correlation coefficients between posterior means in M1 and M2. The results
clearly indicate that inference on individual market volatility and between markets
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correlation is identical in both models. Thus the relationship between logarithms of
price levels, although present, is not important for this kind of inference.

M1 M2

EpA|rq �

�
� 0.595

p0.146q
0.345
p0.217q

3.577
p0.848q

�
� EpA|xq �

�
� 0.596

p0.144q
0.349
p0.216q

3.546
p0.833q

�
�

Epβ|xq � 0.064
p0.008q

Epβ|xq � 0.064
p0.008q

Epγ|xq � 0.919
p0.010q

Epγ|xq � 0.919
p0.010q

Eph0|xq � 0.752
p0.403q

Eph0|xq � 0.760
p0.390q

Epφ|xq � 0.227
p0.147q

Epφ|xq � 0.216
p0.142q

Epτ�1|xq � 0.317
p0.061q

Epτ�1|xq � 0.318
p0.060q

Table 3: Comparison of volatility and conditional correlation estimates in the hybrid
model with (M2) or without (M1) the ECM term

model σS&P500 σOIL ρS&P500-OIL

M1 1.246
p0.323q

2.371
p0.616q

0.257
p0.030q

M2 1.246
p0.323q

2.375
p0.615q

0.258
p0.030q

correlation 0.99996 0.9998 0.9998

5 Concluding remarks

In this paper we have developped a fully Bayesian bivariate VAR(2)–MSF-SBEKK
framework for inference about a long-run relationship between logarithms of daily
prices on two different markets. This modelling framework enables us to formally
test the empirical relevance of the error correction term in the conditional mean
specification as well as to compare the posterior results on returns volatility and
conditional correlation in two competing models: with and without the ECM term.
Our empirical example suggests that the long-run relationship between price levels,
even when present, can be irrelevant for usual inference on (short-run) dynamics of
logarithmic return rates. The posterior results on main quantities of interest can be
the same in the reduced rank VAR(2)–MSF-SBEKK model for log-levels and in the
VAR(1)–MSF-SBEKK model for logarithmic returns.
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