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Abstract

In this paper we present a copula-based model for a binary and a
continuous variable in a time series setup. Within this modeling framework
both marginals can be equipped with their own dynamics whereas the
contemporaneous dependence between both processes can be flexibly captured
via a copula function. We propose a method for testing the goodness-of-
fit of such a time series model using probability integral transforms (PIT).
This verification procedure allows not only a verification of the goodness-of-
fit of the estimated marginal distribution for a continuous variable but also the
conditional distribution of a continuous variable given the outcome of its binary
counterpart (i.e. the adequacy of the copula choice). We test the model on an
empirical example: investigating the relationship between trading volume and
the indicators of arbitrarily ’large’ price movements on the interbank EUR/PLN
spot market.
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1 Introduction

A description of multivariate distributions within the framework of copula models
has gained a vast amount of interest in the econometric literature throughout the
past two decades. Moreover, the ubiquity of studies that apply the copula theory to
empirical finance studies is simply enormous. As Paul Embrechts states: "...copulas
has taken the world of finance and insurance, and well beyond, by storm" (Embrechts,
2009). The most popular focus of these financial inquires lies in an accurate depiction
of multivariate distributions for continuous variables (cf., Cherubini, 2004; Patton,
2005a, 2005b, 2009; Doman, 2006, 2007, 2011; Gurgul and Syrek, 2006). The
popularity of these approaches for financial applications is still growing because
copula-based models facilitate a flexible investigation of the time-varying dependence
between marginal distributions. These marginal distributions may, quite obviously,
refer to financial returns from different assets or various financial markets, which is
of crucial interest in the context of market risk management. Relationships between
discrete marginals (i.e., between count variables or even binary outcomes) have been
much less popular within the context of copula-based models (see Cameron et al.,
2004; Zimmer and Trivedi, 2006; Trivedi and Zimmer, 2007; Bien et al., 2007; Bien
et al., 2011 for applications of copula models to count variables and Bhat and Sener,
2009; Winkelmann, 2012 for applications of copula models to binary variables).

The aim of this paper is to contribute to the recent literature in two dimensions.
First, we will present an easy specification of the copula-based bivariate model for
a mixed binary-continuous distribution. To our knowledge this is a novel approach;
at least within economics- or finance-oriented studies; although a very similar model
has already been proposed in medical sciences by de Leon and Wu (2011). Thus, we
adjust the de Leon-Wu model, so that it can fit into a time-series application and
serve as a general model depicting the time-varying joint distribution for a pair of
variables consisting of a dichotomous one and a continuous one. The advantage of
this model lies in is its complexity; it can account for different parametric families
of marginal distributions and ’glue’ them together using a flexible copula function
that is solely responsible for the dependence between marginal processes. Second,
we suggest a method for testing the appropriateness of a copula-based time series
model using probability integral transforms (PIT), primarily proposed by Diebold et
al. (1998) for univariate continuous distributions. This verification procedure makes
it possible to check the goodness-of-fit of the time-varying marginal distribution for
a continuous variable (conditional on the information set until ¢ — 1), as well as to
test the conditional distribution of a continuous variable given the contemporaneous
realization of its binary counterpart (which is also conditional on the information set
until ¢ — 1). The conditional distribution of a continuous variable (given the one or
the other outcome of the binary variable) depends on the strength of dependence
between two marginals. Accordingly, verification of statistical properties inherent
to these distribution estimates can tell us something about the goodness-of-fit of a
copula-based model with respect to the original time series.
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We will also present a simple and intuitive econometric exercise where we apply the
adjusted de Leon-Wu copula-based model in order to investigate the relationship
between trading volume and an indicator of a ’large’ price change on the interbank
EUR/PLN spot market. Intraday movements of the EUR/PLN rate cluster on values
being multiples of five pips (whereas one pip denotes one hundredth of a Polish grosz).
This phenomenon is one of stylized features of high-frequency financial data which
was initially evidenced by Harris (1994). Therefore, it may make sense to consider
how much volume is required in order to move the FX rate by a certain level (i.e.,
5, 10 or 20 pips). Volume and volatility are also significantly positively correlated,
which has also been justified by many market microstructure models (cf. Copeland,
1976; Jennings et al., 1981; Easley and O’Hara, 1987; Blume et al., 1994; Easley et al.
1997; and others) as well as shown in numerous empirical applications (see Karpoff,
1987 and Loubhichi, 2011 for the vast surveys of such studies). Moreover, the trading
volume and the indicator of a sufficiently "large’ price change have many of the stylized
properties of the trading marks (i.e. tick-by-tick data). Both variables are strongly
autocorrelated, both are prone to intraday seasonality patterns, one variable is discrete
and the other is defined on the strictly positive domain. Such a ’bundle’ of different
characteristics inherent to market microstructure data as: different distribution
families, contemporaneous dependence and the pronounced dynamic features make
from the pair defined as "price change indicator - trading volume" kind of an excellent
laboratory for presenting our copula-based model specification and functioning of the
PIT verification procedures.

2 General model

2.1 The bivariate probit and the Winkelmann’s copula
bivariate probit model

The copula-based bivariate model for mixed binary-continuous distribution is very
much related to the work of Winkelmann (2012), who proposed a copula-based probit
model for a bivariate distribution of two binary variables. Thus, in order to maintain
a clear exposition, we will begin from the detailed description of this approach.

It is important to note that the Winkelmann’s copula-based probit model allows for
correlation between two random, normally distributed, latent variables that underlie
the process of corresponding observed binary outcomes, whereas this specification does
not impose a restriction of the bivariate normality on the joint bivariate distribution
of two latent factors. Additionally, application of a copula function facilitates a much
more complex dependence structure than a linear correlation that is a measure of
codependence inherent to elliptical distributions.

In the standard framework of a bivariate probit model defined for two binary variables,
Y1 and Y3, their underlying latent and normally distributed counterparts can be
defined as follows: Yy, = z{ o +e1; (Y1, = 0if Y, <0) and Y5, = 23,0 + €2

119 K. Bien-Barkowska
CEJEME 4: 117-142 (2012)



www.czasopisma.pan.pl P N www.journals.pan.pl
I/—\

Katarzyna Bien-Barkowska

(Yo, =0if Y2 < 0), where 21 ; and 2, ; denote explanatory variables, a and (3 are the
corresponding parameters and ¢;; ~ I.I.D. N (0,0’1) g9 ~1I1.D. N (0 02) Since
Y71 and Y5 have only two outcomes, the joint distribution of Y7 and Y5 can be fully
characterized by four distinct probabilities:

P (Y1, =0,Y2;=0|z1,4,22,) = P (1, < —ZlT,iOé,€2,i < -z i0) (1)
P (Y1, =1,Y3;=0|z1,,22,) = P (1, > —le)ioz,€27i < -z Zﬁ) (2)
P(Y1,=0,Ys; =1|z14,22,) = P (e1; < =21 ;0,62 > —23 ;3) (3)
P(Y1,=1Y;=1lz14,224) =P (El,i > —Z{ia76271‘ > 22 i ) (4)

Assuming that the joint distribution of €;; and €2 ; is bivariate normal, each of the
probabilities (I)-() can be obtained with the help of a bivariate normal cumulative
distribution function @ (;p), where p denotes the linear correlation parameter
between e ; and 2.

P (Y1 =0,Y2; = 0|21, 22,6) = @2 (—2] 00, — 23,5 p) (5)
P(Y1,=1,Y2,=0]214,22,) =@ (—zQTZﬁ) 2 ( 2 0, —2) 15 p) (6)
P (Y1, =0,Ys; =1|214,2,) =P (- 2] i o) — Py (— 2. 0, — 29 15, p) (7

P(Y1,=1,Y2,;, =1|214,22,) = P (zfia, zg’iﬁ;p) (8)

This exposition of a standard bivariate probit model, that was initially proposed by
Ashford and Sowden (1970), served Winkelmann (2012) as a starting point for deriving
a more general, copula-based bivariate model for two mutually dependent binary
variables. The concept of a copula function, initially proposed by Sklar (1959), is
currently an extremely popular statistical tool for building multivariate distributions
from the marginal distributions and the copula function linking these marginal
distributions together into a joint multivariate distribution and being responsible for
the dependence structure between the marginals. Within the financial literature there
are plenty of valuable surveys of this theory as well as applications of copula-based
models (cf. Cherubini et al., 2004; Nelsen, 2006; Trivedi and Zimmer, 2007; Doman,
2011). In an attempt to conserve space, in this paper we refrain from presenting
the details of this concept. Nevertheless, to maintain a clear and understandable
exposition, we will remind the reader that from a statistical viewpoint a copula
function is simply an n-dimensional cumulative distribution function C : [0,1]"
[0,1]. For a 2-dimentional case, the bivariate distribution of two random continuous
variables A and B has its unique copula representation, i.e., C4 5 : [0, 1}2 — [0, 1],
as follows:

P(A<a,B<b)=Cas(Fala), Fe(b);), (9)

where Fj4(a) and Fp(b) denote the cumulative distribution functions for variables
A and B respectively and 6 denotes the copula parameter, called the ’dependence
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parameter’, which accounts for a dependence structure between both marginals.

In the context of the bivariate probit model, maintaining the assumption about the
univariate normality of €1 ; and €2 ;, but relaxing the assumption about joint bivariate
normality led Winkelmann (2012) to the following copula-based representation of

equation (T):
P (Yl,i = O,}/Qﬂ' = O|Zl7i, 2271') = O ((I) (—zfia) ,(I) (—Z{Zﬂ, 0)) . (10)

Analogously, the remaining components of the joint probability function for Y; and
Y, (see equations (2)-(d)) could be depicted as:

P(Y i =1 YQl —O|le,221)
=P (52 i < zgﬂﬁ) P(e1; < —2{ ;0,89 < =23 ,0) (11)
=@ (~23,0) — C (2 (~2{,a) , @ (~23,0) ;)

P, = O,YQ,z‘ = 1\21 i1 22,i)
=P (51 RS _Zl J ) P (61 S —Z{ia,Egyi < —Z%jlﬁ) (12)
— @ (~T0) - C (0 (~+1,0) .0 (“,9) 1)
P(Yi;i=1,Yy; =1|z14,22:)
=1-P (51,1' < —zfia) P (62 i < ZQTZ ) + P (617 z?la €2, < —z%jzﬂ)
1 (—20) — @ (~1,0) + € (& (2Ti0) @ (~1,9) ).

(13)

In case of the Gaussian copula that is given by C (u,v,0) = @5 (27! (u), @~ (v);0),
the copula-based model boils down to the standard bivariate probit model of Ashford
and Sowden (1970) where the dependence parameter is simply a linear correlation
between both marginals. On the other hand, other popular copula functions that
are typically used in financial applications (i.e., the Clayton copula or the Gumbel
copula) allow for capturing the lower or upper tail dependence, respectively, i.e. more
pronounced dependence between the most extremely small realizations (lower tail
dependence) or large realizations (upper tail dependence) of two underlying latent
processes (check Table Al in the Appendix for the exposition of some basic properties
of the Gumbel, Clayton and Frank copulas). Another very popular copula (i.e. the
Frank copula), has a relatively weak dependence in tails and strongest dependence at
the middle of the distribution when compared to the Gaussian copula (see Cherubini
et al., 2004, p. 124-126, for a detailed exposition of the properties of these copulas).
The unknown parameters «, 3 and 6 of the bivariate copula-based probit model can

be easily estimated with the maximum likelihood method. The log likelihood function
for N observations can be derived from (I0)-(I3) as follows:

InL(©) = SN (1Y) (1= Ya)In(P(Yi;=0,Ys; =0))+
+Y1,1-Ye,)In(P(Y1,=1,Y,=0))+

14
Y1) Yasln(P (Vi =0, = 1)+ 1)
+Y1,i}f2,i hl (P (Yl,i = 1,Y27i = 1))] .
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2.2 Copula-based model for a binary and a continuous variable
2.2.1 General modeling setup

After becoming acquainted with the copula-based probit model, this section will focus
on the copula-based model for a continuous and a binary variable. Additionally, we
will also turn our attention to a time series framework in an effort to deal with the
sequence {X;, Y;},, where X; denotes a continuous variable and Y; denotes a binary
variable. We also assume that both variables are characterized by an autocorrelation
and that some significant lead-lag relationships between the two variables can also
exist. For the dichotomous variable Y;, we assume an existence of the underlying
continuous latent factor Y;* as follows:

Y =z2la+e (15)

where z; denotes the (k x 1) vector of explanatory variables and « is the (k x 1)
vector of corresponding parameters. The error term &; has the following properties:
E(g|z) =0and ey ~I.1.D. N (0, 02). If we additionally assumed that €; is normally
distributed, for the univariate model of Y; we would obtain the well-known probit
model, whereas if £; had a logistic distribution, the univariate model would boil down
to a standard logistic regression.

For a continuous X; we could hypothetically assume a lot of well-established
parametric distribution families depending on the nature of the process under study.
For example, for financial returns one could use the normal distribution, the skewed
Student’s t-distribution or the general error distribution, among many other choices.
If we assumed that X; denotes financial durations (i.e. time spells between subsequent
events defined by appropriate thinning of the tick-by-tick data), bid-ask spreads
or trading volumes, we could apply the exponential, the Weibull, the Burr or the
generalized gamma distribution. All of these were typically used in the context of
Autoregressive Conditional Duration (ACD) models proposed by Russell and Engle
(1998) for significantly autocorrelated variables defined on the positive domain.

In agreement with the framework of the bivariate copula-based probit model
developed by Winkelmann (2012), the joint probability that X; would be lower than
or equal to x; and that Y; would be equal to 0 can be derived as follows:

P(Xy <2,Y;=0[z) = P(Xy <, Y <0z)
= P (Xt < mx, e < —tha) (16)
= C (FXt (x¢), Fr, (—tha) ;9)
Analogously, the probability that the variable X; would be lower than or equal to x;
and the variable Y; would be equal to 1 is as follows:

P(X; <z, Yi=1lz:) = P(Xt <z, Yy >0]z)

= P (Xt < Ty, > —thoz)

= C(FXt (xt)vl;g)fc(FXt (xt)stt (72?0‘);9)
Fx, (z;) — C (Fx, (z1), Fr, (—2{ a) ;0)
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The bivariate density function for the pair (X, Y;) can be obtained from the two
equations above as follows:

FlanYilza) = [f(enYe=002)]' " [f (2, Ve = 1]2)]" =

8C (Fx, (11),Fe, (—2Ta)i0)  0Fx, (1) I
0Fx, [€D) ’ Ox¢ ’

Y;
. |:<6Fxt(1t) _ aC(FXt(zf)’FEt(tha)ﬁ)) . 8Fxt(w‘)] t (18)

OFx, (xt) OFx, (xt) oz

BFXt (J)f)

= <BC(FXt(TJt),FEt(_Z;Ta);9))1Yt .

N Yi
. (1 _ GC(FXt(It)»FEt(_Zt Q)ﬂ)) : th (xt)

aFXt (It)

The log-likelihood function can be derived from what is above as follows:

OFx, (x4)

hlL(@) = év: (1 _Yt) In (QC(FXt(wt):Fat(Zza);6)> 4 ( )
19

N aC (Fx, (w¢),Fe, (—2Ta);0 N
+3 Yiln (1 - Tl (oot o) ’) 3 In(fx, (@)
¢ t=1

2.2.2 Marginal distribution of an autocorrelated binary variable

We assume that the Y; variable is characterized by a strong autocorrelation that can be
partially attributed to an intraday seasonality pattern. This is a very common feature
of market microstructure variables, such as: indicators of price changes, indicators
of buy (sell) order submissions or indicators of hidden order placements. In order
to account for this dynamics, we suggest the application of the Generalized Linear
Autoregressive Moving Average (henceforth GLARMA) model of Shephard (1995),
augmented with the diurnality pattern depicted by the Flexible Fourier Form (FFF).
The background of a GLARMA model is the autologistic model given as follows:

P
g =00+ ;Y (20)
j=1
o . . _ P(Y:=1|S¢_1) o
where g; denotes a logistic link function, i.e. g; = In P =05 ) ) where $y_1
denotes the information set until £ — 1. The autologistic specification has been widely
used in several medical studies (cf. Huffer and Wu, 1998; Gumpertz et al. 1997,
among others). Rydberg and Shephard (2003) use this specification to capture the
dynamics of price change indicators. However, they also show that this model is not
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sufficiently flexible to account for a strong persistence in the probability of a price
change and demands a very high parameterization (i.e., a high number of lags p).
The GLARMA model is intended to enhance the dynamic properties of an autologistic
model. The intuition behind this specification is following. Rydberg and Shephard
(2003) consider introducing a given function H of lagged realizations of Y; into a
logistic link specification:

p
g =ca0+ Y o H (Vi ;). (21)
j=1

Because the dependent variable in equation is defined as a transformation
of a conditional expectation E (Y; =1|Q¢_1) = Flog (9¢|S¢—1) (where Fg(-)
denotes the cumulative distribution function of a logistic distribution); i.e.

Flggl (P(Y; =1|S¢-1)) =In (%); the explanatory factors defined as past

realizations of Y; should be transformed accordingly:

p
Fiog (P(Yi =1[S11)) = a0+ > oy Fo) (Yiy), (22)

log
j=1

Thus, the conditional expectation E (Y; = 1|S¢—1) and the lagged values of Y; would
be measured on the same scale. Because the transformation:

PV =1[S¢-1)
=P (Y, = 1S 1)

ﬂ@(Poe:n%pn>:m(

is not valid for binary variables, Shephard (1995) proposes replacing it with the Taylor
expansion around P (Y; = 1|S;—1) as follows:

OF 50 (P (Y =1|S;-1))
OP (Y, = 1|S_1)

Fiog (Y2) = Fiog (P (Y =1[3) +

» (¥ — P(¥; = 1/S11))
g

Yi — P (Y =1S¢-1)
Vo= 11502 (1~ P (Y = 1[5 1)

= Fog (P =181 + 5

(23)
In the empirical application Rydberg and Shephard (2003) showed that the
specification with a modified MA term has better properties:

Y, — P (Y, =131
VP Y =1[81) (1= P (Y =1[Si1))

Cy =

As the denominator:

VP (Y =13-1) (1= P (Y: = 1[S:-1))
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is equal to the square root of the conditional variance of Y;, the sequence ¢; has the
conditional expectation of 0 and the conditional variance of 1. Therefore, it can be
interpreted as ’standardized’ values of Y;.

Taking this into account, the GLARMA (p,q) model can be written as follows:

p q
g = ag + Z a?gt_j + Z agep—j. (24)
j=1 j=1

In order to account for the additive intraday seasonality in the dynamics of Y%,
the GLARMA specification can be enriched with the Flexible Fourier Form (FFF)
components:

k
S(v,7) =voT + Z [Va1—1 sin (27l7T) + vo; cos (27lT)] (25)
1=1

where 7 denotes an intraday time standardized to [0,1] and v denotes a 2k + 1
parameter vector (cf. Andersen and Bollerslev, 1997).

To sum it all up, the explanatory variables that drive the dynamics of the latent factor
Y = 2l'a + & (compare with section and the corresponding parameters can
be defined as:

ZtT = [Lgt—la o Gt—py Ct—1, 0 5 Ct—q, T, sin (271—7_) )
,cos (2nT) - -+ ,sin (2kwT) , cos (2k7T)]
Oé? = I:O‘()aa!l]f" 7052704?7"' 7a27V0a"' 7V2k}

The residuals from the GLARMA specification can easily be computed as follows:

~

Yi — P (Ye =1[S¢-1)

P = 1900 (1= P = 1900) |

/C\t:

2.2.3 DMarginal distribution of an autocorrelated continuous variable

In order to describe the dynamics inherent to a continuous variable, i.e. trading
volume, we will apply the Autoregressive Conditional Duration (ACD) model of Engle
and Russell (1998). Such a model was initially applied to a highly autocorrelated time
series of durations between selected events. More recently the model was also used
in order to describe other financial variables as transaction volumes (Manganelli,
2005) or bid-ask spread (Nolte, 2008). The ACD model can explicitly capture two
specific features of financial variables measured at high frequency. First, it is designed
for variables defined on a strictly positive domain. Second, it can flexibly describe
processes that are strongly autocorrelated, often with a high degree of persistence.
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Here we will apply the ACD model with the Burr distribution for the error term
proposed by Grammig and Maurer (2000). The model for the variable X; is as
follows:

Ty = \I/té.t (26)

where Uy = F (24/S8¢—1) and S¢—1 denotes an information set up at the time point ¢
and &: i.9.d. Burr(n, 02) (where 02 and k denote parameters of the Burr distribution

and 0 < 02 < k). The conditional expectation of the dependent variable x; is
described as: ) .
Uy =0+ Builisi+ Y BrjTiej. (27)
i=1 j=1

In order to specify the conditional bivariate density of { X, Y;}, it is crucial to derive
the conditional density and the conditional survival function for the X; under given
assumptions about the distribution of &. If the hazard and the survival function of
an error term & were denoted as fe(-) and Fe(-), respectively, under the necessary
assumption that E (&) = 1, the conditional hazard and the conditional survival
function of x; = V& can be given as:

fo(@d|Se-1) = (}%fg (gi) ; (28)

Fo(24|S1-1) = Fe (;) , (29)

where ¢, = % and p is an expectation of a Burr-distributed random variable (see
Appendix 2 for some basic properties of the Burr distribution).

2.3 Copula-based model verification with PIT

The appropriateness of the distributional assumptions underlying the copula-based
model can be tested with the help of probability integral transforms (PIT) proposed
by Diebold et al. (1998). This verification procedure has been widely used to
verify the adequacy of the distribution choice and the quality of the conditional
mean specification in numerous applications of the ACD models (e.g., Bauwens et
al., 2004; Grammig & Mauer, 2000; Hautsch, 2004; Bien-Barkowska 2011). In
this paper we show how to apply the PIT in order to check the goodness-of-fit of
the dynamic bivariate copula-based model for mixed binary-continuous distribution.
Because the continuous variable is described with the help of the ACD model with
the Burr distribution, the PIT can quite naturally be used to test the adequacy of the
distribution choice as well as the quality of the conditional mean specification of this
marginal distribution. However, one should bear in mind, that even if the models for
marginal distributions (i.e. GLARMA and ACD) fit the data well, this does not give
enough information to make a judgment on the goodness-of-fit of the joint distribution
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that accounts for the dependence between both marginal processes. Therefore, we
suggest the method for testing the goodness-of-fit of the joint distribution with
the help of the probability integral transforms for conditional distribution of the
continuous variable given the realization of the binary outcome.

In short, the approach can be presented as following. If {f; (z¢|S¢—1)}7" denotes a
sequence of one-step-ahead density forecasts from the model of a continuous variable
X; and {p; (z|S¢—1)}7* is a sequence of conditional densities for the corresponding
true data generating process, the model for the marginal density (but still conditional
on $¢_1) will be correctly specified if the following equation holds true:

e @elSe—) 1" = {pe (2] Se—1) 7 (30)

Although the sequence {p; (z¢|S¢—1)}" cannot be observed, Diebold et al. (1998)
show that under the null hypothesis , the sequence of density transforms {z;}7"
corresponding to the sequence {z;}7" should be i.i.d. uniformly distributed on (0, 1):

zt = /mt fi(u)du, z ~i.i.d. U(0,1). (31)

Accordingly, in order to compute the sequence {Z;}7* we simply need to evaluate
the cumulative distribution function at z;. As the cumulative distribution function
of the Burr distribution has a closed parametric form it is not difficult to calculate
the sequence {Z}7* (see equation (29)). It should be stressed, however, that the
application of this verification procedure is particularly suited for the time-series
applications, because it checks the goodness-of-fit of the conditional distribution
derived at different time points ¢, i.e. z; = F, (¢|S¢—1). Accordingly, it tests both:
(1) the appropriateness of &; distribution choice and (2) the quality of the conditional
mean specification ¥; = E (x; = 1|S¢—1). Diebold et al. (1998) suggest the visual
inspection of the histogram as well as the autocorrelation function of Z;.

In order to check the goodness-of-fit of the joint bivariate model for X; and Y;, and
thus the adequacy of the chosen copula function, we propose to perform the above-
mentioned procedure with respect to the conditional distributions: f (z¢|Y; = 0,S¢—1)
and f(x¢]Y; =1,8¢—1). If Xy and Y; are not independent, conditional distribution
of X; given the realization of Y; will depend on the specification of the copula
function. The application of the PIT procedure could be easily performed in this
case, because the binary variable can have only two values: 0 or 1. Accordingly, for
the null hypothesis: {f; (z¢|Y; =0,S¢—-1)}7" = {ps (2¢|Y: = 0,3%-1)}1", we can use
the probability integral transform estimate:

~

P (X <2, Y; =02, S¢-1)

o~ Tt iy
2y, =0 = w|lYy =0,3¢-1) du = =
pree = L A0S P (¥, = 0]z) (32)
C (Fm (2¢S¢-1) , Fe, (—zt a) ;0
- ﬁgt (—tha) ’
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while for a null hypothesis: {f; (z¢|Y: = 1,8:—1) 1 = {pt (ze|Ys = 1,8¢-1) }?, the
corresponding PIT estimate can be derived:

¢ P(Xt <@, Yy = 1|Zt7%t71)
( x4 9Ct|\9t 1 1) -C (Fmt (xt‘%tfl) I, (—tha) §9)

=

1-F,, (—zfa)

Zivier = [T fuYi =1, 1) du=

3 Empirical example: the volume — return
relationship

In this section we apply our copula-based model to study the relationship between
trading volume and the indicator of a ’large’ EUR/PLN rate change. We use trade
data from the Reuters Dealing 3000 Spot Matching System. It is a fully automated
(i.e. orders are automatically matched if they arrive to opposite market sides and if
their prices agree) order-driven market where the interbank trading of the EUR/PLN
currency pair takes place and which accounts for over 40% of the whole turnover (on
the offshore market, i.e. between London banks, and in Poland). The EUR/PLN
rate is quoted as an amount of Zlotys per one Euro. The transaction currency (base
currency) is Euro. The smallest trade size is 1 million Euro. We used the data
from the whole year 2007, whereas the variables of interest, i.e. trading volumes and
price changes were measured on the 15-minute frequency. Trading of the EUR/PLN
currency pair is characterized by a strong intraday seasonality, therefore we consider
periods when trading intensity is relatively high, i.e. after 8:00 CET and before 18:00
CET.

In our empirical study we are most interested in the measure of dependence between
the volume and the probability that the EUR/PLN rate exceeds some arbitrarily given
level. The boundaries set for such a price change can be different. For example, we
may be interested in the value of a turnover that is necessary for the FX rate to move
more than 20 pips up or down, which is in line with the fact that prices measured at
a very high frequency usually stick to a grid of predefined values, i.e. multiples of 5
pips. The bivariate density constructed for the pair "volume - price change indicator"
can be used for example to construct measures of market liquidity, which approximate
the price impact of a given trade. The very popular question "how much volume does
it take to move the price?" has a certain meaning in this context, since we could state
how much volume does it take to move prices by more than 5 or 30 pips. The model
can be further developed at a later stage in order to describe some measures of loss
(price changes) that should not be incurred (i.e. if a trader sets a price change limit
that should not be exceeded).

In the first step of our empirical exercise we checked for the presence of potential
deterministic or stochastic trends in the volume variable. We performed the
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Augmented Dickey-Fuller test and rejected the null about the unit root, thus the
volume is stationary and the application of the ACD model is allowed. We also
deseasonalized trading volumes. We assumed a multiplicative intraday seasonality
factor s¢, such as x; = s;7;. The intraday seasonality factor s; has been estimated
with the application of the kernel regression of x; on a time-of-day variable (we use
quartic kernel with the bandwidth computed as 2.78s N ~1/5 where s is the standard
deviation of the data. For details of the estimation procedure please refer to (Bauwens,
Veredas 2004)). Further estimation has been performed on diurnally adjusted volumes
Tt.

In Figure [1) we depict the histogram of the EUR/PLN rate changes. We can see here
that the price changes cluster on multiples of 5 pips and this feature seems to be
quite striking. In line with this, we defined a dense grid of threshold price changes as
AP, € {0,5,10, 15,20, 25,30, 35,40, 45,50}. For each of these values a corresponding
time series of the indicator variables Y; has been computed.

Figure 1: Histogram of the EUR/PLN rate changes in pips (15-minute intervals).
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In Figure 2] we depict the autocorrelation function of the deseasonalized trading
volumes and price change indicators for 30 pips (i.e., Y; = 1, if |[AP;| > 30 and Y; = 0 if
|AP;| < 30). We can see that both processes are not only significantly autocorrelated,
but also very persistent. Therefore, an application of the autoregressive structure of
the ACD or the GLARMA models seems to be very well justified.

For each of 11 defined threshold price changes we built three different models
characterized by three different copulas: Clayton, Frank and Gumbel. In total we
constructed 33 models. We have chosen the Clayton, Frank and Gumbel copulas
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Figure 2: Autocorrelation function of the deseasonalized trading volume (left panel)
and the binary indicator of a price change larger than 30 pips (right panel). Horizontal
lines depict 95% confidence intervals.
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as they are very popular in financial applications and allow for different dependency
structure between the marginal distributions (see section. As far as the marginals
are concerned, trading volume has been described using the Burr-ACD(2,2) model
and the indicator variable Y; has been described with the GLARMA(1,1) model
augmented with the FFF (for k = 1) in order to account for a possible diurnality in
the probability of a ’arbitrarily large’ price change. In Table [T] we depict exemplary
estimates of the Gumbel copula model for trading volumes and price change indicators
of the EUR/PLN rate movements larger than 30 pips. In Table [2] we present the
log-likelihood values and dependence parameter estimates corresponding to all 33
models (estimation of the models has been performed using the maxlik library of the
Gauss 7.0). Our results allow to formulate two interesting conclusions. First, the
dependence parameter estimates increase with the size of a price change |AP;|. This
regularity holds true for all three copula-based models and seems to be intuitively
easy to understand. The larger the price movement, the more it relates to an increase
in trading volume, thus the old well-known Wall Street adage "it needs volume to
move prices" holds true with respect to the EUR/PLN market as well. Clearly, the
probability that an FX price changes at least 40 pips demands much more trading
volume (or it is codependent with much more trading volume) than the rise or fall
of FX rate of 5 pips only. An increase in trading activity often signals the arrival
of new information, which leads to increased price volatility (Easley, O’Hara, 1987;
Blume et al., 1994). However, the copula-based model does not assume any form
of causal relationship between two marginal processes. The dependence parameter
simply depicts an ’interdependence’; a measure of mutual association between both
processes. Second, we observe that the increments in the size of the dependence
parameter estimates are larger for price changes that are small in value (i.e. an
increase between dependence coefficients corresponding to the price change of 5 and
10 pips, respectively, is much more pronounced than the difference in parameter
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estimates corresponding to price change of 40 and 45 pips). This means that the
difference in a EUR/PLN rate jump between 5 and 10 pips is associated with much
more volume than the difference in a EUR/PLN rate jump between 40 and 45 pips.
Thus, the relationship between volume and price changes is not linear. From Table
2] we also see that the model with the Gumbel copula wins our ’horse race’ as far
as some primary measures of the goodness-of-fit are concerned - in case of all eleven
models it achieves the highest values of the log-likelihood.

Table 1: Estimation results of the Gumbel copula GLARMA(1,1)-ACD(2,2) model
for the trading volume and the indicator of an EUR/PLN FX rate movement larger
than 30 pips.

GLARMA model ACD model
parameter estimate (p-value) | parameter estimate (p-value)
o 0.011 (0.759) Bo 0.022 (0,000)
af 0.985 (0.000) B .1 1.016 (0.000)
ol 0.085 (0.000) Bw,2 -0.102 (0.002)
vo -0.078 (0.252) Bt 0.354 (0.000)
vy -0.016 (0.018) Be,2 -0.291 (0.000)
123 -0.092 (0.000) K 1.855 (0.000)

o? 0.485 (0.000)
dependency parameter
0 1.356 (0.0000)

Table 2: Comparison of LogL values and the dependence parameter estimates for the
bivariate copula-based GLARMA(1,1)-ACD(2,2) models.

AP; (pips) 0 5 10 15 20 25 30 35 40 45 50

Gumbel

@\ 1.135 1.215 1.273 1.279 1.317 1.346 1.356 1.364 1.379 1.401 1.359

LogL -1.134 -1.343 -1.445 -1.418 -1.304 -1.176 -1.126 -1.035 -1.004 -0.946 -0.909
Clayton

g 0.124 0.231 0.439 0.521 0.799 1.175 1.337 1.711 1.992 2.588 2.913

LogL -1.134 -1.346 -1.454 -1.429 -1.319 -1.191 -1.142 -1.050 -1.017 -0.958 -0.917

Frank
9 0.808 1.334 1.820 1.971 2.552 3.190 3.470 4.071 4.477 5.339 5.681
LogL -1.135 -1.345 -1.449 -1.423 -1.310 -1.183 -1.134 -1.043 -1.011 -0.953 -0.913

The choice of a suitable copula has serious implications for the obtained relationship
between marginals and, obviously, for the quality of forecasting one variable given
the value of the other. In order to present a more clear exposition of this problem,
in Figure 3 we plot a conditional probability of observing an FX rate change larger
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than 30 pips (within 15 minutes) given different realizations of the volume variable.
The corresponding conditional probabilities can be derived as:

@, Ye =181, 2)
f(xt|9ft—1) (34)
1 OC (Fy, (24|S-1) , Fr, (28 ) ;0)
OF, (x¢|S¢—1) '

In Figure [3| we present different probabilities of a price change (larger than 30
pips) given different values of the volume variable, different copulas (Gumbel, Frank,
Clayton) and different dependence parameters (we set ¥U; equal to the unconditional
expectation of z; and Fr, (—z? a) equal to the unconditional probability of Y; = 0).
Some interesting observations can be found. An independence between the probability
that Y; = 1 and X; is achieved if § = 1 for the Gumbel copula, and 6 approaching 0
for the Frank and the Clayton copula. In these cases we obtain the flat line indicating
that the trading volume is not related to the probability of a price change. The
Gumbel copula does not allow for a negative dependence between the marginals. The
strength of positive dependence rises with the value of the dependence parameter.
For 6 = 1.5 we get approximately linear relationship, whereas the higher the value of
the coefficient, the more S-shaped relationships are obtained. For large values of the
dependence parameter, the probability of Y; = 1 is quickly approaching one. This is
in line with a stronger dependence in the upper tail of the bivariate distribution of ¥;*
and X; as predicted by the features of the Gumbel copula. As far as the Frank and
Gumbel copulas are concerned, we see that the shapes of the obtained conditional
probability curves are quite different. Unless the values of the dependence parameter
are very large (i.e., for example for § = 20), the probability of ¥; = 1 does not
approach 1, as in the Gumbel case (for the same range of volume values). This result
can potentially be justified with a lack of upper tail dependence inherent to the Frank
or the Clayton copula functions. From a very intuitive point of view, if the values of
(deseasonalized) trading volumes are extremely large, this does not necessary imply
that the values of Y;* must also be extremely large. Hence, the probability of ¥; =1
is not as high as in case of the Gumbel copula model.

Analogously, the conditional density function for the volume variable (given a
realization of the binary outcome) can be derived as:

F(Ye = 1|x¢, 2¢)

e, Yy =181, 2¢)
f(Yi=1]z)

f(l'tD/;f =1, %tfl)

fap (2¢|S¢—1)0C(Fa, (2¢Se—1),Fe -z a ;0
= | fu (@]Spoq) — a(FE:(x:\s:_ll) (el e))

(35)
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Figure 3: Conditional probability that the EUR/PLN rate moves more than 30 pips

(up or down) during 15 minutes.
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(36)
We depict these two density functions in Figure 4 (for a price change larger than 30
pips). The values of the dependence parameters correspond to their estimates, i.e.
0 = 1.356 for the Gumbel copula, # = 1.337 for the Clayton copula and 6 = 3.47 for
the Frank copula (we also set ¥; equal to the unconditional expectation of X; and
F., (—th a) equal to the unconditional probability of ¥; = 0). We see that all three
obtained conditional density functions of the trading volume (given the realization
of Y;) have different shapes, whereas the discrepancies are striking given Y; = 1.
Expectations of all three distributions in the right panel are shifted to the right when
compared with expected values of distributions depicted in the left panel, which is
obvious because the ’'large’ price movements are associated with the higher trading
volume. The GLARMA(1,1)-ACD(2,2) model with the Clayton copula generates the
distribution that is most concentrated around its mode, once the model with the
Gumbel copula allows for the most dispersed (flat) distribution.
In order to compare the goodness-of-fit of the three copula-based models, we
calculated the PIT estimates with respect to: (1) marginal distribution of the trading
volume (%, see equation (3I))) (2) conditional distribution of the trading volume
given Y; = 10 (Z,y,—o, see equation (32))), (3) conditional distribution of trading
volume, given price ¥; = 1 (Z;,y,=1, see equation ) We later checked to

133 K. Bien-Barkowska
CEJEME 4: 117-142 (2012)



www.czasopisma.pan.pl P N www.journals.pan.pl
TN

Katarzyna Bien-Barkowska

Figure 4: Conditional density function of trading volume given that no ’large’ price
movement is observed, i.e. price change bigger than 30 pips (left panel) and the
conditional density function of trading volume given a ’large’ price movement is
observed (right panel).

0.8

S

@
o

0.7

0.6

0.5

0.4

0.3

— — Gumbel copula
------- Frank copula
—— Cloytan copula

— — Gumbel copula
=== Frank copula
—— Clayton copuln

0.2

:

0.0

0 1 2 3 4 5 6 7 8 9 10

deseasonalized volume deseasonalized volume

see whether the z;, Z;y,—o and Z;y,—1 series are uniformly distributed on (0,1).
P-values for the x? test of uniformity for all the models estimated on the grid
AP, € {0,5,10,15, 20,25, 30, 35,40, 45,50} are given in Table [3| The results confirm
our previous finding (formulated on the basis of log-likelihood values), that the
GLARMA(1,1)-ACD(2,2) model with the Gumbel copula allows for the best goodness-
of-fit. We cannot reject the null that the z; is uniformly distributed on (0,1), thus
the marginal specification of the Burr-ACD(2,2) model for the trading volume seems
to be appropriate. The estimated conditional density of X; given Y; = 0 fits the
true data generating process also quite well. We cannot reject the null of uniformity
only in case of one model out of eleven estimated specifications (at a 1% significance
level). However, the goodness-of-fit of the conditional density of X; given YV; = 1 is
a bit worse. With respect to this criterion, only eight of the eleven models prove to
have an adequate specification (at a 1% significance level). All in all, the models with
the Gumbel copula are doing considerably better than the other two.

In order to better understand the reasons for the good fit or lack of thereof, let us
once more stick to the model where the hurdle for the price change has been set equal
to 30 pips (i.e. Y; = 1 if the price moves more than 30 pips and Y¥; = 0 in other
cases). For the model with the Gumbel copula we have obtained quite good results
(we cannot reject the null of uniformity for Z;, z; y,=0 and Z; y,=1). However, models
with the Frank or Clayton copula seem not to fit at all. The reasons for this lack
of fit can be understood from a visual inspection of PIT histograms (see Figure [5)).
We see that models with the Frank or Clayton copula are clearly misspecified. The
lack of fit is particularly striking for the tails of the conditional distribution of X;
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Table 3: P-values of the x? test results for the uniformity of the PIT estimates.

AP, (pips) 0 5 10 15 20 25 30 35 40 45 50
Gumbel
/z\t 0.039 0.045 0.274 0.243 0.171 0.285 0.131 0.146 0.222 0.161 0.135

2t,Yy =0 0.000 0.350 0.495 0.073 0.016 0.285 0.148 0.537 0.537 0.207 0.150
2ty =1 0.025 0.017 0.058 0.121 0.049 0.070 0.055 0.043 0.006 0.009 0.005

Clayton

2 0.076 0.045 0.012 0.007 0.014 0.053 0.032 0.016 0.006 0.019 0.017
24,Y, =0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.030 0.153
24, v, =1 0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Frank

Zt 0.066 0.035 0.029 0.025 0.064 0.082 0.034 0.044 0.085 0.081 0.011
2t,v;=0 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.047 0.098 0.078 0.166

o~

2t,v;=1 0.012 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

given Y; = 1 In this case, we can see that very ’small’ values of trading volume (i.e.
corresponding to the 0.01-quantile of these distributions), as well as ’large’ values (i.e.
corresponding to 0.95-quantile of the distribution) occur much more frequently than
it is assumed by these theoretical conditional density functions. This observation
agrees with Figure [4] where we showed that the Gumbel copula allows for a much
more dispersed distribution of the volume variable (given Y; = 1) when compared to
the Frank or the Clayton copula. The latter two specifications forced a much more
concentrated distribution, which does not fit the true data generating process.
Visual inspection of obtained histograms for PIT estimates is not enough to infer
about the dynamic properties of the estimated model. To this end, we plotted the
autocorrelation functions for the residuals obtained from both sub-models (ACD(2,2)
and GLARMA(1,1)) as well as autocorrelation functions for three probability integral
transform estimates (for Z;, Z;y,—o and Z;y,—1) in Figures[6] and [7} The residuals
are not significantly autocorrelated, which means that the dynamic specification of
both marginal models is able to capture a very strong and persistent autocorrelation
inherent to both: trading volumes and price change indicators (when compared to
the ACF for raw data shown in Figure [2)). The ACF for the probability integral
transforms leads to the same conclusion.
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Figure 5: Histograms of z; (left column), Z; y,=o (middle column) and Z; y,=1 (right
column). The horizontal lines are approximate 99% confidence intervals for the
individual bin heights under the null that z; (2 y,=o or z: v,=1, respectively) is U(0,1).
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Figure 6: Autocorrelation function of the ACD model residuals (left panel) and the

GLARMA model residuals (right panel).
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Figure 7: Autocorrelation function of Z; (upper left panel), Z; y,—¢ (upper right panel)
and Z; y,=1 (bottom panel). Horizontal lines depict 95% confidence intervals.
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4 Conclusions

In this paper we have developed the de Leon and Wu (2011) copula-based model for
mixed binary-continuous distribution to a time-series setup. We have also proposed a
method of testing the goodness-of-fit of this specification by means of the probability
integral transforms defined for a marginal distribution of the continuous variable
and for two conditional distributions: conditional distribution of continuous variable
given Y; = 0 and conditional distribution of continuous variable given Y; = 1. If the
marginals are not independent, the shape of these conditional distributions depends
on the selected copula function, capturing the dependence between both processes.
The practical applications of the proposed methods have been presented with a short
market microstructure study of the relationship between trading volume (continuous
variable) and corresponding price change indicators (for selected grid of hurdle values).
This econometric exercise proves that there is a significant dependence between both
variables as predicted by the literature on market microstructure. Additionally, we
show that this copula-based model is not indifferent to the choice of the copula
function, which can be quite easily tested using the PIT procedures. In this analysis
the best fitting copula is the Gumbel copula. As there is a common believe about
the positive relationship between volatility and volume, it is the only copula among
the considered ones that allows for the positive tail dependence. This study can
be easily developed further by implementing different copulas (for example Gaussian
copula, Student’s t copula) or a kind of observation-driven dynamics governing the
dependence parameter as suggested by Patton (2005b). Moreover, the PIT verification
procedures can be easily applied to a copula-based model of a mixed discrete-
continuous distribution where, instead of binary outcomes, the ordered outcomes
of the discrete variable would be used. The copula-based model and its verification
method can have several further applications. The bivariate volume-price change
indicator model can be used as a starting point for constructing some price impact
measures (liquidity measures). Moreover, it would be easy to construct a more
complex model for the trading volume and price changes using the decomposition
of the price change variable in the spirit of Rydberg and Shephard (2003).
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Appendix 1

Table 4: Selected properties of Frank, Clayton and Gumbel copulas. Formulae for
the Frank and the Gumbel copula functions are taken from Cherubini et al. (2004) p
124 and formulae for the Clayton copula function from Trivedi and Zimmer (2005),
p. 16.

Frank copula:

Copula function: C(u,v) = —lln (1 + o= 61;2( 1)_(5’)’“’5 ov)— 1))
. . . s | 9C(u,v) exp(—6u) exp( (6v)—1)
First order partial derivative: P = oxp(=0) =11 (exp(—0u)—T)(exp(—00)=T)
Range of 0: (—00,0) U (0, o0)
Clayton copula:
T
Copula function: C(u,v) = (u*‘Q +ov 0 — 1) 0
_1-1
First order partial derivative: % w01 (u79 +o 0 — 1) 177
Range of 6: (0,00)
Gumbel copula:
T
Copula function: C(u,v) = exp {— [(— In(u))? + (- ln(v))g} 0
0—1
First order partial derivative: 80{&:1}) = C(Z’v) (ln(lggz)v)))
Range of 6: [1,00)

Appendix 2

Burr distribution with parameters & > 0, o2 > 0 and scale parameter is set to 1:
_
Survival: S(e) = (14 o%e")

Density: f(e) = Lll
v JE) (1402e%)' 52
k—1
Hazard: h(e) = {5~
- P+r )P (Fr—nt) 2
Expectation: p = AT D (1) ifk >0
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