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Abstract

A heterogeneous Bertrand duopoly game with bounded rational and adaptive
players manufacturing differentiated products is subject of investigation. The
main goal is to demonstrate that participation of one bounded rational player in
the game suffices to destabilize the duopoly. The game is modelled with a system
of two difference equations. Evolution of prices over time is obtained by iteration
of a two dimensional nonlinear map. Equilibria are found and local stability
properties thereof are analyzed. Complex behavior of the system is examined
by means of numerical simulations. Region of stability of the Nash equilibrium
is demonstrated in the plane of the speeds of adjustment. Period doubling route
to chaos is presented on the bifurcation diagrams and on the largest Lyapunov
characteristic exponent graph. Lyapunov time is calculated. Chaotic attractors
are depicted and their fractal dimensions are computed. Sensitive dependence
on initial conditions is evidenced.
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1 Introduction
Duopoly is a market structure characterized by a domination of two firms, which
manufacture homogeneous products and completely control trade. It is this
characteristic of interdependence that makes duopolist consider reaction of the
competitor. Duopolist has to pay attention both to the market demand, that is
the behavior of consumers, as well as to the strategy of the other firm, that is it forms
expectations concerning how its rival will act. In a duopolistic competition both firms
are either output or price setters; see Cournot (1838), Bertrand (1883).
The most widely used and simultaneously the first formal model of the duopoly market
was proposed in 1838 by a French mathematician Antoine Augustin Cournot, who
investigated a duopoly case with two output setters. Each company was assumed to
adjust its quantity of production to that of its rival and there was no retaliation at
all, so that in every step duopolist perceived the latest step taken by the competitor
to remain his last. Thus, in the Cournot model each firm assumes that the other firm
holds its output constant. In order to maximize profit, duopolist selects quantity
to produce observing output of the other firm. Later, in 1883 another French
mathematician Joseph Louis Francois Bertrand modified Cournot game suggesting
that firms actually choose prices rather than quantities. Hence, in the Bertrand model
each firm assumes that the competitor holds its price constant. Duopolist maximizes
profit setting a price that undercuts competitor’s price, until marginal cost has been
reached.
Originally Cournot and Bertrand models were based on the premise that all players
follow naive expectations under perfect information; see Gibbons (1992). However,
in real market conditions such an assumption is very unlikely since not all players
share naive beliefs. Therefore, different approaches to firm behavior were proposed.
Players were not only perceived to be naive, but also bounded rational and adaptive;
see Bischi and Naimzada (1999), Bischi and Kopel (2001). Numerous works on
complex dynamics of the Cournot model were done under different expectations,
both with homogeneous; see Puu (1991), (1998), Kopel (1996), Agiza (1998), (1999),
Agiza, Hegazi, Elsadany (2001), (2002) and with heterogeneous players; see Agiza and
Elsadany (2003), (2004), Leonard and Nishimura (1999), Den Haan (2001), Zhang,
Da, Wang (2007). Published results confirm that under different expectations Cournot
model reveals a complex dynamical behavior, such as cyclical and chaotic.
In turn, much less has been done in terms of investigating dynamical properties of
the price duopoly by Bertrand under different expectations, especially heterogeneous.
One of the very few works in this field is the recent article by Zhang, Da, Wang
(2009). In the paper, authors applied the technique of Onazaki, Sieg, Yokoo (2003)
to study dynamics of a homogeneous Bertrand duopoly model with two bounded
rational players. Assuming differentiated products they examined the existence
and the stability conditions of equilibria resulting from the game and by means of
numerical simulations investigated complex dynamics of the model, showing period
doubling route to chaos, strange chaotic attractors and sensitive dependence on initial
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conditions of the resulting two dimensional nonlinear map, among others. The
reasoning behind analyzing dynamics of price duopoly games further is that Bertrand
model is different than Cournot’s. Strategy spaces and the payoff functions are
different, thus behavior in the Nash equilibria of the two models varies as well (see
Gibbons (1992)).
In this paper, an attempt is made to further fill the gap mentioned above, thereby
contributing to the literature of the field. In particular, complex dynamics of a
Bertrand duopoly game with heterogeneous players, having bounded rational and
adaptive expectations, is investigated under differentiated products scheme. The main
goal is to show that participation of one bounded rational player in the game suffices
to destabilize the duopoly. The paper is organized in the following way. The starting
point of the analysis constitutes a theoretical framework embracing forms of best
replies resulting from general assumptions of a product differentiated price duopoly
game detailed in Zhang, Da, Wang (2009), along with three diverse expectations
concepts - naive, bounded rational and adaptive - all that outlined in section 2. Section
3 is a study of a heterogeneous Bertrand duopoly game with bounded rational and
adaptive players, modelled with a two dimensional nonlinear map, where the existence
of fixed points and local stability thereof are examined. Section 4 includes numerical
simulations, applied so as to demonstrate the complexity of the obtained dynamical
system. Region of stability, period doubling route to chaos, attracting chaotic sets
along with the fractal dimensions as well as sensitive dependence of the map on initial
conditions are presented. Finally, section 5 concludes obtained results.

2 Theoretical framework

Original Bertrand duopoly game is a model of price competition between two non-
cooperating firms, which produce homogeneous products under linear demand and
constant marginal costs equal for both players. Duopolists compete solely in price
and choose their respective prices simultaneously, then supply the quantity demanded.
Consumers buy everything from the cheaper producer or half from each, if the prices
are equal. Each firm tries to reduce the price of its good, until the good sells at no
profit. In the literature of game theory such a surprising result is called Bertrand
paradox. The paradox seldom appears in practice since real products are almost
always subject to differentiation in some way other than price. Hence, one way of
avoiding the paradox is to enable firms sell differentiated products (see Bierman and
Fernandez (1998)).

2.1 Best replies

Best replies, also named reaction functions, are obtained through equating partial
derivatives of the expected profit functions to zero. Reaction functions can be
monotonic, e.g. linear (Rassenti, Reynolds, Smith, Szidarovszky (2000)) and
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nonmonotonic, e.g. in the form of a logistic map (Bischi and Kopel (2001)). Their
monotonicity depends directly on the functional form resulting from combining
demand and cost functions (Dana and Montrucchio (1986)) and indirectly on various
economic conditions, which may give rise to nonmonotonicity (see Kopel (1996)).
While Dana and Montrucchio (1986) assumed that quantity demanded is reciprocal
to price and firms operate under constant marginal costs, Kopel (1996) applied linear
inverse demand and bivariate cost functions, reflecting interfirm externalities. Both
sets of assumptions led to unimodal reaction curves. Agiza and Elsadany (2003),
(2004) used linear and decreasing inverse demand with linear cost functions and
obtained monotonic, linear best replies. According to Puu (2005) the simplest
conditions under which the Cournot quantity duopoly game leads to complex
behavior, are isoelastic inverse demand and linear cost functions. Obvious advantage
of such a mix is the feasibility of solving for reaction functions in a simple closed form.
Zhang, Da, Wang (2009) found chaotic behavior in a homogeneous bounded rational
Bertrand price duopoly game under linear demand and cost functions.
In this paper two firms X and Y produce differentiated goods, priced xt and yt
respectively. Firms set prices at discrete time periods t = 0, 1, 2, ... on a shared
market. Both inverse demand and cost functions are assumed linear (see Zhang, Da,
Wang (2009)). The quantities QX,t and QY,t that firms X and Y sell accordingly are
determined by the following equations

QX,t = a− b · xt + d · yt
QY,t = a− b · yt + d · xt,

(1)

where a > 0, b > 0 and d > 0. Since parameter d reflects the extent to which two
products are substitutes for each other, its presence in equations (1) assures products
differentiation and thus lets avoid Bertrand paradox. The cost functions are

CX(xt) = cX ·QX,t
CY (yt) = cY ·QY,t,

(2)

where cX > 0 and cY > 0 are shift parameters to cost functions of firms X and Y
respectively and simultaneously their corresponding marginal costs, which may differ.
Under the assumptions made so far, single period profit functions for both players
have the form

πX(xt, yt) = xt ·QX,t − CX(xt)
πY (xt, yt) = yt ·QY,t − CY (yt).

(3)

Inserting equations (1) and (2) into (3) yields

πX(xt, yt) = (xt − cX) · (a− b · xt + d · yt)
πY (xt, yt) = (yt − cY ) · (a− b · yt + d · xt).

(4)

Partial derivations of the first equation in (4) with respect to xt and of the second
equation in (4) with respect to yt allow to obtain local estimates of the marginal
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profits in period t of firms X and Y respectively

ΦX,t =
∂πX(xt, yt)

∂xt
= a+ b · cX − 2 · b · xt + d · yt

ΦY,t =
∂πY (xt, yt)

∂yt
= a+ b · cY − 2 · b · yt + d · xt.

(5)

Optimization problems in (5) have unique solutions of the form

f(yt) = 1
2·b · (a+ b · cX + d · yt)

g(xt) = 1
2·b · (a+ b · cY + d · xt),

(6)

which let obtain linear best replies of firms X and Y accordingly.

2.2 Expectations

Three expectations rules are most often observed in analyses of diverse duopoly games.
Basic naive on one hand, versus sophisticated adaptive and bounded rational beliefs on
the other hand. These tenets can be found in both homogeneous and heterogeneous
agents paradigms. Homogeneous Bertrand duopoly setup serves here as a starting
point. Next, two naive players evolve into a bounded rational and an adaptive agent
respectively.
At each period t the companies X and Y form expectations of each other’s price in
period t + 1. Firms’ prices for the latter period are decided by solving the following
optimization problem {

xt+1 = arg maxπX(xt, yet+1)
yt+1 = arg maxπY (xet+1, yt)

(7)

where πX(·) and πY (·) symbolize expected profit functions of firms X and Y
accordingly, and xet+1, yet+1 represent their respective beliefs about the competitor’s
future pricing decision. Unique solutions to (7), if exist, are denoted by{

xt+1 = f(yet+1)
yt+1 = g(xet+1)

(8)

where f and g are best replies to yet+1 and xet+1 accordingly. Naive expectations rule
assumes that each firm expects the rival to offer the good for sale at the same price in
the current period, as it did in the preceding one. Hence, yet+1 = yt and xet+1 = xt for
company X and Y respectively. After implementing Bertrand theory, (8) becomes{

xt+1 = f(yt)
yt+1 = g(xt)

(9)
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which describes a homogeneous duopoly game with naive agents, where Bertrand
reaction functions f and g are linear (Bertrand (1883)).
In opposition to naive players, other firms may rationally utilize information from the
market. Thus, notion of bounded rationality can be employed in dynamic duopoly
models (see Bischi and Naimzada (1999)). Bounded or not fully rational players
possess incomplete knowledge about the market. For instance, if firm X is assumed
to be a bounded rational player, though ignorant about the market demand, it decides
to update its pricing strategy by an adjustment mechanism based on a local estimate
of the marginal profit:

ΦX,t =
∂πX(xt, yt)

∂xt

(Bischi, Galletgatti, Naimzada (1999)), denoted also as gradient dynamics (see Bischi
and Lamantia (2005)), or myopic adjustment mechanism (see Dixit (1986)). Then,
agent X is said to behave as a local profit maximizer. At each period t firm X decides
to increase or decrease the price for period t+ 1 if it experiences positive or negative
marginal profit on the basis of information held at period t, according to the following
dynamic adjustment mechanism

xt+1 = xt + α(xt) · ΦX,t, (10)

where α(xt) is a positive function, which gives the extent of price variation for product
of firm X following a given profit signal. Linear function α(xt) = u · xt is assumed,
since it captures the fact that relative price variations are proportional to marginal
profits, that is

xt+1 − xt
xt

= u · ∂π
X(xt, yt)
∂xt

,

where u > 0 is the speed of adjustment of the bounded rational firmX. Final equation
for bounded rational player X exhibits the following structure

xt+1 = xt + u · xt ·
∂πX(xt, yt)

∂xt
, t = 0, 1, 2, . . . . (11)

The third theory of firm’s beliefs is adaptive expectations principle (see Bischi and
Kopel (2001)). In such a case duopolist does not instantaneously jump to the new
optimal position, but adjusts the previous decisions in the direction of the best reply.
For example, if firm Y forms its expectations in an adaptive mode, it calculates the
price for period t+ 1 weighing current period price yt and its reaction function g(xt).
Dynamic equation for agent Y is obtained from the expression of the form

yet+1 = yet + v · [yt − yet ] (12)

First, the lagged equation for company Y from (8) is inserted into (12). Subsequently,
expectations are dropped because player Y ultimately determines his price for period
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t+ 1 at period t, hence all information up to period t is available and can be utilized
in the decision process. Simple conversion yields the final equation for the adaptive
agent Y

yt+1 = (1− v) · yt + v · g(xt), t = 0, 1, 2, . . . . (13)

where 0 ≤ v ≤ 1 is the speed of adjustment of company Y . Setting v = 1, naive
expectations rule for agent Y shown in (9) is obtained from (13). Thus, naive player
is a special case within the adaptive agent framework. When v = 0, duopolist never
revises any taken decision. Intermediate values, that is 0 < v < 1, bring in a host of
new possibilities and are therefore considered in this paper.

3 The model
Heterogeneous Bertrand duopoly game with bounded rational and adaptive players
is derived through coalescing equation (11) with equation (13) in the following way xt+1 = xt + u · xt ·

∂πX(xt, yt)
∂xt

yt+1 = (1− v) · yt + v · g(xt),
(14)

where ∂πX(xt,yt)
∂xt

= ΦX,t is the local estimate of firm’s X marginal profit, g(xt) is
firm’s Y reaction function and t = 0, 1, 2, .... Substituting the first equation from (5)
and the second equation from (6) into (14) yields{

xt+1 = xt + u · xt · (a+ b · cX − 2 · b · xt + d · yt)
yt+1 = (1− v) · yt + v

2·b · (a+ b · cY + d · xt),
(15)

which can be expressed as a discrete time dynamical system of the form

(xt+1, yt+1) = T (xt, yt), (16)

with a two dimensional nonlinear map T : R2 → R2

T :
(
xt
yt

)
→
(
xt + u · xt · (a+ b · cX − 2 · b · xt + d · yt)

(1− v) · yt + v
2·b · (a+ b · cY + d · xt),

)
(17)

where t = 0, 1, 2, . . .. Starting from the initial condition (x0, y0) iteration of map T
uniquely determines the trajectory of states of firms X and Y prices

(xt+1, yt+1) = T t(x0, y0), t = 0, 1, 2, . . . . (18)

The map depends on seven parameters, a, b and d of demand functions (1), cX and cY
of cost functions (2), u and v being the speeds of adjustment of the bounded rational
player X and adaptive player Y respectively.
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3.1 Fixed points
Since Bertrand game is an economic setting, equilibrium points of the analysed
price duopoly model are defined as nonnegative fixed points of map T , in particular
nonnegative solutions of a nonlinear algebraic system of equations of the form{

x · (a+ b · cX − 2 · b · x+ d · y) = 0
1

2·b · (a+ b · cY + d · x)− y = 0,
(19)

which is derived by setting xt+1 = xt = x and yt+1 = yt = y in (17). Two stationary
points are obtained

E1 =
(
0, a+b·cY

2·b
)

E2 =
(

2·b·(a+b·cX)+d·(a+b·cY )
(2·b+d)·(2·b−d) , 2·b·(a+b·cY )+d·(a+b·cX)

(2·b+d)·(2·b−d)

)
.

(20)

The first fixed point E1 is always nonnegative under the assumptions made. It is
located at the y coordinate axis and thus denoted as a monopoly or a boundary
equilibrium (see Bischi and Naimzada (1999), Bischi and Lamantia (2005), Zhang,
Da, Wang (2009)). The x coordinate axis is an invariant submanifold, that is if
xt = 0 then xt+1 = 0. This implies that starting from a monopoly initial condition
on the x coordinate axis, the dynamics is confined in the same axis for each t, thus
yielding monopoly bahavior, governed by the restriction of map T to that axis. Such
a restriction is given by the following one dimensional map M : R → R, obtained
from (17) with xt = 0

M : yt → (1− v) · yt +
v · (a+ b · cY )

2 · b
. (21)

Map M generates a fixed point of the form

y∗M =
a+ b · cY

2 · b
,

which reflects the y coordinate of the monopoly equilibrium point E1 of map T .
The second fixed point E2 is the unique Nash equilibrium, which is nonnegative and
has economic meaning if 2 · b− d > 0. It is located at the intersection of two reaction
curves which represent the locus of points of vanishing marginal profits in (5).

3.2 Local stability
The study of local stability of equilibria is based on localization of eigenvalues of
the Jacobian matrix of the two dimensional nonlinear map T on a complex plane.
Jacobian matrix along the pricing strategy (x, y) is following

J(x, y) =
[
1 + u · (a− 4 · b · x+ d · y + b · cX) u · d · x

v·d
2·b 1− v

]
(22)
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Proposition 1 The monopoly equilibrium E1 is unstable.

Proof. Matrix J(x, y) evaluated at the boundary equilibrium point E1 has the form

J(E1) =

1 + u · [a+ d·(a+b·cY )
2·b + b · cX ] 0

v·d
2·b 1− v

 (23)

Due to lower triangularity of matrix J(E1) its eigenvalues are easily obtained as the
diagonal entries. Eigenvalues are λE1,1 = 1+u·[a+ d·(a+b·cY )

2·b +b·cX ] with eigenvector:
rE1,1 = (1, 0) and λE1,2 = 1− v with eigenvector

rE1,2 = (− v · d
2 · b · [v + u · (a+ d·(a+b·cY )

2·b + b · cX)]
, 1).

Both eigenvalues are real and nonnegative under the assumptions made. Since also
|λE1,1| > 1 and |λE1,2| < 1 holds, the boundary equilibrium point E1 is a saddle
point, what means that solutions to map T are not sequences of points monotonically
approaching the equilibrium as t→∞, except for the case when they originate from
points on the eigenvectors associated with λE1,1 or λE1,2; see Medio and Lines (2001).
This completes the proof of the proposition.

Proposition 2 The Nash equilibrium E2 is stable if:

u <
4 · b · (2− v) · (2 · b+ d) · (2 · b− d)

[4 · b2 · (2− v) + v · d2] · [2 · b · (a+ b · cX) + d · (a+ b · cY )]

Proof. Investigation of local stability of the second fixed point of the two dimensional
nonlinear map T is based on inspection of eigenvalues of the Jacobian matrix evaluated
at E2. At the Nash equilibrium point, matrix J(x, y) becomes

J(E2) =
[
1− 2 · u · b · x∗ u · d · x∗

v·d
2·b 1− v

]
(24)

where x∗ = 2·b·(a+b·cX)+d·(a+b·cY )
(2·b+d)·(2·b−d) , and its eigenvalues

λE2,1 = b·(1−v)+2·(1−2·b·u·x∗)+
√

(v·b−2·b2·u·x∗)2+2·b·d2·u·v·x∗
b

λE2,2 = b·(1−v)+2·(1−2·b·u·x∗)−
√

(v·b−2·b2·u·x∗)2+2·b·d2·u·v·x∗
b

(25)

are real under the assumptions made. Analysis of discriminant of the characteristic
equation of matrix J(E2) confirms the real character of the eigenvalues. Characteristic
equation of the Jacobian matrix evaluated at the Nash equilibrium point E2 has the
form

PJ(E2)(λ) = λ2 − tr J(E2) · λ+ detJ(E2), (26)
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where tr J(E2) is the trace and detJ(E2) is the determinant of matrix J(E2), which
are following

tr J(E2) = 2− v − 2 · b · u · x∗

detJ(E2) = (1− v) · (1− 2 · b · u · x∗)− u·v·d2·x∗
2·b .

(27)

Discriminant ∆PJ(E2)(λ) = [tr J(E2)]2− 4 ·detJ(E2) of the characteristic equation is
positive under the assumptions made because

(2 · b · u · x∗ − v)2 +
2 · u · v · d2 · x∗

b
> 0, (28)

what sustains the real nature of eigenvalues of the Jacobian matrix evaluated at the
Nash equilibrium. Yet, local stability analysis of the second fixed point through direct
inspection of the eigenvalues may be troublesome.
In a two dimensional case conditions for which |λE2,i| < 1, i = 1, 2 and E2 is a stable
node have a simple representation in terms of trace and determinant of the constant
matrix J(E2); see Medio and Lines (2005). The so-called Jury’s conditions for matrix
J(E2) are following

(i) 1 + tr J(E2) + detJ(E2) > 0
(ii) 1− tr J(E2) + detJ(E2) > 0
(iii) 1− detJ(E2) > 0.

(29)

If inequalities (i)− (iii) hold, sufficient and necessary conditions for local stability of
the second fixed point are met, that is eigenvalues of matrix J(E2) lie inside the unit
circle of the complex plane. Substituting (27) into (29) yields

(i) 3− v − 2 · b · u · x∗ + (1− v) · (1− 2 · b · u · x∗)− u·v·d2·x∗
2·b > 0

(ii) v − 1 + 2 · b · u · x∗ + (1− v) · (1− 2 · b · u · x∗)− u·v·d2·x∗
2·b > 0

(iii) 1− (1− v) · (1− 2 · b · u · x∗) + u·v·d2·x∗
2·b > 0.

(30)

While condition (ii) is always satisfied under the assumptions made, because after
transformations it reduces to

(ii) 2 · b− d > 0, (31)

conditions (i) and (iii) require further reasoning. After modifications inequality (iii)
takes the form

(iii) v + 2 · b · u · x∗ · (1− v) + u·v·d2·x∗
2·b > 0 (32)

and holds when u > 2·b·v
[4·b2·(v−1)−v·d2]·x∗ . However, from the beginning of the analysis
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u > 0 and in addition 4 · b2 · (v − 1) − v · d2 < 0, what makes initial assumption
about the nonnegativity of the speed of adjustment u of the bounded rational player
X stronger, hence condition (iii) is always satisfied in the given game. Following
transformations inequality (i) becomes

(i) 2 · (2− v)− 2 · b · u · x∗ · (2− v)− u·v·d2·x∗
2·b > 0 (33)

and holds when u < 4·b·(2−v)
[4·b2·(2−v)+v·d2]·x∗] , which after substituting for x∗ leads to

u <
4 · b · (2− v) · (2 · b+ d) · (2 · b− d)

[4 · b2 · (2− v) + v · d2] · [2 · b · (a+ b · cX) + d · (a+ b · cY )]
(34)

what completes the proof of the proposition.

4 Numerical simulations

Since local stability analysis of fixed points of the Bertrand duopoly game with
bounded rational and adaptive players reveals that Nash equilibrium is stable only
if certain condition is met, its local stability properties subject to violation of this
stability condition are numerically explored. First, region of stability of the Nash
equilibrium is shown in the plane of the speeds of adjustment. Next, period doubling
route to chaos is presented on bifurcation diagrams and on the largest Lypanunov
characteristic exponent graph. Then, chaotic attractors are depicted and their fractal
dimensions are calculated. Finally, sensitive dependence of the model on initial
conditions is evidenced. It is convenient to commence the numerical simulations
with the following values of the parameters (a, b, d, cX , cY ) = (2, 0.5, 0.3, 0.2, 0.8)
analogously to Zhang, Da, Wang (2009), arbitrarily choose the speeds of adjustment
and keep initial values fixed at (x0, y0) = (3, 3).

4.1 Region of stability

Condition for stability of the Nash equilibrium in the heterogeneous Bertrand duopoly
game with bounded rational and adaptive players represents an unbounded region R
in the plane of the speeds of adjustment (v, u)

R : 4 · b · v + 8 · b2 · x∗ · u− (4 · b2 − d2) · x∗ · v · u− 8 · b < 0, (35)

where x∗ = 2·b·(a+b·cX)+d·(a+b·cY )
(2·b+d)·(2·b−d) . Region R is constrained by a hyperbola of the

form
H : 4 · b · v + 8 · b2 · x∗ · u− (4 · b2 − d2) · x∗ · v · u− 8 · b = 0. (36)
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Inequality determining region R lets obtain two pairs of simultaneously binding
conditions, which are following

I :

{
v < 8·b2

4·b2−d2
u < 4·b·(2−v)

[4·b2·(2−v)+v·d2]·x∗]

II :

{
v > 8·b2

4·b2−d2
u > 4·b·(2−v)

[4·b2·(2−v)+v·d2]·x∗]

(37)

thus asymptote AS of hyperbola H is

AS : v =
8 · b2

4 · b2 − d2
(38)

Along with the assumptions made until now, pair I uniquely determines the region
of stability S of the Nash equilibrium of map T

S :

{
0 < v < 1
0 < u < 4·b·(2−v)

[4·b2·(2−v)+v·d2]·x∗]

(39)

shown in figure 1.

Figure 1: Region of stability S in the (v, u) plane, (a, b, d, cX , cY ) = (2, 0.5, 0.3, 0.2, 0.8)
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u  
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H 8b2

4b2−d2

S

v (u) = 1
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A0

Hyperbola H redefined as

H :

{
u = 4·b·(2−v)

[4·b2·(2−v)+v·d2]·x∗]

0 < v < 1
(40)

represents a bifurcation curve, at which Nash equilibrium of map T looses its stability;
see Gandolfo (1997). Originally, hyperbola H intersects the axes v and u at points
A0 and A2 respectively, coordinates of which are following

A0 = (2, 0)
A2 = (0, 1

b·x∗ ) (41)
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Point A0 is located at the border of the region R (fig. 1). Constant function v(u) = 1,
which forms the rightmost part of the border of the region of stability S intersects
hyperbola H at point A1 = (1, 4·b

(4·b2+d2)·x∗ ).

4.2 Period doubling route to chaos
One of the ways how stability of a dynamical system is lost and complex dynamics,
followed by a chaotic zone, appears as a result of a change in value of one of the model
parameters, is a period doubling route to chaos (PDRC) or in the Russian literature
notation a safe boundary bifurcation scenario (Medio and Lines (2001)). PDRC is
the basic route to chaos, thus the most common in applications.
Let T ≡ T (zt,µ) ≡ T (zt), where T = (T1, T2)′ is a 2×1 function vector, zt = (xt, yt)′

is a 2 × 1 state vector and µ = (u, v, a, b, d, cX , cY )′ is a 7 × 1 parameter vector.
Safe boundary route to chaos begins with a flip bifurcation (bif) of a fixed point of
a map T (zt,µ), which occurs when a single eigenvalue passes through minus one,
for instance at u = ubif,1. The fixed point loses its stability and a stable period-2
cycle is born. Next, period-2 cycle loses its stability at u = ubif,2 and gives rise to
a stable period-4 cycle. As u increases further, the scenario repeats itself over and
over again: each time a period-2k cycle of the map T loses stability through a flip
bifurcation of the map T k+1, which gives rise to an initially stable period-2k+1 cycle,
and so on and so forth. The sequence {ubif,k} of values of u, at which cycles of period
2k appear, has a finite accumulation point ubif,∞. At u = ubif,∞ there exists infinite
number of periodic orbits with periods equal to powers of 2, all of them unstable. The
convergence of u to ubif,∞ is controlled by the universal parameter δ = 4.67, known
also as the Feigenbaum constant, defined for k ≥ 2 as

δ = lim
k→∞

∆k

∆k+1
(42)

where ∆k = ubif,k−ubif,k−1 and ∆k+1 = ubif,k+1−ubif,k (see Feigenbaum (1978)). In
this paper, a simplified formula of the form δ̂ = ∆3

∆4
is used to obtain an approximation

of the associated constant.
Existence of flip bifurcation of the equilibrium point E2 of map T observed on the
bifurcation diagram is confirmed on the graph of the largest Lyapunov characteristic
exponent L1(z0) as well. Lyapunov characteristic exponents of vectorw in the tangent
space at z0 are defined as

L(z0,w) = lim
t→∞

1
t
· ln

(
w′
[
J t(z0)′J t(z0)

]
w)

1
2

(w′w)
1
2

(43)

where J(zt) is the known Jacobian matrix of map T (zt) and

J t(z0) =
t−1∏
i=0

J
(
T i(z0)

)
(44)
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For simplicity vector w is such that (w′w)
1
2 = 1, because Lyapunov characteristic

exponents do not depend on the length of w. Matrix
[
J t(z0)′J t(z0)

] 1
2 determines

to what extent vector w is stretched (contracted) under the action of matrix J t(z0).
Logarithms of the eigenvalues of the matrix

Λ(z0) = lim
t→∞

[
J t(z0)′J t(z0)

] 1
2·t (45)

are Lyapunov characteristic exponents L1(z0) and L2(z0), which measure the
asymptotic, average, exponential rate of stretching (contraction) of vector w (see
Medio and Lines (2001)).

Figure 2: Bifurcation diagrams with respect to parameter u of map T ,
(v, a, b, d, cX , cY ) = (0.3, 2, 0.5, 0.3, 0.2, 0.8)
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However, computation of Lyapunov characteristic exponents from (45) poses two
problems. First, product matrix J t(z0) is often so large for t → ∞ that calculation
of Λ(z0) proves impossible. Second, unless calculation of J t(z0) is such that linear
independence of the columns is maintained, computation leads only to the largest
Lyapunov characteristic exponent L1(z0). To deal with these problems, orthogonal-
triangular decomposition is applied to compute Lyapunov characteristic exponents;
see Eckmann, Kamphorst, Ruelle, Ciliberto (1986), Brown, Bryant, Abarbanel (1991),
Diect, Russel, Van Vleck (1997), Oiwa and Fiedler-Ferrara (1998). Given orthogonal
2 × 2 matrix Q0 chosen at random, decomposition of J(zt) · Qt = Qt+1 · Rt+1 is
obtained for t = 0, 1, ..., S, where Qt+1 is an orthogonal matrix and Rt+1 is an upper
triangular matrix with positive diagonal elements. Lyapunov characteristic exponents
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are approximated as

L̂j(z0) =
1
S
·
S∑
t=1

ln (Rt,jj), j = 1, 2 (46)

where Rt,jj is the j-th diagonal element of Rt and here S = 104.
Intuitive interpretation of the largest Lyapunov characteristic exponent L1(z0) is the
following. Firstly, if L1(z0) < 0, then orbit of z0 converges to a stable periodic
orbit. Secondly, if the orbit of z0 is an unstable periodic or a chaotic orbit, then
L1(z0) > 0. Lastly, L1(z0) = 0 at bifurcation point or if the orbit of z0 converges
to a quasiperiodic orbit; see Medio and Lines (2001). Closely related to the largest
Lyapunov characteristic exponent is the notion of Lyapunov time, calculated as inverse
of the former, that is tL = 1

L1(z0) , which designates a period when dynamical system
moves beyond the bounds of precise predictability and enters a chaotic mode.

Figure 3: Largest Lyapunov characteristic exponent and Lyapunov time graphs with respect
to parameter u of map T , (v, a, b, d, cX , cY ) = (0.3, 2, 0.5, 0.3, 0.2, 0.8)
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Search for determination of the way in which stability of the Nash equilibrium point
E2 of map T is lost, is simplified by the use of the Jury’s conditions, which guarantee
that eigenvalues of the Jacobian matrix evaluated at the fixed point E2 are less than
one in modulus. Occurrence of a flip bifurcation of the stationary point E2 when
a single eigenvalue becomes equal to minus one means violation of the first Jury’s
condition

1 + tr J(E2) + detJ(E2) = 0 ⇒
{
−2 < tr J(E2) < 0
−1 < detJ(E2) < 1 (47)

Combined with numerically simulated bifurcation diagrams and the largest Lyapunov
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Table 1: Period doubling route to chaos of map T ,
(v, a, b, d, cX , cY ) = (0.3, 2, 0.5, 0.3, 0.2, 0.8)

ubif,1 ubif,2 ubif,3 ubif,4 δ̂
0.635 0.791 0.822 0.829 4.429

characteristic exponent graph suggesting that a flip bifurcation does arise, this
necessary albeit insufficient condition for the existence of the associated bifurcation
constitutes strong evidence. In applications where analytical proofs can be difficult
to derive, this procedure is the only one available (Medio and Lines (2005)).
Consequently, initial flip bifurcation point occurs at the following value of the speed
of adjustment of the bounded rational player X

ubif,1 =
4 · b · (2− v) · (2 · b+ d) · (2 · b− d)

[4 · b2 · (2− v) + v · d2] · [2 · b · (a+ b · cX) + d · (a+ b · cY )]
(48)

which gives ubif,1 ≈ 0.635 (fig. 2-3). Numerical estimates of flip bifurcation points
up to k = 4 and of the Feigenbaum constant are shown in table 1.
Given (v, a, b, d, cX , cY ) = (0.3, 2, 0.5, 0.3, 0.2, 0.8), in approximate terms map T has
a stable fixed point E2 = (3.10, 3.33) for 0 < u < 0.635, while for 0.635 < u < 0.791
a stable period-2 cycle, for 0.791 < u < 0.822 a stable period-4 cycle, for
0.822 < u < 0.829 a stable period-8 cycle and for u > 0.829 cycles of higher orders and
eventually chaos arise. Moreover, for 0.945 < u < 0.953 a narrow period-3 window
PW 3, where map T has a stable period-3 cycle, followed by chaotic zone, is observed
both on the bifurcation diagrams and on the largest Lyapunov characteristic exponent
graph (fig. 2-3). Yet, in applications the presence of a certain amount of noise has
to be assumed and practical relevance of narrow periodic windows is questionable.
Eventually, for u∗ = 0.85 prices xt and yt become unpredictable after tL = 5 periods
(fig. 3).

4.3 Strange attractors and fractal dimensions

Chaotic sets are typically characterized by a peculiar geometric structure usually
denoted as fractal. Fractal sets disclose noninteger dimension. The Kolmogorov
capacity and the correlation dimensions are prototypical members of a family of
dimension-like quantities, which can be grouped under the label fractal dimensions
and are suitable for fractal objects, such as strange attractors. However chaoticity,
defined by sensitive dependence on initial conditions, and strangeness, defined by
fractal structure, are independent properties in case of dynamical systems in discrete
time. Hence, there are chaotic attractors that are not strange and strange attractors
that are not chaotic (Medio and Gallo (1995)).
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Figure 4: Strange chaotic attractor (SCA) for (u, v, cX) = (0.8, 0.6, 0.6) and chaotic
attractor (CA) for map T with (u, v, cX) = (0.9, 0.3, 0.2), given (a, b, d, cY ) = (2, 0.5, 0.3, 0.8)
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A good numerical approximation of capacity and correlation dimensions, directly
relating the dimension of an attractor and the associated Lyapunov exponents is the
Lyapunov dimension (DL) suggested by Kaplan and Yorke (1979), defined as

DL = N +

N∑
n=1

Ln(z0)

|LN+1(z0)|
(49)

where N is the largest integer for which
N∑
n=1

Li(z0) > 0, meaning that LN+1(z0) < 0,

and the associated set of Lyapunov exponents is ordered from the largest L1(z0) to
the smallest Lm(z0). Map T is two dimensional hence m = 2 and the estimate of the
Lyapunov dimension DL, which is bounded by m from above, is following

D̂L = 1 +
L̂1(z0)∣∣∣L̂2(z0)

∣∣∣ (50)

Under the assumption that (a, b, d, cY ) = (2, 0.5, 0.3, 0.8) chaotic attractor of map T
with (u, v, cX) = (0.8, 0.6, 0.6) has noninteger Lyapunov dimension, hence exhibits
fractal structure and is strange (SCA), whereas chaotic attractor (CA) of map T with
(u, v, cX) = (0.9, 0.3, 0.2) is Lyapunov two dimensional, therefore is not strange (fig.
4, tab. 2).
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Table 2: Lyapunov characteristic exponents and Lyapunov dimensions of strange
chaotic attractor (SCA) for (u, v, cX) = (0.8, 0.6, 0.6) and chaotic attractor (CA) for
(u, v, cX) = (0.9, 0.3, 0.2) of map T , given (a, b, d, cY ) = (2, 0.5, 0.3, 0.8)

L̂1(z0) L̂2(z0) D̂L

SCA 0.331 −0.808 1.409
CA 0.409 −0.328 2.000

4.4 Sensitive dependence on initial conditions
Sensitive dependence on initial conditions (SDIC) is one of the features of chaotic
maps (Ott (1997)). After Medio and Lines (2001), map T (zt) on a metric space
R2

+ ∪ {0} has sensitive dependence on initial conditions on R2
+ ∪ {0} if there exists

a real number δ > 0 such that for all zI0 ∈ R2
+ ∪ {0} and for all ε > 0, there

exists zII0 ∈ R2
+ ∪ {0}, zII0 6= zI0, and t > 0 such that d(zI0, z

II
0 ) < ε and

d
[
T t(zI0),T t(zII0 )

]
> δ. Showing SDIC of map T analytically is nontrivial, yet

alternative numerical procedure is available.
Assuming (u, v, a, b, d, cX , cY ) = (0.9, 0.3, 2, 0.5, 0.3, 0.2, 0.8), trajectories of prices xt
and yt with marginally differentiated initial values, that is (x0, y0) and (x0+0.0001, y0)
in the first step and (x0, y0) and (x0, y0 + 0.0001) in the second step, are simulated
for t = 0, ..., 100. Approximately for 0 ≤ t < 10, generated time series are
indistinguishable, but from t = 10 onwards differences between them build up rapidly
(fig. 5). Hence, map T features sensitive dependence on initial conditions.

5 Conclusions
In this paper, complex dynamics of a Bertrand duopoly game with heterogeneous
players and differentiated products, modelled with a two dimensional nonlinear map,
was studied in detail. Bounded rational and adaptive expectations were considered.
Conducted analysis revealed that higher periodic and chaotic behavior, such as similar
dynamical properties already proved to exist in homogeneous and heterogeneous
Cournot duopoly games and homogeneous Bertrand duopoly game, is observed in
the associated heterogeneous Bertrand duopoly game as well.
In the analytical part, boundary and the Nash equilibria were found in the considered
model. Next, local stability thereof was examined. Boundary equilibrium was proved
unstable, whereas Nash equilibrium was conditionally stable and its exact stability
condition was derived. In the numerical part, devoted to conditionally stable fixed
point solely, region of stability thereof was defined and visualized in the plane of the
speeds of adjustment. Next, period doubling route to chaos of the map was shown on
bifurcation diagrams and on the largest Lyapunov exponents graph. Approximation of
the Feigenbaum constant was obtained and Lyapunov time was calculated. Then, two
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chaotic attractors were depicted, one of which was strange and Lyapunov dimensions
thereof were computed. Eventually, sensitive dependence of the map on initial
conditions was evidenced.
Obtained results disclosed that participation of one bounded rational player in the
game, with a tendency to overshoot, synonymous to a high speed of adjustment,
already suffices to destabilize the Nash equilibrium, what is a major implication
for practicioners. In case of a considerable overshooting, prices in the Bertrand
duopoly market become unpredictable already after a few periods, as indicated by
the computed Lyapunov time.

Figure 5: SDIC of map T , (u, v, a, b, d, cX , cY ) = (0.9, 0.3, 2, 0.5, 0.3, 0.2, 0.8)
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