
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 151–158
Manuscript received September 30, 2017; revised March, 2018. DOI: 10.24425/119363

PixSel: Images as Book Cipher Keys
An Efficient Implementation Using Partial Homophonic Substitution Ciphers

Mykel Shumay and Gautam Srivastava

Abstract—In this paper we introduce a novel encryption
technique, which we call PixSel. This technique uses images in
place of literature as the book cipher’s key. Conventional book
ciphers possess an unwieldy ciphertext enlargement, creating
ciphertexts multiple times the length of the plaintext. As well,
there is often the issue of a given book not containing the
necessary material for the encipherment of some plaintexts. We
sought to rectify these nuisances with PixSel, possessing a typical
ciphertext enlargement of merely 1% to 20% for text. Using
PixSel, there are also no limitations on encipherable data type,
given a suitable image.

Keywords—book ciphers, ciphertext enlargement, ciphertext
expansion

I. INTRODUCTION

In this paper, we present a novel take on book ciphers,
namely the use of images in place of books as the key; we
call this method PixSel. Given a workable image, PixSel may
be used to encrypt any plaintext, without worry of what the
plaintext is comprised of.

This paper is organized as follows: The rest of this Section
briefly introduces the foundations of homophonic substitution
and book ciphers. Section II is dedicated to definitions and
algorithms, while Section III covers the experimental design.
Section IV discusses the main results and PixSel’s character-
istics, and the paper concludes in Section V.

A. Homophonic Substitution Cipher

Homophonic substitution was an early attempt to make
Frequency Analysis a less powerful method of cryptanalysis.
The basic idea behind homophonic substitution is to allocate
more than one letter or symbol to the higher frequency letters,
and encode a letter with one of its symbols. For example,
you might use 6 different symbols to represent e and t, 2
symbols for m and 1 symbol for z. Clearly, this cipher will
require an alphabet of more than 26 letters, as each letter
needs at least one ciphertext letter, and many need more
than this. The standard way to do this is to include the
numbers in the ciphertext alphabet, but you can also use
a mixture of uppercase, lowercase, upside-down letters, and
artistic symbols.

B. Book Ciphers

A book cipher is a homophonic substitution cipher in which
the key used is a book or other piece of text. Traditionally,
book ciphers work by replacing words in a plaintext with

M. Shumay and G. Srivastava are with the Department of Mathemat-
ics and Computer Science, Brandon University, Brandon, Canada (email:
{shumaymj55, srivastavag}@brandonu.ca).

the location of matching words from a book, giving a page,
line, and which word along that line. It is essential that all
participants have the same edition of the same book.

Problems arise if part of the plaintext does not appear in the
book, in which case it cannot be encoded. An alternative ap-
proach which gets around this problem is to replace individual
letters rather than words. This approach was originally used
by George Scovell for the Duke of Wellington’s army in some
campaigns of the Peninsular War (approximately 1807-1814).

If implemented and used carefully, a book cipher may be
very strong as it acts as a homophonic cipher with an ex-
tremely large number of equivalents [1]. Although, even with
this potential security, the large ciphertext enlargement makes
this method largely undesirable, and the needed circulation of
the same book to all participants is quite inconvenient.

C. Related Works

In recent years, we have seen some innovative links to
the age-old origins of book ciphers. Although not directly
connected to the work presented here, they can help motivate
and attract what we have accomplished with PixSel.

In [2], they focus on the fact that the most efficient attack
on symmetric-key systems is an exhaustive key search. They
present a novel encryption method with infinite key space
by modifying traditional book ciphers. Infinite key space for
them can mean an unbounded entropy of the key space, which
can frustrate any exhaustive key search. Their approach is the
closest found to ours, using multiple common system files as
their key, although they were not able to tackle the issue of
ciphertext enlargement.

In [3], the authors re-innovate book ciphers by removing
some constraints that made them obsolete in the first place.
They reduce the size of the formed ciphertext with LZF
compression after encoding, and create an encrypted key. Their
system also provides an Infinite Key Space similar to [2].
To introduce another level of security, they further hash the
encrypted key, and introduce an Auto-Destruct functionality to
the ciphertext.



152 M. SHUMAY, G. SRIVASTAVA

We looked to build on the ageless concept of book ciphers
with PixSel, efficiently using JPEG or PNG images as book
cipher keys. At its core, PixSel is a novel approach at book
ciphers.

II. ALGORITHM

In this Section we discuss the source of information an
image possesses, and how PixSel makes use of it.

A. Colour Channels (CC’s)
Most JPEG or PNG images are comprised mainly of 3

Colour Channels (CC’s), these being RED, GREEN, and
BLUE (displayed Figure 1). Some images may also have an
ALPHA (opacity) channel, but its inclusion is uncommon.
The colour of any one pixel is a combination of the 3 8-bit
values within each CC.

Fig. 1. An image’s pixels represented by their RGB-values, in a linear
manner.

Definition 1 (Ciphertext Enlargement): The percentage
of ratio (ciphertextsize − plaintextsize)/(plaintextsize)
which describes the increase in length when a message is
encrypted.

First, we section each image into many blocks of 253 pixels
from left-to-right, top-to-bottom; this size allows for every
pixel within a block to be referenced with only one byte, while
reserving 3 bytes for use as Marker Bytes (II-C).

Definition 2 (Block Address): Each block within the image
is addressed by its position within all blocks, from the image’s
top-left corner to the bottom-right corner. For images smaller
than 16 megapixels, each block may be referenced with only
2 bytes, else with 3 bytes for images up to 4.2 gigapixels.

Assume that we have a picture with a width of 100 pixels
and height of 10 pixels (Figure 2). For the sake of illustration,
let us also stretch the picture vertically. This image is now
segmented into linear blocks of 253 pixels.

Fig. 2. Block segmentation of an image

To refer to any one pixel, we first refer to the block in which
it resides, followed by the pixel’s index within that block.
Thus, if many consecutively-used pixels happen to be within
the same block, it is possible to first refer to the block once,
then refer to each individual pixel with only one byte each.

To make use of an image in the same manner as a book in a
book cipher, we first need to identify a source of information
within the image. This would be the values within each CC.
Since each of the 3 CC’s hold 8 bits for each pixel, within
each pixel there are 3 values from 0 to 255. We disregarded the
ALPHA channel as its inclusion was detrimental to PixSel’s
performance due to various characteristics of the channel.

B. Colour Channel (CC) Rotation

The next issue is specifying a pixel’s CC for use; instead of
explicitly stating the CC, and in turn creating an even larger
ciphertext enlargement, the current CC is implicitly defined
by the index of the pixel’s use within its block’s current use.
For example, the 0th plaintext byte is searched for within the
RED channel, the 1st byte is searched for within the GREEN
channel, and so on (see Figure 3). Upon a change in block,
we return to the RED channel. For later reference, the RED
channel may be refered to as the 0th channel, GREEN as the
1st, and BLUE as the 2nd.

Fig. 3. Current Colour Channel implied by index

C. Marker Bytes

To specify that certain actions are to take place during de-
cryption, 3 bytes were reserved as Marker Bytes, as described
below.

Since multiple blocks will be made use of, and the same
domain of values are used both for block addresses and pixel
locations, during decryption one must be made aware of the
context of proceeding bytes. For this, each time a new block
address is to be defined, a Block-Termination Marker of
value 255 is placed in the ciphertext.

Instead of strictly sticking to the method of only rotating
CC’s after each pixel location, it may be beneficial to allow
extra rotations between pixel locations; when it is decided to
be worth the extra byte, a Colour Channel Rotation Marker
of value 254 is placed in the ciphertext. When this marker
is read in decryption, it signals the CC to rotate to the next
available channel.

Finally, it is quite possible to have plaintext bytes that
simply are not available within the used image. If this is the
case, we print a Pairing Marker of value 253, followed by
the locations of two pixels within the previous block whose
values add up to the missing value, both within the current
CC. Upon reading this marker during decryption, the next two
pixels’ values are paired together, within the same CC.

D. Block Selection

For a block to be used for n consecutive bytes, with the
built-in colour rotation in mind, the 0th plaintext byte must
be found in the RED (0th) channel, 1st byte in the GREEN



PIXSEL: IMAGES AS BOOK CIPHER KEYS 153

(1st) channel, and so on, so that the nth byte is found in the
(n mod3)th channel. The use of a block comes to an end
once there is no value available within the current channel to
correctly encipher the current plaintext byte.

It is very unlikely for any one block to have the ability
to encipher the entire plaintext, due to the expected lack of
some bytes within each of the CC’s. From this, it is clear that
each block only has so much potential use at any point in the
plaintext, and so the use of many blocks must be combined
to encipher the plaintext in its entirety.

The less blocks that are used to encipher a given plaintext,
the less block address bytes are required, and so the smaller
the ciphertext enlargement will be. Thus, at any point in the
plaintext, there is a great emphasis on being efficient with
block choice.

Definition 3 (“Optimal” Blocks): For each portion of a
plaintext, the block able to encipher the greatest number of
consecutive plaintext bytes is picked as the block to choose
pixels from for that portion of the plaintext. The address of
each optimal block is recorded within the ciphertext when
used.

Any block may be used as many times as needed, or not at
all. The use of each block, and when it is used, is determined
by the encryption algorithm.

E. Pixel Selection
Given some optimal block and the number of bytes that it

can encipher, the actual locations of the bytes are chosen at
random from all available locations within that block.

F. Augmented Homophonic Substitution Cipher Implementa-
tion

Each block acts as 3 separate Homophonic Substitution
ciphers, each likely being an entirely different combination of
mappings: each block is comprised of three CC’s containing
the values of 253 pixels, and so has three Homophonic
Substitution ciphers of 253 mappings each, with each mapping
being to a value from 0 to 255. Since there are less ciphertext
“letters” than plaintext values, each block’s CC is only a partial
cipher.

G. Encryption Steps
Combining everything so far, we create a procedure to

encrypt a plaintext through imitation, given some image. The
following produces the ciphertext and stores it within the List
C.

1) The plaintext’s underlying bytes are read and stored.
2) The source image’s RGB-values are read and stored.
3) Every block of the image is processed to determine

which may encipher the longest consecutive number of
plaintext bytes, starting at the index of the next byte to
be enciphered. The most optimal block is chosen for
use in the next step, for however many consecutive n0

plaintext bytes it is able to encipher. The optimal block’s
address is appended to the List C.

a) For each plaintext byte, a random pixel of the op-
timal block that holds the correct value is chosen.

The CC automatically rotates after each encipher-
ment of a plaintext byte.

b) If no block is able to encipher any plaintext bytes,
find two pixels in the previously-used block that
sum to the next plaintext value.

4) Once some n0 pixel locations within the optimal block
are found and recorded in List C, a test is run to
determine how manually rotating CC’s an extra time
at the end of the n0 bytes will improve the block’s
usefulness. If this extra n1 bytes is greater than a set
parameter, a Colour Channel Rotation Marker is
recorded at this mark in C, followed by the n1 pixel
locations. This test is called recursively until the increase
in nk bytes is no longer considered satisfactory.

5) Record a Block-Termination Marker at this mark in
C. If there is more plaintext to process, go to step 3.

6) Write the List C to a file.
See Appendix A for a pseudocode version.

H. Decryption Steps

All deciphered plaintext values are stored within the List P .
1) The ciphertext is read and stored.
2) The source image’s RGB-values are read and stored.
3) The first 2 (or 3, depending on the image size) bytes are

read as a block address.
4) Starting at the default CC (RED), bytes after this are

treated as pixel locations within the given block, and
the current CC of that pixel is treated as the plaintext’s
decrypted data, of which is appended to the List P .
The CC rotates after each read pixel location, just as
in encryption.

5) If a Colour Channel Rotation Marker byte is read,
then the CC is rotated once more, and step 4 resumes.
If a Pairing Marker byte is read, then the current
CC’s value of the next two pixel locations are summed.
Otherwise, if a Block-Termination Marker is read, the
current block’s use has come to an end. Finally, if there
is still more ciphertext to process, return to step 3 at the
current ciphertext index.

6) Once all of the ciphertext has been processed and
looked-up, the resulting plaintext data in List P is
written to a file.

See Appendix B for a pseudocode version. The current imple-
mentation relies on the receiver to have knowledge of the file
type, although this may be automated and stored within the
ciphertext with a few extra bytes.

I. Encryption Optimization Techniques

To lower the computational requirements, two simple tech-
niques were implemented to improve the most tasking portions
of PixSel, discussed below.

1) Elitism: It is clear that most images would likely have a
few select portions that are much more suitable than the rest,
and so searching every block each time a new block is to be
chosen leads to little improvement at great computational cost.

To resolve this, we instead prioritize some small percentage
of blocks. These Elite blocks are the blocks most likely to



154 M. SHUMAY, G. SRIVASTAVA

encipher larger amounts of data, as they contain the greatest
variety of bytes in all of their CC’s. When first looking
for the optimal block for a specific segment of plaintext,
the most suitable of the Elite blocks is chosen. Although,
if this optimal Elite block does not permit at least a set
threshold of bytes, the rest of the image is searched for a more
optimal block. This roughly results in (Elitism%/100%)th

the amount of computational time required. The ciphertext
enlargement efficiency is changed very little, as long as the
Elitism parameter is set to about 5% or more.

2) Dynamic Programming: It is often the case that a large,
complex problem may be solved by first solving many simple,
recurring sub-problems, and PixSel is able to make use of this
idea. With this implemented, performance is improved greatly
with only an insignificant increase in memory usage.

J. Greyscale Counterpart

We explored the use of greyscale images for encipherment,
which are images that only carry luminous intensity infor-
mation of the image, or how bright it is at any pixel. Each
pixel of an image converted into greyscale would still have
its RGB CC’s, although each CC would be equal, such that
RED=GREEN=BLUE. Note that there are other methods of
conversion, some of which give differing CC’s.

There are two notable characteristics that make greyscale
images more effective:

1) Even though the domain of values present within any
pixel’s CC is equivalent, all 3 CC’s of any pixel hold
the same value, making the usefulness of an image much
less dependent upon the variety of values within each
CC, and rather dependent upon the variety overall.

2) Within a small region of an image, it seems more
likely that there will be large variations of brightness,
rather than a large variation of colour. The usability of
a greyscale counterpart is enhanced by this property,
and so each block is likely to have a greater variance
of values within. This variety is now spread amongst
all CC’s, reducing the chance to become stuck in a
particular CC during a block’s use.

From this, it is clear that the use of a greyscale image results
in a more stable encryption process due to a general increase
in variety across all CC’s. Thus, the efficiency of each block is
bound to increase, leading to a smaller ciphertext enlargement.

III. EXPERIMENTAL DESIGN

All tests were run on an Intel i7-2600k at 4.6GHz with
28GB of DDR3 SDRAM on a 64-bit version of Windows 7,
with minimal background processes running on the machine.
PixSel was written in Java 1.8.

To ensure accurate results were gathered and that the
machine was “warmed-up” to the task, we performed each
function separately a set number of consecutive runs until it
was processing at its peak performance, and then took the
average of the top 20 runs. The number of runs for each test
were made to be at least double the number of runs required
to reach the peak performance for the encryption/decryption
of any plaintext.

We bencharked PixSel using a JPEG image (Figure 4(a)),
along with its greyscale counterpart (Figure 4(b)). Both images
hold at least one occurrence of each value from 0-255,
meaning that no data is enciphered through pairing. Note that
PixSel functions with either JPEG or PNG source images of
up to 4.2 gigapixels in size.

Fig. 4. Mercury Surface Map, NASA [4]. Colours were added to distinguish
between rock types.

Multiple plaintexts were tested upon, varying both in size
and file format (Table I). We had tested the same plaintext
in different formats specifically to demonstrate how PixSel
is affected by file type. As well, we had attempted the
encipherment of an image, shown in Figure 5. Note that
Anne.txt and Anne.docx were simply created from the text
within Anne.pdf.

TABLE I
PROPERTY OVERVIEW OF TESTED PLAINTEXTS

File Format Size (Bytes)
Lorem Ipsum (392 words) [5] .txt 2,682
Julius Caesar, Shakespeare[6] .txt 116,231
Anne of Green Gables .txt 566,811
Anne of Green Gables .docx 277,802
Anne of Green Gables [7] .pdf 1,137,065
House .jpg 1,574,123

Fig. 5. An abandoned brick house located in southern Manitoba. Image
taken by Mykel Shumay.

All tests were set to use the same percentage of Elitism
(5%), as well as having the same tolerance for what the Elite
blocks’ use resulted in (set to at least 2 bytes); the threshold
was set low purposely to prioritize a faster encryption process



PIXSEL: IMAGES AS BOOK CIPHER KEYS 155

TABLE II
PERFORMANCE ANALYSIS OF PIXSEL USING MERCURY.JPEG (COLOUR, FIGURE 4(A))

File Initialization Time (s) Encryption Time (s) Decryption Time (s) Enlargement
Lorem.txt 0.060089 0.017936 0.000119 11.82%
Caesar.txt 0.067426 0.071351 0.001087 18.52%
Anne.txt 0.064075 0.268013 0.004708 16.87%
Anne.docx 0.062106 0.216520 0.003132 39.27%
Anne.pdf 0.063107 0.877533 0.012523 39.13%
House.jpg 0.062399 1.242338 0.016763 38.99%

TABLE III
PERFORMANCE ANALYSIS OF PIXSEL USING MERCURY.JPEG (GREYSCALE, FIGURE 4(B))

File Initialization Time (s) Encryption Time (s) Decryption Time (s) Enlargement
Lorem.txt 0.057347 0.017132 0.000025 0.56%
Caesar.txt 0.059877 0.047504 0.000785 2.89%
Anne.txt 0.060867 0.184572 0.003819 3.17%
Anne.docx 0.061753 0.220708 0.002740 32.25%
Anne.pdf 0.061977 0.823105 0.010846 28.26%
House.jpg 0.062292 1.242453 0.015808 31.09%

over a more efficient ciphertext enlargement. Thus, it is likely
that a lesser ciphertext enlargement may be achieved, although
the additional computing power needed brings severely dimin-
ishing returns.

The source image must be processed once prior to encryp-
tion/decryption, and always took significantly less than one
tenth of a second (see Table IV). Although this may be a
trivial amount of time for larger plaintexts, it could essentially
double the encryption time of a small plaintext while using a
good image. Note that this does not include the time required
to fetch the image from storage, as this may differ greatly
from system to system.

TABLE IV
IMAGE PROCESSING ANALYSIS

Image Processing Time (s)
Mercury.jpeg (Coloured) 0.018414
Mercury.jpeg (Greyscale) 0.018443

The initialization time for encryption is comprised of the
needed processing to determine which blocks are Elite, along
with indexing the contents of each Elite block. This has been
separated from the encryption time to demonstrate that if this
is all done beforehand and the knowledge is used for multiple
encipherments, this would be a one-time expense. Note that
this initialization time is not present within the decryption
process.

IV. RESULTS

The performance of PixSel with each source image across
all plaintexts is given in this Section. In Tables II and III it can
be seen that the initialization time and decryption time were
near-trivial, and that the encryption time scaled as expected. It
was surprising how much better Figure 4 did across the board
once converted to greyscale, both in ciphertext enlargement
and computational efficiency.

A. Encryption Benchmarking

PixSel’s general behavior when encrypting text documents
is a very efficient ciphertext enlargement and reasonable
computational requirements. This is less so for the encryption
of images, due in part to the great variability that pictures
hold, likely with significant jumps in byte-value within each
pixel.

As can be seen, greyscale counterparts tend to perform
much better in terms of ciphertext enlargement, although,
interestingly, sometimes require roughly the same amount
of computation as their original counterpart. Before bench-
marking, we were expecting to see a close relation between
ciphertext enlargement improvements and encryption time, as
the greyscale counterparts are using many less blocks, and so
require many less searches overall.

It is clear that the performance of our method depends
greatly on the image used, as well as the type of plaintext
that is being encrypted. Both the ciphertext enlargement and
encryption time disparity between an image and its greyscale
counterpart seems to be most profound when encrypting
text, while only the enlargement experiences significant im-
provement when encrypting non-text files. Clearly, in certain
scenarios, PixSel may be very efficient in both computational
requirements and ciphertext enlargement.

B. Decryption Benchmarking

As decryption requires little work, it follows that the task
would not be computationally heavy or time-intensive; the
process consists mainly of reading the image, then looking
up the given pixel positions within the image.

C. Lack of Entropy

It is fairly evident by our methods, such as prioritizing the
use of the most optimal blocks, along with the inclusion of
Elitism, that we had prioritized the lessening of the ciphertext
enlargement over a balanced frequency distribution. With



156 M. SHUMAY, G. SRIVASTAVA

some simple frequency analysis it was found that, without
superencipherment, PixSel’s produced ciphertext was far from
randomly distributed values, and does not differ greatly enough
between multiple encipherments of the same plaintext with
the same image. This is a characteristic that could possibly be
revised in the future.

V. CONCLUSION

A main deterrent to the use of book ciphers is the large
ciphertext enlargement, although PixSel showed that this could
be overcome by using a different approach. PixSel performs
quite well when encrypting text files with good greyscale
images, and is capable of encrypting any data, regardless of
type or structure.

In this paper, we explored an alternative implementation of
a book cipher that uses images in place of literature as the
source material, which we call PixSel. From the experimental
results, the efficient nature and robustness of PixSel is clear.
In comparison to the conventional book cipher, the cipher-
text enlargement was reduced to trivial amounts, while still

maintaining reasonable computation requirements. Although
PixSel may perform differently depending on the data type,
the limitation on encipherable data type was rid of, allowing
more general use of this implementation of a book cipher.

REFERENCES

[1] U. M. Maurer, “Conditionally-perfect secrecy and a provably-secure
randomized cipher,” J. Cryptology, vol. 5, no. 1, pp. 53–66, 1992.
[Online]. Available: http://dx.doi.org/10.1007/BF00191321

[2] C. Wang and S. Ju, “A novel method to implement book cipher,”
JCP, vol. 5, no. 11, pp. 1621–1628, 2010. [Online]. Available:
http://dx.doi.org/10.4304/jcp.5.11.1621-1628

[3] R. Lele, R. Jainani, V. Mikhelkar, A. Nade, and M. V. Meshram, “The
book cipher optimised method to implement encryption and decryption,”
Journal of scientific & technology research, vol. 3, pp. 11–14, 2014.

[4] NASA, “First global topographic model of mercury,”
2016. [Online]. Available: \url{https://www.nasa.gov/feature/
first-global-topographic-model-of-mercury}

[5] “Lorem ipsum.” [Online]. Available: \url{http://www.lipsum.com/}
[6] W. Shakespeare, “The life and death of julius caesar.” [Online].

Available: \url{http://shakespeare.mit.edu/julius caesar/full.html}
[7] L. M. Montgomery, “Anne of green gables.”

[Online]. Available: \url{http://www.freeclassicebooks.com/Lucy%
20Maud%20Montgomery/Anne%20Of%20Green%20Gables.pdf}



PIXSEL: IMAGES AS BOOK CIPHER KEYS 157

APPENDIX A
PIXSEL’S ENCRYPTION PSEUDOCODE

Algorithm 1 PixSel: Encryption
1: P ← Plaintext
2: C ← new List to store Ciphertext
3: Read source image
4: messageIndex← 0

5: while messageIndex < P.length do
6: maxBytes← 0

7: optimalBlock ← null

8: for all Blocks B do
9: rotIndex← 0 . rotIndex tracks the current CC

10: imitated← 0 . Number of bytes B is able to imitate
11: while Any pixel’s value within rotIndexth CC of B = P [messageIndex+ imitated] do
12: imitated← imitated+ 1

13: rotIndex← (rotIndex+ 1)mod3

14: Record pixel’s index within list LB

15: end while
16: if imitated > maxBytes then
17: optimalBlock ← B

18: maxByes← imitated

19: end if
20: end for
21: if maxBytes = 0 then . No appropriate value within the image
22: Append Pairing Marker’s value of 253 to C

23: Find 2 pixels in previous block whose sum = P [messageIndex], append indices to C

24: messageIndex← messageIndex+ 1

25: else
26: messageIndex← messageIndex+ imitated

27: Append optimalBlock’s index to C

28: Append each index of optimalBlock’s used pixels (within LB) to C

29: satisfactory ← true

30: do . Manual rotation test
31: rotIndex← (rotIndex+ 1)mod3

32: Continue search for extra n imitatable bytes of P , starting at messageIndex

33: if n ≥ tolerancePercentage · imitated then
34: Append Colour Channel Rotation Marker’s value of 254 to C

35: Append each extra index of optimalBlock’s used pixels to C

36: messageIndex← messageIndex+ n

37: else
38: satisfactory ← false

39: end if
40: while satisfactory

41: Append Block-Termination Marker’s value of 255 to C . End of optimalBlock

42: end if
43: end while
44: Write C to a file



158 M. SHUMAY, G. SRIVASTAVA

APPENDIX B
PIXSEL’S DECRYPTION PSEUDOCODE

Algorithm 2 PixSel: Decryption
1: C ← Ciphertext
2: P ← new List to store the deciphered Plaintext
3: Read source image
4: index← 0

5: while index < C.length do
6: currentBlock ← next two bytes of C . Or next three bytes, if the image is large
7: index← index+ 2 . Or index← index+ 3

8: rotIndex← 0 . rotIndex tracks the current CC
9: while C[index] 6= 255 do . 255 marks the end of a block’s use

10: if C[index] = 254 then . Manual CC rotation
11: rotIndex← (rotIndex+ 1)mod3

12: else if C[index] = 253 then . A pair of pixels is to follow
13: Sum previous block’s C[index+ 1] and C[index+ 2]’s pixel’s rotIndexth CC’s, append to P

14: index← index+ 2

15: else
16: Append currentBlock’s C[index]th pixel’s rotIndexth CC’s value to P

17: end if
18: index← index+ 1

19: end while
20: index← index+ 1

21: end while
22: Write P to a file


