
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP.159-166

Manuscript received February 13, 2018; revised March, 2018. DOI: 10.24425/119364

Abstract—In this article we describe the SHA-3 algorithm and

its internal permutation in which potential weaknesses are hidden.

The hash algorithm can be used for different purposes, such as

pseudo-random bit sequences generator, key wrapping or one pass

authentication, especially in weak devices (WSN, IoT, etc.).

Analysis of the function showed that successful preimage attacks

are possible for low round hashes, protection from which only

works with increasing the number of rounds inside the function.

When the hash function is used for building lightweight

applications, it is necessary to apply a small number of rounds,

which requires additional security measures. This article proposes

a variant improved hash function protecting against preimage

attacks, which occur on SHA-3. We suggest using an additional

external randomness sources obtained from a lightweight PRNG

or from application of the source data permutation.

Keywords—hash function, SHA-3, Keccak, preimage attack,

lightweight cryptography.

I. INTRODUCTION

HE family of functions, called SHA-3 (Secure Hash

Algorithm-3) is based on Keccak [1], the algorithm that

NIST selected as the winner of the public SHA-3 Cryptographic

Hash Algorithm Competition. The SHA-3 family consists of

four hash functions and two extendable-output functions. SHA-

3 constitutes a structure named the sponge construction;

functions with this structure are called sponge functions.

The permutation is specified as an instance of a family of

permutations, called KECCAK-f, to provide the flexibility to

modify its size and security parameters in the development of

any additional modes.

II. SHA-3 ALGORITHM

The Keccak hash function makes use of the sponge

construction, as depicted in Fig. 1. Keccak has two main

parameters: 𝑟 (bitrate) and 𝑐 (capacity). The sum of those two

parameters makes the state size, which Keccak operates on.

Different values for bitrate and capacity give trade-offs between

speed and security. A higher bitrate gives a faster function at the

expense of lower security. In the SHA -3 proposal, the state size

is 1600 bits. The function uses two phase processing, see Fig. 1.

The initial state is filled with zeros. In the first phase, absorbing,

the state is processed by consecutive applications of the

permutation Keccak-f. When all message blocks have been

processed, the first phase is finished and the second begins,

called squeezing phase. The first r bits of the state are returned

as part of the output bits, interleaved with applications of the

permutation Keccak-f. The second phase is finished after the

desired length of the output has been produced, see [1].

Serhii Onopa and Zbigniew Kotulski are with Warsaw University of

Technology, Poland (e-mail: zkotulsk@tele.pw.edu.pl, 2322314@gmail.com).

Fig.1. The sponge construction [4]

The value of the parameter c is equal to the hash length

multiplied by 2. Keccak can operate on smaller states, for

examples 𝑏{25, 50, 100, 200, 400, 800, 1600}, where 𝑏 is the

width of the permutation. The Keccak-f permutations are

iterated construction consisting of a sequence of almost

identical rounds. The number of rounds 𝑛𝑟 depends on the

permutation width and is given by 𝑛𝑟 = 12 + 12𝑙, where 2𝑙 =
𝑏/25. This gives 24 rounds for Keccak-f[1600]. A Keccak-f

round consists of a sequence of invertible steps, each step

operating as an array 𝑨 of 5 × 5 lanes; the length of lanes is

𝑤{1,2,4,8,16,32,64} (𝑏 = 24𝑤). For Keccak-f[1600] with

𝑐 = 1024 and 𝑟 = 576, we have 𝑟 + 𝑐 = 1600.

In the rest of this section we present a specification of the

Keccak round function (following the authors’ specification and

the FIPS Standard) underlying effect of each map constituting it

on state bits transformations. Thus, the round is defined as:

𝑅𝑜𝑢𝑛𝑑(𝑨, 𝑅𝐶) = 𝜄(𝜒(𝜋(𝜌(𝜃(𝑨)))), 𝑅𝐶).

The pseudo-code of a single round (with a round constant

𝑅𝐶) starts in Fig.2, where the first step θ is presented (see [2]).

𝑅𝑜𝑢𝑛𝑑(𝑨, 𝑅𝐶) {
𝜃 𝑠𝑡𝑒𝑝
𝐶[𝑥] = 𝐴[𝑥, 0] ⊕ 𝐴[𝑥, 1] ⊕ 𝐴[𝑥, 2]
⊕ 𝐴[𝑥, 3] ⊕ 𝐴[𝑥, 4],
𝑓𝑜𝑟𝑎𝑙𝑙 𝑥 𝑖𝑛 (0. . .4)
𝐷[𝑥] = 𝐶[𝑥 − 1] ⊕ 𝑟𝑜𝑡(𝐶[𝑥 + 1],1),
𝑓𝑜𝑟𝑎𝑙𝑙 𝑥 𝑖𝑛 (0. . .4)
𝐴[𝑥, 𝑦] = 𝐴[𝑥, 𝑦] ⊕ 𝐷[𝑥],
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4)

Fig.2. Pseudo-code of 𝜃 step.

The 𝜃 map is linear and aimed at diffusion; it is translation-

invariant in all directions. Its effect can be described as follows:

it adds to each bit 𝑎[𝑥][𝑦][𝑧] the bitwise sum of the parities of

two columns: that of 𝑎[𝑥 − 1][·][𝑧] and that of 𝑎[𝑥 + 1][·
][𝑧 − 1]. A consequence of this is CP-kernel or column parity

Improving security of lightweith SHA-3 against

preimage attacks

Serhii Onopa and Zbigniew Kotulski

T

160 S. ONOPA, Z. KOTULSKI

kernel. Without 𝜃, the Keccak-f round function would not

provide diffusion of any significance. Thanks to the interaction

with 𝜒 (see Fig. 5) each bit at the input of a round potentially

affects 31 bits at its output and each bit at the output of a round

depends on 31 bits at its input. Note that without the translation

of one of the two sheet parities this would only be 25 bits, see

[1].

𝜌 𝑠𝑡𝑒𝑝
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4)
𝐴[𝑥, 𝑦] = 𝑟𝑜𝑡(𝐴[𝑥, 𝑦], 𝑟[𝑥, 𝑦]),
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4)
𝐵[𝑦, 2 ∗ 𝑥 + 3 ∗ 𝑦] = 𝐴[𝑥, 𝑦],

Fig.3. Pseudo-code of 𝜌 step

The map 𝜌 (see Fig.3) consists of translations within the

lanes aimed at providing inter-slice dispersion. Without it,

diffusion between the slices would be very slow. It is

translation-invariant in the z-direction. The inverse of 𝜌 is the

set of lane translations, where the constants are the same, but the

direction is reversed.

𝜋 𝑠𝑡𝑒𝑝
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4)
𝐵[𝑦, 2 ∗ 𝑥 + 3 ∗ 𝑦] = 𝐴[𝑥, 𝑦]

Fig.4. Pseudo-code of 𝜋 step

The map π (see Fig.4) is a transposition of the lanes that

provides dispersion aimed at long-term diffusion. Without it,

Keccak-f would exhibit periodic trails of low weight. 𝜋 operates

in a linear way on the coordinates (𝑥, 𝑦): the lane in position

(𝑥, 𝑦) goes to position (𝑥, 𝑦)𝑀𝑇, with 𝑀 = [
0 1
2 3

] being a

2 × 2 matrix with elements in 𝐺𝐹(5). It follows that the lane in

the origin (0,0) does not change position. As 𝜋 operates on the

slices independently, it is translation-invariant in the z-direction.

The inverse of 𝜋 is defined by 𝑀−1. Many matrices could be

used for 𝜋. In fact, the invertible 2 × 2 matrices with elements

in 𝐺𝐹(5) with the matrix multiplication form a group with 480

elements containing elements of order 1, 2, 3, 4, 5, 6, 8, 10, 12,

20 and 24. Each of these matrices defines a permutation on the

6 axes, and equivalently, on the 6 directions. Thanks to its

linearity, the 5 positions on an axis are mapped to 5 positions on

an axis (not necessarily the same). Similarly, the 5 positions that

are on a line parallel to an axis, are mapped to 5 positions on a

line parallel to the axis, see [1].

𝜒 𝑠𝑡𝑒𝑝
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4)
𝐴[𝑥, 𝑦] = 𝐵[𝑥, 𝑦] ⊕ ((¬ 𝐵[𝑥 + 1, 𝑦]) ∧ 𝐵[𝑥 + 2, 𝑦])

Fig.5. Pseudo-code of χ step

𝜒 (see Fig.5) is the only nonlinear map in Keccak-f.

Without it, the Keccak-f round function would be linear. It

constitutes the parallel application of 5𝑤 S-boxes operating on

5-bit rows. 𝜒 is translation-invariant in all directions and has

algebraic degree two. This has consequences for its differential

propagation and correlation properties, see [1], [2], [3].

𝜄 𝑠𝑡𝑒𝑝
𝐴[0,0] = 𝐴[0,0] ⊕ 𝑅𝐶
𝑟𝑒𝑡𝑢𝑟𝑛 𝐴 }

Fig.6. Pseudo-code of 𝜄 step

The map 𝜄 (see Fig.6) consists of the addition of round

constants and is aimed at disrupting symmetry. Without it, the

round function would be translation-invariant in the z direction

and all rounds of Keccak-f would be equal making it subject to

attacks exploiting symmetry, such as slide attacks. The number

of active bit positions of the round constants, i.e., the bit

positions in which the round constant can differ from 0, is 𝑙 +
 1. As 𝑙 increases, the round constants add more and more

asymmetry. The bits of the round constants are different from

round to round and are taken as the output of a maximum-length

LFSR. The constants are only added in a single lane of the state.

Because of this, the disruption diffuses through 𝜃 and 𝜒 to all

lanes of the state after a single round, see [1].

All the operations on the indices are done modulo 5. 𝐴[𝑥, 𝑦]
denotes a lane in that state and 𝐴 denotes the complete

permutations state array. The constants 𝑟[𝑥, 𝑦] are the rotations

offsets, where 𝑅𝐶 are the round constants. 𝑟𝑜𝑡(𝑊, 𝑚) is the

usual bitwise rotation operation, moving bit at position 𝑖 into

position 𝑖 + 𝑚 in the lane 𝑊. 𝜃 is a linear operation that

provides diffusion to the hash state. 𝜌 mixes bits of a lane using

the rotation and 𝜋 permutes lanes. 𝜒 is the only non-linear

operation, 𝜄 calculates XOR of the round constant with the first

lane, see [2].

III. APPLICATIONS BASED ON THE DUPLEX CONSTRUCTION

Cryptographic hash functions are fundamental components

in different information security applications, such as digital

signature generation and verification, key derivation, and

pseudorandom bit generators. In this section we briefly present

known applications, where Keccak-like functions, especially in

the lightweight form, have been applied or could be applied for

security solutions. The duplex construction can be used as a

pseudo-random bit sequence generator [5], key wrapping tool

[6] or one pass authenticated encryption algorithms [6]. Key

wrapping can provide the assurance of integrity of data and the

confidentiality of cryptographic keys or other data.

Authenticated encryption used a duplex function by including a

secret key in the input. If the duplex function behaves like a

random oracle, the keyed duplex function behaves as a random

function to anyone not knowing the key but having access to the

duplex function.

One more important possible application of SHA-3 is hash

cash, what in the future bitcoin might be applied. Because the

SHA-1 is already broken and SHA-2 is of a similar design, that

there was a problem with collisions for the older hash functions

and SHA-3 fixes this. For hashcash-SHA-3 is that, there is some

debate [7] within the NIST comments process on the proposal

of weakening SHA-3's resistance to preimage attacks down to

128-bit (vs the full hash size, as with previous hashes). The aim

is a small performance gain with the rationale that some hash-

pluggable algorithms do not rely on full-length preimage

resistance, which we propose to improve.

There are also cryptanalytic risks. A practical issue with

switching to hashcash-SHA-3 is that it would invalidate all

existing ASIC mining hardware and so is a change that would

unlikely to be made.

One likely side-effect, however, would be that it would

introduce more memory or pre-computation tradeoffs, which

could make ASICs unprofitable or give advantages to people

with large resources to do the pre-computations. Pre-

IMPROVING SECURITY OF LIGHTWEITH SHA-3 AGAINST PREIMAGE ATTACKS 161

computation advantages would be a motivation to replace the

hash with SHA-3.

IV. ATTACKS ON THE ALGORITHM AND PROPERTIES

EXPLOITED IN ATTACKS

The six SHA-3 functions are designed to provide special

properties, such as resistance to collisions, preimage, and

second preimage attacks [8], [9], [10].

Criteria are laid by developers for permutation is to have no

properties that can be exploited in a shortcut attack when being

used in the sponge construction: bit-oriented structure; bitwise

logical operations and fixed rotations, symmetry, parallelism,

round degree 2, matryoshka structure, eggs in another basket,

see [1].

Now consider the properties used in the attacks, which are

described detail in the paper [11]. The preimage attack

presented in [11] exploits two properties of 𝜃[12]. The first one

is the CP-kernel or the column parity kernel. CP-kernel allows

to stay in very low Hamming weight difference state through the

first round. The second property is the observation that either all

5 bits in each column are left unchanged or all 5 are flipped (the

authors used in the 4-round preimage attack), see [1].

𝑓𝑜𝑟 𝑥 = 0 𝑡𝑜 4 𝑑𝑜
𝐶[𝑥] = 𝑎[𝑥, 0]
𝑓𝑜𝑟 𝑦 = 1 𝑡𝑜 4 𝑑𝑜
𝐶[𝑥] = 𝐶[𝑥] ⊕ 𝑎[𝑥, 𝑦]
𝑒𝑛𝑑 𝑓𝑜𝑟
𝑒𝑛𝑑 𝑓𝑜𝑟
𝑓𝑜𝑟 𝑥 = 0 𝑡𝑜 4 𝑑𝑜
𝐷[𝑥] = 𝐶[𝑥 − 1] ⊕ 𝑅𝑂𝑇(𝐶[𝑥 + 1],1)
𝑓𝑜𝑟 𝑦 = 0 𝑡𝑜 4 𝑑𝑜
𝐴[𝑥, 𝑦] = 𝑎[𝑥, 𝑦] ⊕ 𝐷[𝑥]
𝑒𝑛𝑑 𝑓𝑜𝑟
𝑒𝑛𝑑 𝑓𝑜𝑟

Fig.7. Properties of θ: transformation from the cube to a rectangle

Without 𝜃, the Keccak-f round function would not provide

diffusion of any significance. Its effect can be described as

follows (using transformation of data presented in Fig.7): it adds

to each bit 𝑎[𝑥][𝑦][𝑧] the bitwise sum of the parities of two

columns: that of 𝑎[𝑥 − 1][·][𝑧] and that of 𝑎[𝑥 + 1][·][𝑧 − 1].
A consequence of this is CP-kernel or column parity kernel.

The following describes the difference between the

Keccak-f[1600] permutation and a purely random permutation.

Further analyzing we trace XOR differences between

corresponding bits from two states. 'Active' bit is a bit with

difference 1 and 'inactive' with difference 0, see [11]. We need

paths, which work with probability 1. We choose differential

path starts with 4 active bits such as two of them are in a column

and the other two active are in other column, for two reasons:

the difference state is in the CP-kernel and after first 𝜃 there are

still only 4 active bits; we need a family of differential paths

from which we can construct other paths by changing the

columns with active bits, see [11].

First three steps (𝜃, 𝜌, 𝜋) of a round are linear and a

calculation, how differences change after these steps is simple.

At the 4th step (𝜒 step) we must calculate the non-linear function

𝑦 = 𝑥1⨁𝑥2𝑥3. If 𝑥2 or 𝑥3 is an active or unknown bit, the output

difference is unknown. Hence, this bit is marked as ‘unknown’.

The last step is 𝜄; it calculated XOR of the first lane with a round

constant and does not affect non-linearity. According to this

description, in Fig.8 is illustrated the differential path. Instead,

5 × 5 matrix of lanes there are 25 rows, each representing a

single lane (64 bits). Unknown bits start to appear after 𝜒 in the

1st round. They are spread through the state in the 2nd round

and their number is substantial in the end of the 2nd round. In

the 3rd round 𝜒 changes useful bits to unknown bits. There are

more differential paths like the one presented in Fig. 8. A family

of such distinguishers is used in the preimage attack, see [11].

Round 0

Round 1

Round 2

Round 3

inactive

unknown

active

Fig.8. Differential path used in the preimage attack.

V. ADDITIONAL PROTECTION AGAINST ATTACK

As it is mentioned, in the attacks presented above the

properties of 𝜃 have been exploited. In this paper we propose to

make additional changes after the operation 𝜃 as a

countermeasure to make impossible knowing all differences in

162 S. ONOPA, Z. KOTULSKI

each column. The improved full round function is being

constructed with adding logical operation XOR with some

binary block after 𝜃 step, according to CP-kernel in 𝜃

permutation. In the proposed operation, we can use a sequence

of pseudo-random binary blocks obtained from an external

source, see Fig. 9. In this section we consider three possible

solutions.

Fig. 9 illustrates Algorithm 1 for the case, where we use the

addition operation after 𝜃; specifically, we use operation XOR.

In this scheme symbols 𝑃0, 𝑃1, … 𝑃𝑛 are used to denote the output

binary blocks (of appropriate length) of some external Pseudo-

Random Number Generator (PRNG) or HMAC. Application of

such an additional operation protects the hash algorithm against

attacks in a manner described in the papers [13] and [14]. Such

a solution is the simplest one but to satisfy our expectations, it

requires application of an external PRNG of good quality and of

low computational overhead.

ρ π χ τ

Ρ1

θ

ρ π χ τ

Ρn

θ

M1 Mn

SnS1

Hash

ρ π χ τ

Ρ0

θ

M0

S0

C

Fig.9. Algorithm 1: using external PRNG.

In the next Algorithm 2, illustrated in Fig. 10, we use a

similar approach, which is used to remove the vulnerability.

Here we additionally insert an internal operation, the purpose of

which is pseudo-random selecting a range of data and then

changing the data after the operation 𝜃 via XOR operation. In

Algorithm 1 we generate a sequence of texts 𝑃0, 𝑃1, … 𝑃𝑛 from

the sequence of messages 𝑀0||𝑀1|| … || 𝑀𝑛 by a permutation: a

fixed one or pseudo-random, obtained from an external source

of randomness (some PRNG). In this case we save a calculation

overhead, because at each pass of the algorithm we need only

random permutation of 𝑛 numbers instead of 𝑛 binary blocks of

the length depending on the size of the blocks of SHA-3.

ρ π χ τ

Ρ1

θ

ρ π χ τ

Ρn

θ

M1 Mn

SnS1

Hash

ρ π χ τ

Ρ0

θ

M0

S0

C

M1 Mn M0

P0 P1 P.. Pn

M0 M1 M.. Mn

Fig. 10. Algorithm 2: Improved hash function with the addition of a

pseudo randomness chosen from a data block

Our last proposition is Algorithm 3, illustrated in Fig. 11.

In this algorithm the original SHA-3 round is modified with

application of a pseudo-random generator like those used in the

Petra-2 hash function, see [15]. This approach also makes

impossible the attack of the preimage type, proposed and

considered earlier in papers [11], [13], [16], [17]. Perta-2 is a

Merkle-Damgard type hash function using in its compression

function a simple PRNG. The aim of this generator is to

calculate a permutation of 16 numbers: 1,2, … ,16, which are

stored in table 𝑍 = {𝑖1, 𝑖2, … , 𝑖16}, see [11], which defines

indexes of mixed subblocks of the internal state data block.

Thus, in our Algorithm 3, we propose in each round iteration of

SHA-3, after 𝜃 operation, XOR a pseudo-random binary block

obtained from the input data block by permutation of its

subblocks according to the table 𝑍. An advantage of such a

solution, like in Algorithm 2, is that it has low computational

overhead for randomness generation. Another advantage is that

it does not need any externat PRNG.

P0(H0M0)

M0 M1 M.. Mn

H0 P1(H1M1) P..(H..M..) Pn(HnMn)

H1 H1 H..

ρ π χ τ

Ρ1

θ

ρ π χ τ

Ρn

θ

M1 Mn

SnS1

Hash

ρ π χ τ

Ρ0

θ

M0

S0

C

Mn M0 M1

Hn

Fig. 11. Algorithm 3: Improved hash function with application of the

Petra-2-like PRNG.

Validation of the proposed modified algorithms requires

checking at least their computational effectiveness and verifying

randomness of their outputs. Statistical properties of hash

outputs can be checked out with NIST suite of tests [18].

However, in this paper we restrict our analysis to analyzing

possible statistical dependencies of the output of pure SHA-3

rounds and the rounds modified with adding a binary sequence

after the operation 𝜃. Numerical results of such an analysis is

presented in Section VI.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

Based on the Algorithms 1, 2 and 3 described in this article

and on the scheme, in which it was modified the SHA-3 standard

algorithm, several generated sets of data have been tested and

analyzed. The idea of tests is the following. We introduced the

block of data after the 𝜃 step to XOR it with 𝜃 output. The block

𝑃𝑖 has been changing from 0 to 15. The purpose of calculations

was to show, how the obtained hash value (or, more precisely,

the round output) changes for three different hash inputs,

changing 𝑃𝑖 blocks and for growing number of rounds. First, we

used the Hamming weight to measure a “randomness” of the

IMPROVING SECURITY OF LIGHTWEITH SHA-3 AGAINST PREIMAGE ATTACKS 163

output data changing with 𝑃𝑖 changes. Next, we calculated the

Hamming distance of input and output data to estimate changes

of “correlation” between data blocks after hash transformation,

for growing number of rounds. The full number of rounds that

have been analyzed is 24 but, in this section, we show only the

most representative results.

As the hash input block, we used three variants of the

buffer: a sequence of zeros, named “empty” in further analysis,

a binary representation of four numbers “0”, “1”, “2” and “3”,

named “0123”, and a binary representation of four letters “w”,

“o”, “r” and “d”, named “word”. Below in Fig.12a, Fig.12b,

Fig.12c, Fig.12d, Fig.12e an evolution of the Hamming weight

of the hash changed in the manner described above, for the

buffer “empty” and for different number of rounds: 1, 2, 3, 5,

and 24. In Fig.13a, Fig.13b, Fig.13c, Fig.13d, Fig.13e

analogous changes of the Hamming weight are presented for the

buffer “0123” and for different number of rounds: 1, 2, 3, 5, and

24. Finally, we also investigated the buffer “word” in the

identical experiment, but the graphs obtained do not contain

specific trends or other important dependencies and therefore

they are not shown in plots.

Fig. 12a. Hamming weight. 1 round. Buffer – “empty”.

Fig. 12b. Hamming weight. 2 rounds. Buffer – “empty”.

Fig. 12c. Hamming weight. 3 rounds. Buffer – “empty”.

Fig. 12d. Hamming weight. 5 rounds. Buffer – “empty”.

Fig. 12e. Hamming weight. 24 rounds. Buffer – “empty”.

Fig. 13a. Hamming weight. 1 round. Buffer – “0123”.

Fig. 13b. Hamming weight. 2 rounds. Buffer – “0123”.

Fig. 13c. Hamming weight. 3 rounds. Buffer – “0123”.

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15

220

240

260

280

1 3 5 7 9 11 13 15

220
230
240
250
260
270
280

1 3 5 7 9 11 13 15

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15

230

240

250

260

270

280

1 3 5 7 9 11 13 15

200

220

240

260

280

300

1 3 5 7 9 11 13 15

164 S. ONOPA, Z. KOTULSKI

Fig. 13d. Hamming weight. 5 rounds. Buffer – “0123”.

Fig. 13e. Hamming weight. 24 rounds. Buffer – “0123”.

The next two series of figures contain results presenting

changes of the Hamming distance for our texts. In Fig.14a,

Fig.14b, Fig.14c, Fig.14d, Fig.14e, an evolution of the

Hamming distance between the original SHA-3 round and the

hash changed in the manner described above, for the buffer

“empty” and for different number of rounds: 1, 2, 3, 5, and 24.

The next series of figures, Fig.15a, Fig.15b, Fig.15c, Fig.15d,

Fig.15e, present the analogous Hamming distance for the buffer

“0123” for different number of rounds: 1, 2, 3, 5, and 24.

Similarly to the above described, we also investigated the

Hamming distance for the buffer “word” in an identical

experiment, but the graphs obtained do not contain significant

tendencies or dependencies and therefore they are not shown.

Fig. 14a. Hamming distance. 1 round. Buffer – “empty”.

Fig. 14b. Hamming distance. 2 rounds. Buffer – “empty”

Fig. 14c. Hamming distance. 3 rounds. Buffer – “empty”.

Fig. 14d. Hamming distance. 5 rounds. Buffer – “empty”.

Fig. 14e. Hamming distance. 24 rounds. Buffer – “empty”.

Fig. 15a. Hamming distance. 1 round. Buffer – “0123”.

Fig. 15b. Hamming distance. 2 rounds. Buffer – “0123”.

210

220

230

240

250

260

270

280

1 3 5 7 9 11 13 15

200

220

240

260

280

300

1 3 5 7 9 11 13 15

0

20

40

60

80

1 2 3 4 5 6 7 8 9 101112131415

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 101112131415

230

240

250

260

270

280

1 2 3 4 5 6 7 8 9 101112131415

220

240

260

280

300

1 2 3 4 5 6 7 8 9 101112131415

220

240

260

280

300

1 2 3 4 5 6 7 8 9 101112131415

0

20

40

60

80

1 2 3 4 5 6 7 8 9 101112131415

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 101112131415

IMPROVING SECURITY OF LIGHTWEITH SHA-3 AGAINST PREIMAGE ATTACKS 165

Fig. 15c. Hamming distance. 3 rounds. Buffer – “0123”.

Fig. 15d. Hamming distance. 5 rounds. Buffer – “0123”.

Fig. 15e. Hamming distance. 24 rounds. Buffer – “0123”.

In each experiment we considered 512-bit blocks, so such

binary blocks can be considered as “random” if the number of

“0” bits and “1” bits is approximately equal or do not differ too

much. So, such an equivalence number of bits is 256. Results

presented in the plots could be summarized as:

• For large number of rounds (e.g., 24) the hash output

is pseudorandom even if the input buffer is very

specific, independently if we modify the round

function with a pseudorandom inclusion.

• For a small number of rounds adding extra randomness

after the operation 𝜃 can have significant influence for

some specific input blocks. It has small effect if the

input block is pseudorandom (this results from out

experiment with the buffer “word”).

• There is a border number of iterations of a round (it

could be 3 or 4) where the effect of included internal

randomness rapidly decreases.

SUMMARY AND CONCLUSIONS

Based on SHA-3 standard and the permutation described in

it, is proposed a new type of the construction, where to the

original SHA-3 structure an additional randomness source is

included. A new approach should provide additional strength for

preimage and collision attacks. This scheme is adding a pseudo-

random data block after diffusion operation in the round

permutation and reduces the ability to predict variables after the

first round. In this work we analyzed SHA-3, which is based on

Keccak, the algorithm that NIST selected as a winner of the

public SHA-3 Cryptographic Hash Algorithm Competition

[19]. Next, we described parameters of the Keccak hash

function, which make it possible to manage speed and security

of the sponge construction. These parameters affect the size of

permutation, which is the basis of the sponge construction. The

function uses two phase processing: absorbing and squeezing

phase. We referred to the pseudo-code of a single round of

Keccak, which contains this permutation. Security of the sponge

construction also depends of the number of rounds. One round

consists of five operations: 𝜃, 𝜌, 𝜋, 𝜒, 𝜄. This pseudo-code

describes in detail the effect of these operations on the properties

of the sponge construction, such as: diffusion, inter-slice

dispersion, long term diffusion, nonlinear mapping and

disrupting a symmetry. Cryptographic hash functions are

fundamental components in a variety of information security

application, such as digital signatures generation and

verification, key derivation and pseudorandom bit generation.

We briefly considered the following literature results. The

duplex construction can be used as a pseudo-random bit

sequence generator [6], key wrapping [13] or components of

one pass authenticated encryption algorithms [13], [15]. The six

SHA-3 functions are designed to provide special properties,

such as resistance to collision, preimage, and second preimage

attacks, c.f. [1], [11], [17], [20]. Design criteria laid by the

developers for the permutation are to have no properties that can

be exploited in a shortcut attack, when being used in the sponge

construction: a bit-oriented structure; bitwise logical operations

and fixed rotations, symmetry, parallelism, round degree 2,

matryoshka structure, eggs in another basket, etc., see [1], [17],

[21]. Then, in our considerations we followed an analysis of a

permutation, which helps to evaluate the weak points of the

Keccak function, which is exactly inside this permutation. We

considered the properties used in the attacks and highlighted

those used in the attack, such as CP-kernel, and observed the

behavior of the state's bits, what is confirmed by the references

to the work, see [12], [16]. In the preimage attack, used by [22],

there were exploited two properties of 𝜃. The first one is the CP-

kernel or column parity kernel. The CP-kernel allows to stay in

a very low Hamming weight difference to state through the first

round. The second property is the observation that either all 5

bits in each column are left unchanged or all 5 are flipped (the

authors used them in the 4-round preimage attack, see [2], [22],

[14]). As mentioned above, in the attacks there were used the

properties 𝜃. Therefore, to prevent such attacks we proposed to

make additional block data changes after the operation 𝜃.

Consequently, it would make impossible to know all the

differences in each data column. We proposed to improve the

full round of Keccak in three algorithms: Algorithm 1, 2, and 3.

A new approach should provide additional strength for the

preimage and the collision attacks.

The main observation of the paper was the effect of the

number of rounds used in the sponge function. If the number is

small, then successfully implemented attacks are possible. They

are effective, and they could be used in some low-performance

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 101112131415

200

220

240

260

280

1 2 3 4 5 6 7 8 9 101112131415

200

220

240

260

280

300

1 2 3 4 5 6 7 8 9 101112131415

166 S. ONOPA, Z. KOTULSKI

devices, where SHA-3 with only a small number of rounds can

be applied. Also, looking to the future, it must be assumed the

rapid development of algorithms that allow to use this type of

attacks with many rounds. Having all the above, we proposed

building and developing additional protection against the

preimage attack. These countermeasures would remove the

weak spots inside the round function, detailed CP-kernel and

further.

We proposed inserting an additional operation after the

permutation 𝜃, using three versions of modifications used in this

scheme. First, we used after the first permutation XOR of an

output of some pseudorandom bitstream generator (possibly a

secret key, what results with a new HMAC construction). In the

second case we proposed using a pseudorandom permutation of

the input data blocks. The third scheme assumed using elements

of an additional algorithm, which is Petra-2-like pseudorandom

permutation to provide additional randomness to the input data.

Tests and analyses were performed by changing the last bits

after the operation 𝜃. The above considerations shown the

dependences and specifically the increase of the Hamming

weights and the Hamming distances for buffers: “empty” and

“0123”, to the random equivalent values. Analogous

characteristics for the buffer “word” remained unchanged. The

obtained data confirm the theoretical assumption of an increase

in resistance to attacks using the CP-kernel for small number of

rounds used in SHA-3. Using such changes in the low round

number SHA-3 and the algorithms proposed will ensure the

stability of the hash algorithm in low-performance devices and

can also prevent the future development of such attacks.

REFERENCES

[1] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge

function family main document, http: //keccak.noekeon.org/Keccak-main-

2.1.pdf.
[2] FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions, csrc.nist.gov/publications/drafts/fips202/fips_202_

draft.pdf.
[3] Najjar M., Stokłosa J., The nonlinearity of homogenous Boolean functions

and the design of strong cryptographic algorithms. Burakowski W.,

Wieczorek A. (eds.), Regional Conference on Military Communication
and Information Systems. Zegrze 1999, Vol. 2, 71–76.

[4] Chengxin Qu, Seberry J., Pieprzyk J., Homogenous bent functions

(preprint), University of Wollongong, NSW, Australia 1998.G. Eason, B.

Noble, and I.N. Sneddon, “On certain integrals of Lipschitz-Hankel type

involving products of Bessel functions,” Phil. Trans. Roy. Soc. London,
vol. A247, pp. 529-551, April 1955. (references)

[5] Bertoni G., Daemen J., Peeters M., and Assche G., Sponge-based pseudo-

random number generators, CHES 2010: Cryptographic Hardware and
Embedded Systems, CHES 2010 p.33-47.

[6] Borowski M., Gliwa R., Rozwój algorytmów uwierzytelnionego

szyfrowania, www.wil.waw.pl/art_prac/2014/PTiWT_8-9_14_3.pdf.
[7] https://en.bitcoin.it/wiki/Hashcash

[8] Dinur I., Security Evaluation of SHA-3, https://www.cryptrec.go.jp/

estimation/techrep_id2402.pdf.
[9] Dinur I., P Morawiecki P., J Pieprzyk J., Srebrny M., Straus M., Cube

Attacks and Cube-attack-like Cryptanalysis on the Round-reduced Keccak

Sponge Function, https://eprint.iacr.org/2014/736.
[10] Morawiecki P., Malicious Keccak, https://eprint.iacr.org/2015/1085.

[11] Morawiecki P., Pieprzyk J., Srebrny M., and Straus M.: Preimage attacks

on the round-reduced Keccak with the aid of differential cryptanalysis,
https://eprint.iacr.org/2013/561.

[12] Dinur I., Morawiecki P., J Pieprzyk J., Srebrny M., Straus M., Practical

Complexity Cube Attacks on Round-Reduced Keccak Sponge Function,
https://eprint.iacr.org/2014/259.pdf

[13] Morawiecki P., Pieprzyk J and Srebrny M. Rotational cryptanalysis of

round-reduced Keccak. IACR Cryptology ePrint Archive, 20 12, pp. 546-
562.

[14] Chang D. , Kumar A., Morawiecki P., Sanadhya S., 1st and 2nd Preimage

Attacks on 7, 8 and 9 Rounds of Keccak-224,256,384,512,
http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/documents/chang_

paper_sha3_2014_workshop.pdf.

[15] Najjar M., Stokłosa J., Petra-2 cryptographic hash function, NATO
Regional Conference on Military Communications and Information

Systems 2001, Zegrze, 2001, vol. I, 317–320.

[16] Lathrop J., Cube Attacks on Cryptographic Hash Functions,
http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1653&context=th

eses.
[17] Sekar G., Bhattacharya S., Practical (Second) Preimage Attacks on TCS

SHA-3, https://eprint.iacr.org/2013/150.pdf.

[18] NIST SP 800-22rev1a, A Statistical Test Suite for the Validation of
Random Number Generators and Pseudo Random Number Generators for

Cryptographic Applications, April 27, 2010.

[19] https://csrc.nist.gov/projects/hash-functions/sha-3-project
[20] Dinur I., and Shami A, Cube Attacks on Tweakable Black Box

Polynomials, https://eprint.iacr.org/2008/385.pdf

[21] Borowski M., Cryptographic Applications of the Duplex Construction,
https://journals.umcs.pl/ai/article/download/3389/2583.

[22] Sekar G., Bhattacharya S., Practical (Second) Preimage Attacks on TCS

SHA-3, https://eprint.iacr.org/2013/150.pdf.

