
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64,  NO. 2, PP.159-166 

Manuscript received February 13, 2018; revised March, 2018.                                           DOI: 10.24425/119364 

 

 

Abstract—In this article we describe the SHA-3 algorithm and 

its internal permutation in which potential weaknesses are hidden.  

The hash algorithm can be used for different purposes, such as 

pseudo-random bit sequences generator, key wrapping or one pass 

authentication, especially in weak devices (WSN, IoT, etc.). 

Analysis of the function showed that successful preimage attacks 

are possible for low round hashes, protection from which only 

works with increasing the number of rounds inside the function. 

When the hash function is used for building lightweight 

applications, it is necessary to apply a small number of rounds, 

which requires additional security measures. This article proposes 

a variant improved hash function protecting against preimage 

attacks, which occur on SHA-3. We suggest using an additional 

external randomness sources obtained from a lightweight PRNG 

or from application of the source data permutation.  

 
Keywords—hash function, SHA-3, Keccak, preimage attack, 

lightweight cryptography. 

I. INTRODUCTION 

HE family of functions, called SHA-3 (Secure Hash 

Algorithm-3) is based on Keccak [1], the algorithm that 

NIST selected as the winner of the public SHA-3 Cryptographic 

Hash Algorithm Competition. The SHA-3 family consists of 

four hash functions and two extendable-output functions. SHA-

3 constitutes a structure named the sponge construction; 

functions with this structure are called sponge functions.  

The permutation is specified as an instance of a family of 

permutations, called KECCAK-f, to provide the flexibility to 

modify its size and security parameters in the development of 

any additional modes.  

II. SHA-3 ALGORITHM  

The Keccak hash function makes use of the sponge 

construction, as depicted in Fig. 1. Keccak has two main 

parameters: 𝑟 (bitrate) and 𝑐 (capacity). The sum of those two 

parameters makes the state size, which Keccak operates on. 

Different values for bitrate and capacity give trade-offs between 

speed and security. A higher bitrate gives a faster function at the 

expense of lower security. In the SHA -3 proposal, the state size 

is 1600 bits. The function uses two phase processing, see Fig. 1. 

The initial state is filled with zeros. In the first phase, absorbing, 

the state is processed by consecutive applications of the 

permutation Keccak-f. When all message blocks have been 

processed, the first phase is finished and the second begins, 

called squeezing phase. The first r bits of the state are returned 

as part of the output bits, interleaved with applications of the 

permutation Keccak-f. The second phase is finished after the 

desired length of the output has been produced, see [1].  
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Fig.1. The sponge construction [4]  

 

The value of the parameter c is equal to the hash length 

multiplied by 2. Keccak can operate on smaller states, for 

examples 𝑏{25, 50, 100, 200, 400, 800, 1600}, where 𝑏 is the 

width of the permutation. The Keccak-f permutations are 

iterated construction consisting of a sequence of almost 

identical rounds. The number of rounds 𝑛𝑟 depends on the 

permutation width and is given by 𝑛𝑟 = 12 + 12𝑙, where 2𝑙 =
𝑏/25. This gives 24 rounds for Keccak-f[1600]. A Keccak-f 

round consists of a sequence of invertible steps, each step 

operating as an array 𝑨 of 5 × 5 lanes; the length of lanes is 

𝑤{1,2,4,8,16,32,64} (𝑏 = 24𝑤). For Keccak-f[1600] with 

𝑐 = 1024 and 𝑟 = 576, we have 𝑟 + 𝑐 = 1600.  

In the rest of this section we present a specification of the 

Keccak round function (following the authors’ specification and 

the FIPS Standard) underlying effect of each map constituting it 

on state bits transformations. Thus, the round is defined as:  

 

𝑅𝑜𝑢𝑛𝑑(𝑨, 𝑅𝐶)  =  𝜄(𝜒(𝜋(𝜌(𝜃(𝑨)))), 𝑅𝐶). 
 

The pseudo-code of a single round (with a round constant 

𝑅𝐶) starts in Fig.2, where the first step θ is presented (see [2]). 

 
𝑅𝑜𝑢𝑛𝑑(𝑨, 𝑅𝐶) { 
𝜃 𝑠𝑡𝑒𝑝  
𝐶[𝑥]  =  𝐴[𝑥, 0]  ⊕  𝐴[𝑥, 1]  ⊕  𝐴[𝑥, 2]  
⊕  𝐴[𝑥, 3]  ⊕  𝐴[𝑥, 4],                                                     
𝑓𝑜𝑟𝑎𝑙𝑙 𝑥 𝑖𝑛 (0. . .4)  
𝐷[𝑥]  =  𝐶[𝑥 − 1]  ⊕  𝑟𝑜𝑡(𝐶[𝑥 + 1],1), 
𝑓𝑜𝑟𝑎𝑙𝑙 𝑥 𝑖𝑛 (0. . .4)  
𝐴[𝑥, 𝑦]  =  𝐴[𝑥, 𝑦]  ⊕  𝐷[𝑥],                                           
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4) 

Fig.2. Pseudo-code of  𝜃 step.  

 

The 𝜃 map is linear and aimed at diffusion; it is translation-

invariant in all directions. Its effect can be described as follows: 

it adds to each bit 𝑎[𝑥][𝑦][𝑧] the bitwise sum of the parities of 

two columns: that of 𝑎[𝑥 − 1][·][𝑧] and that of 𝑎[𝑥 +  1][·
][𝑧 − 1]. A consequence of this is CP-kernel or column parity 
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kernel. Without 𝜃, the Keccak-f round function would not 

provide diffusion of any significance. Thanks to the interaction 

with 𝜒 (see Fig. 5) each bit at the input of a round potentially 

affects 31 bits at its output and each bit at the output of a round 

depends on 31 bits at its input. Note that without the translation 

of one of the two sheet parities this would only be 25 bits, see 

[1].  
 

𝜌 𝑠𝑡𝑒𝑝 
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4)  
𝐴[𝑥, 𝑦]  =  𝑟𝑜𝑡(𝐴[𝑥, 𝑦], 𝑟[𝑥, 𝑦]), 
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4) 
𝐵[𝑦, 2 ∗ 𝑥 + 3 ∗ 𝑦]  =  𝐴[𝑥, 𝑦], 

Fig.3. Pseudo-code of 𝜌 step  

 

The map 𝜌 (see Fig.3) consists of translations within the 

lanes aimed at providing inter-slice dispersion. Without it, 

diffusion between the slices would be very slow. It is 

translation-invariant in the z-direction. The inverse of 𝜌 is the 

set of lane translations, where the constants are the same, but the 

direction is reversed. 
 

𝜋 𝑠𝑡𝑒𝑝  
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4)  
𝐵[𝑦, 2 ∗ 𝑥 + 3 ∗ 𝑦]  =  𝐴[𝑥, 𝑦] 

Fig.4. Pseudo-code of  𝜋 step   
 

The map π (see Fig.4) is a transposition of the lanes that 

provides dispersion aimed at long-term diffusion. Without it, 

Keccak-f would exhibit periodic trails of low weight. 𝜋 operates 

in a linear way on the coordinates (𝑥, 𝑦): the lane in position 

(𝑥, 𝑦) goes to position (𝑥, 𝑦)𝑀𝑇, with 𝑀 =  [
0 1
2 3

 ] being a 

2 × 2 matrix with elements in 𝐺𝐹(5). It follows that the lane in 

the origin (0,0) does not change position. As 𝜋 operates on the 

slices independently, it is translation-invariant in the z-direction. 

The inverse of 𝜋 is defined by 𝑀−1. Many matrices could be 

used for 𝜋. In fact, the invertible 2 × 2 matrices with elements 

in 𝐺𝐹(5) with the matrix multiplication form a group with 480 

elements containing elements of order 1, 2, 3, 4, 5, 6, 8, 10, 12, 

20 and 24. Each of these matrices defines a permutation on the 

6 axes, and equivalently, on the 6 directions. Thanks to its 

linearity, the 5 positions on an axis are mapped to 5 positions on 

an axis (not necessarily the same). Similarly, the 5 positions that 

are on a line parallel to an axis, are mapped to 5 positions on a 

line parallel to the axis, see [1].  
 

𝜒 𝑠𝑡𝑒𝑝  
𝑓𝑜𝑟𝑎𝑙𝑙 (𝑥, 𝑦) 𝑖𝑛 (0. . .4,0. . .4)  
𝐴[𝑥, 𝑦]  =  𝐵[𝑥, 𝑦]  ⊕  ((¬ 𝐵[𝑥 + 1, 𝑦]) ∧   𝐵[𝑥 + 2, 𝑦]) 

Fig.5. Pseudo-code of χ step 

 

𝜒 (see Fig.5) is the only nonlinear map in Keccak-f. 

Without it, the Keccak-f round function would be linear. It 

constitutes the parallel application of 5𝑤 S-boxes operating on 

5-bit rows. 𝜒 is translation-invariant in all directions and has 

algebraic degree two. This has consequences for its differential 

propagation and correlation properties, see [1], [2], [3].  
 

𝜄 𝑠𝑡𝑒𝑝  
𝐴[0,0]  =  𝐴[0,0]  ⊕  𝑅𝐶 
𝑟𝑒𝑡𝑢𝑟𝑛 𝐴 } 

Fig.6. Pseudo-code of 𝜄 step  

The map 𝜄 (see Fig.6) consists of the addition of round 

constants and is aimed at disrupting symmetry. Without it, the 

round function would be translation-invariant in the z direction 

and all rounds of Keccak-f would be equal making it subject to 

attacks exploiting symmetry, such as slide attacks. The number 

of active bit positions of the round constants, i.e., the bit 

positions in which the round constant can differ from 0, is 𝑙 +
 1. As 𝑙 increases, the round constants add more and more 

asymmetry. The bits of the round constants are different from 

round to round and are taken as the output of a maximum-length 

LFSR. The constants are only added in a single lane of the state. 

Because of this, the disruption diffuses through 𝜃 and 𝜒 to all 

lanes of the state after a single round, see [1].  

All the operations on the indices are done modulo 5. 𝐴[𝑥, 𝑦] 
denotes a lane in that state and 𝐴 denotes the complete 

permutations state array. The constants 𝑟[𝑥, 𝑦] are the rotations 

offsets, where 𝑅𝐶 are the round constants.  𝑟𝑜𝑡(𝑊, 𝑚) is the 

usual bitwise rotation operation, moving bit at position 𝑖 into 

position 𝑖 + 𝑚 in the lane 𝑊. 𝜃 is a linear operation that 

provides diffusion to the hash state. 𝜌 mixes bits of a lane using 

the rotation and 𝜋 permutes lanes. 𝜒 is the only non-linear 

operation, 𝜄 calculates XOR of the round constant with the first 

lane, see [2].  

III. APPLICATIONS BASED ON THE DUPLEX CONSTRUCTION  

Cryptographic hash functions are fundamental components 

in different information security applications, such as digital 

signature generation and verification, key derivation, and 

pseudorandom bit generators. In this section we briefly present 

known applications, where Keccak-like functions, especially in 

the lightweight form, have been applied or could be applied for 

security solutions. The duplex construction can be used as a 

pseudo-random bit sequence generator [5], key wrapping tool 

[6] or one pass authenticated encryption algorithms [6]. Key 

wrapping can provide the assurance of integrity of data and the 

confidentiality of cryptographic keys or other data. 

Authenticated encryption used a duplex function by including a 

secret key in the input. If the duplex function behaves like a 

random oracle, the keyed duplex function behaves as a random 

function to anyone not knowing the key but having access to the 

duplex function.  

One more important possible application of SHA-3 is hash 

cash, what in the future bitcoin might be applied. Because the 

SHA-1 is already broken and SHA-2 is of a similar design, that 

there was a problem with collisions for the older hash functions 

and SHA-3 fixes this. For hashcash-SHA-3 is that, there is some 

debate [7] within the NIST comments process on the proposal 

of weakening SHA-3's resistance to preimage attacks down to 

128-bit (vs the full hash size, as with previous hashes). The aim 

is a small performance gain with the rationale that some hash-

pluggable algorithms do not rely on full-length preimage 

resistance, which we propose to improve.  

There are also cryptanalytic risks. A practical issue with 

switching to hashcash-SHA-3 is that it would invalidate all 

existing ASIC mining hardware and so is a change that would 

unlikely to be made. 

One likely side-effect, however, would be that it would 

introduce more memory or pre-computation tradeoffs, which 

could make ASICs unprofitable or give advantages to people 

with large resources to do the pre-computations. Pre-



IMPROVING SECURITY OF LIGHTWEITH SHA-3 AGAINST PREIMAGE ATTACKS 161 

 

computation advantages would be a motivation to replace the 

hash with SHA-3. 

IV. ATTACKS ON THE ALGORITHM AND PROPERTIES 

EXPLOITED IN ATTACKS  

The six SHA-3 functions are designed to provide special 

properties, such as resistance to collisions, preimage, and 

second preimage attacks [8], [9], [10]. 

Criteria are laid by developers for permutation is to have no 

properties that can be exploited in a shortcut attack when being 

used in the sponge construction: bit-oriented structure; bitwise 

logical operations and fixed rotations, symmetry, parallelism, 

round degree 2, matryoshka structure, eggs in another basket, 

see [1].  

Now consider the properties used in the attacks, which are 

described detail in the paper [11]. The preimage attack 

presented in [11] exploits two properties of 𝜃[12]. The first one 

is the CP-kernel or the column parity kernel. CP-kernel allows 

to stay in very low Hamming weight difference state through the 

first round. The second property is the observation that either all 

5 bits in each column are left unchanged or all 5 are flipped (the 

authors used in the 4-round preimage attack), see [1].  

 

𝑓𝑜𝑟 𝑥 =  0 𝑡𝑜 4 𝑑𝑜  
𝐶[𝑥]  =  𝑎[𝑥, 0]  
𝑓𝑜𝑟 𝑦 =  1 𝑡𝑜 4 𝑑𝑜 
𝐶[𝑥]  =  𝐶[𝑥] ⊕ 𝑎[𝑥, 𝑦]  
𝑒𝑛𝑑 𝑓𝑜𝑟  
𝑒𝑛𝑑 𝑓𝑜𝑟  
𝑓𝑜𝑟 𝑥 =  0 𝑡𝑜 4 𝑑𝑜 
𝐷[𝑥]  =  𝐶[𝑥 − 1] ⊕ 𝑅𝑂𝑇(𝐶[𝑥 +  1],1)  
𝑓𝑜𝑟 𝑦 =  0 𝑡𝑜 4 𝑑𝑜  
𝐴[𝑥, 𝑦]  =  𝑎[𝑥, 𝑦] ⊕ 𝐷[𝑥]  
𝑒𝑛𝑑 𝑓𝑜𝑟  
𝑒𝑛𝑑 𝑓𝑜𝑟 

Fig.7. Properties of θ: transformation from the cube to a rectangle  

 

Without 𝜃, the Keccak-f round function would not provide 

diffusion of any significance. Its effect can be described as 

follows (using transformation of data presented in Fig.7): it adds 

to each bit 𝑎[𝑥][𝑦][𝑧] the bitwise sum of the parities of two 

columns: that of 𝑎[𝑥 − 1][·][𝑧] and that of 𝑎[𝑥 +  1][·][𝑧 − 1]. 
A consequence of this is CP-kernel or column parity kernel.  

The following describes the difference between the 

Keccak-f[1600] permutation and a purely random permutation. 

Further analyzing we trace XOR differences between 

corresponding bits from two states. 'Active' bit is a bit with 

difference 1 and 'inactive' with difference 0, see [11]. We need 

paths, which work with probability 1. We choose differential 

path starts with 4 active bits such as two of them are in a column 

and the other two active are in other column, for two reasons: 

the difference state is in the CP-kernel and after first 𝜃 there are 

still only 4 active bits; we need a family of differential paths 

from which we can construct other paths by changing the 

columns with active bits, see [11].  

First three steps (𝜃, 𝜌, 𝜋) of a round are linear and a 

calculation, how differences change after these steps is simple. 

At the 4th step (𝜒 step) we must calculate the non-linear function 

𝑦 = 𝑥1⨁𝑥2𝑥3. If 𝑥2 or 𝑥3 is an active or unknown bit, the output 

difference is unknown. Hence, this bit is marked as ‘unknown’. 

The last step is 𝜄; it calculated XOR of the first lane with a round 

constant and does not affect non-linearity. According to this 

description, in Fig.8 is illustrated the differential path. Instead, 

5 × 5 matrix of lanes there are 25 rows, each representing a 

single lane (64 bits). Unknown bits start to appear after 𝜒 in the 

1st round. They are spread through the state in the 2nd round 

and their number is substantial in the end of the 2nd round. In 

the 3rd round 𝜒 changes useful bits to unknown bits. There are 

more differential paths like the one presented in Fig. 8. A family 

of such distinguishers is used in the preimage attack, see [11]. 

 

Round 0

Round 1

Round 2

Round 3 

inactive

unknown

active

Fig.8. Differential path used in the preimage attack. 

 

V. ADDITIONAL PROTECTION AGAINST ATTACK 

As it is mentioned, in the attacks presented above the 

properties of 𝜃 have been exploited. In this paper we propose to 

make additional changes after the operation 𝜃 as a 

countermeasure to make impossible knowing all differences in 
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each column. The improved full round function is being 

constructed with adding logical operation XOR with some 

binary block after 𝜃 step, according to CP-kernel in 𝜃 

permutation. In the proposed operation, we can use a sequence 

of pseudo-random binary blocks obtained from an external 

source, see Fig. 9. In this section we consider three possible 

solutions. 

Fig. 9 illustrates Algorithm 1 for the case, where we use the 

addition operation after 𝜃; specifically, we use operation XOR. 

In this scheme symbols 𝑃0, 𝑃1, … 𝑃𝑛 are used to denote the output 

binary blocks (of appropriate length) of some external Pseudo-

Random Number Generator (PRNG) or HMAC. Application of 

such an additional operation protects the hash algorithm against 

attacks in a manner described in the papers [13] and [14]. Such 

a solution is the simplest one but to satisfy our expectations, it 

requires application of an external PRNG of good quality and of 

low computational overhead.  

 

ρ π χ  τ 

Ρ1 

θ  

ρ π χ  τ 

Ρn 

θ  

M1 Mn

SnS1

Hash

ρ π χ  τ 

Ρ0 

θ  

M0

S0

C

 
Fig.9. Algorithm 1: using external PRNG. 

In the next Algorithm 2, illustrated in Fig. 10, we use a 

similar approach, which is used to remove the vulnerability. 

Here we additionally insert an internal operation, the purpose of 

which is pseudo-random selecting a range of data and then 

changing the data after the operation 𝜃 via XOR operation. In 

Algorithm 1 we generate a sequence of texts 𝑃0, 𝑃1, … 𝑃𝑛  from 

the sequence of messages 𝑀0||𝑀1|| … || 𝑀𝑛 by a permutation: a 

fixed one or pseudo-random, obtained from an external source 

of randomness (some PRNG). In this case we save a calculation 

overhead, because at each pass of the algorithm we need only 

random permutation of 𝑛 numbers instead of 𝑛 binary blocks of 

the length depending on the size of the blocks of SHA-3.  

 

ρ π χ  τ 

Ρ1 

θ  

ρ π χ  τ 

Ρn 

θ  

M1 Mn

SnS1

Hash

ρ π χ  τ 

Ρ0 

θ  

M0

S0

C

M1 Mn  M0  

P0  P1  P.. Pn  

M0  M1  M.. Mn  

 
Fig. 10. Algorithm 2: Improved hash function with the addition of a 

pseudo randomness chosen from a data block 

Our last proposition is Algorithm 3, illustrated in Fig. 11. 

In this algorithm the original SHA-3 round is modified with 

application of a pseudo-random generator like those used in the 

Petra-2 hash function, see [15]. This approach also makes 

impossible the attack of the preimage type, proposed and 

considered earlier in papers [11], [13], [16], [17]. Perta-2 is a 

Merkle-Damgard type hash function using in its compression 

function a simple PRNG. The aim of this generator is to 

calculate a permutation of 16 numbers: 1,2, … ,16, which are 

stored in table 𝑍 = {𝑖1, 𝑖2, … , 𝑖16}, see [11], which defines 

indexes of mixed subblocks of the internal state data block. 

Thus, in our Algorithm 3, we propose in each round iteration of 

SHA-3, after 𝜃 operation, XOR a pseudo-random binary block 

obtained from the input data block by permutation of its 

subblocks according to the table 𝑍. An advantage of such a 

solution, like in Algorithm 2, is that it has low computational 

overhead for randomness generation. Another advantage is that 

it does not need any externat PRNG.  

 

P0(H0M0 ) 

M0  M1  M.. Mn  

H0  P1(H1M1 ) P..(H..M.. ) Pn(HnMn ) 

H1 H1 H..

ρ π χ  τ 

Ρ1 

θ  

ρ π χ  τ 

Ρn 

θ  

M1 Mn

SnS1

Hash

ρ π χ  τ 

Ρ0 

θ  

M0

S0

C

Mn  M0  M1

Hn

 
Fig. 11. Algorithm 3: Improved hash function with application of the 

Petra-2-like PRNG.  

Validation of the proposed modified algorithms requires 

checking at least their computational effectiveness and verifying 

randomness of their outputs. Statistical properties of hash 

outputs can be checked out with NIST suite of tests [18].  

However, in this paper we restrict our analysis to analyzing 

possible statistical dependencies of the output of pure SHA-3 

rounds and the rounds modified with adding a binary sequence 

after the operation 𝜃. Numerical results of such an analysis is 

presented in Section VI.  

 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 

Based on the Algorithms 1, 2 and 3 described in this article 

and on the scheme, in which it was modified the SHA-3 standard 

algorithm, several generated sets of data have been tested and 

analyzed. The idea of tests is the following. We introduced the 

block of data after the 𝜃 step to XOR it with 𝜃 output. The block 

𝑃𝑖  has been changing from 0 to 15. The purpose of calculations 

was to show, how the obtained hash value (or, more precisely, 

the round output) changes for three different hash inputs, 

changing 𝑃𝑖  blocks and for growing number of rounds. First, we 

used the Hamming weight to measure a “randomness” of the 
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output data changing with 𝑃𝑖   changes. Next, we calculated the 

Hamming distance of input and output data to estimate changes 

of “correlation” between data blocks after hash transformation, 

for growing number of rounds. The full number of rounds that 

have been analyzed is 24 but, in this section, we show only the 

most representative results.  

As the hash input block, we used three variants of the 

buffer: a sequence of zeros, named “empty” in further analysis, 

a binary representation of four numbers “0”, “1”, “2” and “3”, 

named “0123”, and a binary representation of four letters “w”, 

“o”, “r” and “d”, named “word”. Below in Fig.12a, Fig.12b, 

Fig.12c, Fig.12d, Fig.12e an evolution of the Hamming weight 

of the hash changed in the manner described above, for the 

buffer “empty” and for different number of rounds: 1, 2, 3, 5, 

and 24. In Fig.13a, Fig.13b, Fig.13c, Fig.13d, Fig.13e    

analogous changes of the Hamming weight are presented for the  

buffer “0123” and for different number of rounds: 1, 2, 3, 5, and 

24. Finally, we also investigated the buffer “word” in the 

identical experiment, but the graphs obtained do not contain 

specific trends or other important dependencies and therefore 

they are not shown in plots. 

 

 
Fig. 12a. Hamming weight. 1 round. Buffer – “empty”. 

 

 
Fig. 12b. Hamming weight. 2 rounds. Buffer – “empty”. 

 

 
Fig. 12c. Hamming weight. 3 rounds. Buffer – “empty”. 

 

 
Fig. 12d. Hamming weight. 5 rounds. Buffer – “empty”. 

 

 
Fig. 12e. Hamming weight. 24 rounds. Buffer – “empty”. 

 

 
Fig. 13a. Hamming weight. 1 round. Buffer – “0123”. 

 

 
Fig. 13b. Hamming weight. 2 rounds. Buffer – “0123”. 

 

 
Fig. 13c. Hamming weight. 3 rounds. Buffer – “0123”. 

 

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15

220

240

260

280

1 3 5 7 9 11 13 15

220
230
240
250
260
270
280

1 3 5 7 9 11 13 15

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15

230

240

250

260

270

280

1 3 5 7 9 11 13 15

200

220

240

260

280

300

1 3 5 7 9 11 13 15



164 S. ONOPA, Z. KOTULSKI 

 

 
Fig. 13d. Hamming weight. 5 rounds. Buffer – “0123”. 

 

 
Fig. 13e. Hamming weight. 24 rounds. Buffer – “0123”. 

 

The next two series of figures contain results presenting 

changes of the Hamming distance for our texts. In Fig.14a, 

Fig.14b, Fig.14c, Fig.14d, Fig.14e, an evolution of the  

Hamming distance between the original SHA-3 round and the 

hash changed in the manner described above, for the buffer 

“empty” and for different number of rounds: 1, 2, 3, 5, and 24. 

The next series of figures, Fig.15a, Fig.15b, Fig.15c, Fig.15d, 

Fig.15e, present the analogous Hamming distance for the buffer 

“0123” for different number of rounds: 1, 2, 3, 5, and 24. 

Similarly to the above described, we also investigated the 

Hamming distance for the buffer “word” in an identical 

experiment, but the graphs obtained do not contain significant  

tendencies or dependencies and therefore they are not shown. 

 

 
Fig. 14a. Hamming distance. 1 round. Buffer – “empty”. 

 

 
Fig. 14b. Hamming distance. 2 rounds. Buffer – “empty” 

 

 
Fig. 14c. Hamming distance. 3 rounds. Buffer – “empty”. 

 

 
Fig. 14d. Hamming distance. 5 rounds. Buffer – “empty”.  

 

 
Fig. 14e. Hamming distance. 24 rounds. Buffer – “empty”. 

 

 
Fig. 15a. Hamming distance. 1 round. Buffer – “0123”. 

 

 
Fig. 15b. Hamming distance. 2 rounds. Buffer – “0123”. 
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Fig. 15c. Hamming distance. 3 rounds. Buffer – “0123”. 

 

 

 
Fig. 15d. Hamming distance. 5 rounds. Buffer – “0123”. 

 

 

 
Fig. 15e. Hamming distance. 24 rounds. Buffer – “0123”.  

 

In each experiment we considered 512-bit blocks, so such 

binary blocks can be considered as “random” if the number of 

“0” bits and “1” bits is approximately equal or do not differ too 

much. So, such an equivalence number of bits is 256. Results 

presented in the plots could be summarized as:  

• For large number of rounds (e.g., 24) the hash output 

is pseudorandom even if the input buffer is very 

specific, independently if we modify the round 

function with a pseudorandom inclusion. 

• For a small number of rounds adding extra randomness 

after the operation 𝜃 can have significant influence for 

some specific input blocks. It has small effect if the 

input block is pseudorandom (this results from out 

experiment with the buffer “word”).  

• There is a border number of iterations of a round (it 

could be 3 or 4) where the effect of included internal 

randomness rapidly decreases.  

 

SUMMARY AND CONCLUSIONS 

Based on SHA-3 standard and the permutation described in 

it, is proposed a new type of the construction, where to the 

original SHA-3 structure an additional randomness source is 

included. A new approach should provide additional strength for 

preimage and collision attacks. This scheme is adding a pseudo-

random data block after diffusion operation in the round 

permutation and reduces the ability to predict variables after the 

first round. In this work we analyzed SHA-3, which is based on 

Keccak, the algorithm that NIST selected as a winner of the 

public SHA-3 Cryptographic Hash Algorithm Competition 

[19]. Next, we described parameters of the Keccak hash 

function, which make it possible to manage speed and security 

of the sponge construction. These parameters affect the size of 

permutation, which is the basis of the sponge construction. The 

function uses two phase processing: absorbing and squeezing 

phase. We referred to the pseudo-code of a single round of 

Keccak, which contains this permutation. Security of the sponge 

construction also depends of the number of rounds. One round 

consists of five operations:  𝜃, 𝜌, 𝜋, 𝜒, 𝜄. This pseudo-code 

describes in detail the effect of these operations on the properties 

of the sponge construction, such as: diffusion, inter-slice 

dispersion, long term diffusion, nonlinear mapping and 

disrupting a symmetry. Cryptographic hash functions are 

fundamental components in a variety of information security 

application, such as digital signatures generation and 

verification, key derivation and pseudorandom bit generation. 

We briefly considered the following literature results. The 

duplex construction can be used as a pseudo-random bit 

sequence generator [6], key wrapping [13] or components of 

one pass authenticated encryption algorithms [13], [15]. The six 

SHA-3 functions are designed to provide special properties, 

such as resistance to collision, preimage, and second preimage 

attacks, c.f. [1], [11], [17], [20]. Design criteria laid by the 

developers for the permutation are to have no properties that can 

be exploited in a shortcut attack, when being used in the sponge 

construction: a bit-oriented structure; bitwise logical operations 

and fixed rotations, symmetry, parallelism, round degree 2, 

matryoshka structure, eggs in another basket, etc., see [1], [17], 

[21]. Then, in our considerations we followed an analysis of a 

permutation, which helps to evaluate the weak points of the 

Keccak function, which is exactly inside this permutation. We 

considered the properties used in the attacks and highlighted 

those used in the attack, such as CP-kernel, and observed the 

behavior of the state's bits, what is confirmed by the references 

to the work, see [12], [16]. In the preimage attack, used by [22], 

there were exploited two properties of 𝜃. The first one is the CP-

kernel or column parity kernel. The CP-kernel allows to stay in 

a very low Hamming weight difference to state through the first 

round. The second property is the observation that either all 5 

bits in each column are left unchanged or all 5 are flipped (the 

authors used them in the 4-round preimage attack, see [2], [22], 

[14]). As mentioned above, in the attacks there were used the 

properties 𝜃. Therefore, to prevent such attacks we proposed to 

make additional block data changes after the operation 𝜃. 

Consequently, it would make impossible to know all the 

differences in each data column. We proposed to improve the 

full round of Keccak in three algorithms: Algorithm 1, 2, and 3. 

A new approach should provide additional strength for the 

preimage and the collision attacks.  

The main observation of the paper was the effect of the 

number of rounds used in the sponge function. If the number is 

small, then successfully implemented attacks are possible. They 

are effective, and they could be used in some low-performance 
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devices, where SHA-3 with only a small number of rounds can 

be applied. Also, looking to the future, it must be assumed the 

rapid development of algorithms that allow to use this type of 

attacks with many rounds. Having all the above, we proposed 

building and developing additional protection against the 

preimage attack. These countermeasures would remove the 

weak spots inside the round function, detailed CP-kernel and 

further.  

We proposed inserting an additional operation after the 

permutation 𝜃, using three versions of modifications used in this 

scheme. First, we used after the first permutation XOR of an 

output of some pseudorandom bitstream generator (possibly a 

secret key, what results with a new HMAC construction). In the 

second case we proposed using a pseudorandom permutation of 

the input data blocks. The third scheme assumed using elements 

of an additional algorithm, which is Petra-2-like pseudorandom 

permutation to provide additional randomness to the input data. 

Tests and analyses were performed by changing the last bits 

after the operation 𝜃. The above considerations shown the 

dependences and specifically the increase of the Hamming 

weights and the Hamming distances for buffers: “empty” and 

“0123”, to the random equivalent values. Analogous 

characteristics for the buffer “word” remained unchanged. The 

obtained data confirm the theoretical assumption of an increase 

in resistance to attacks using the CP-kernel for small number of 

rounds used in SHA-3. Using such changes in the low round 

number SHA-3 and the algorithms proposed will ensure the 

stability of the hash algorithm in low-performance devices and 

can also prevent the future development of such attacks.  
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