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Abstract: This paper presents an enhanced internal model control (EIMC) scheme for
a time-delayed second order unstable process, which is subjected to exogenous disturbance
and model variations. Even though the conventional internal model control (IMC) can pro-
vide an asymptotic tracking response with desired stability margins, the major limitation
of conventional IMC is that it cannot be applied for an unstable system because a small
exogenous disturbance can trigger the control signal to grow unbounded. Hence, modify-
ing the conventional IMC structure to guarantee the internal stability, we present an EIMC
scheme which can offer better trade-off between setpoint tracking and disturbance rejec-
tion characteristics. To improve the load disturbance rejection characteristics and attenuate
the effect of sensor noise, we solve the selection of controller gains as an H∞ optimization
problem. One of the key aspects of the EIMC scheme is that the robustness of the closed
loop system can be tuned via a single tuning parameter. The performance of the EIMC
scheme is experimentally assessed on a magnetic levitation plant for reference tracking
application. Experimental results substantiate that the EIMC scheme can effectively coun-
teract the inherent time delay in the model and offer precise tracking, even in the presence
of exogenous disturbance. Moreover, by comparing the trajectory tracking performance of
EIMC with that of the proportional integral velocity (PIV) controller through cumulative
power spectral density (CPSD) of the tracking error, we show that the EIMC can offer
better low frequency servo response with minimal vibrations.

Key words: IMC, magnetic levitation, time delay, Q-parameterization, robustness

1. Introduction

Internal model control (IMC), introduced by Garcia and Morari in 1982, has gained wide
acceptance across the process and chemical industries for its simple structure, good tracking
feature, and effective tuning philosophy [1]. Relying on the “internal model principle”, IMC in-
corporates the actual and estimated plant model in the design and offers an asymptotically stable
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and robust system [2]. IMC offers several key benefits over classical feedback structure. For
instance, in the presence of actuator constraints, the performance of classical feedback struc-
ture degrades due to the so called integrator windup, whereas IMC does not require any special
Anti-windup measures to avoid the saturation problem [3]. Moreover, IMC technique enables the
designer to directly specify the desired closed loop time domain performance measures in terms
of sensitivity and complementary sensitivity [4].

Several results on the application of IMC in process industries have been reported in the
literature. For example, Qiu et al. [5], combining the control-relevant identification (plant and
its inverse dynamics) with the IMC structure, put forward a composite adaptive IMC (CAIMC)
framework to deal with the unmodelled time-varying parameters and validated the performance
on a gasoline engine for pressure control application. Li et al. [6] assessed the robustness of IMC
based PID tuning technique on an atmospheric and vacuum distillation unit, utilizing a stochastic
optimization algorithm for controller synthesis. Rivals and Personnaz [7] presented a neural net-
work based internal model control to counteract the time delay effect in stable processes. They
exploited the benefits of the neural network particularly, the nonlinear black-box modelling and
inverse modelling to cope with model variation. Similarly numerous modified variants of IMC,
namely adaptive IMC [8], robust IMC [9] and nonlinear IMC [10] have also been investigated.

However, one of the major limitations with the conventional IMC is that it cannot be applied
for a time delayed unstable process because under perfect plant matching condition the IMC
acts as an open loop system and a small external perturbation can make the control signal to
grow unbounded [11]. Hence, for unstable processes, the conventional IMC structure needs to be
modified such that the plant can be stabilized using classical feedback before the standard IMC is
applied. Taking cue from this key concept, Tan et al. [12] put forward a two-step modified IMC
for an unstable plant with time delay. They designed a modified IMC with the assumptions that
the plant model is perfect and the sensor noise is absent. However, for real-time control imple-
mentation, the modelling error and sensor noise are inevitable. Hence, in this paper, we present
an enhanced IMC which can handle the sensor noise and model variation via an additional com-
pensator and assess the performance of enhanced internal model control (EIMC) on a magnetic
levitation system. The contributions of this paper are twofold.

1. To cope with the model uncertainty and time delay present in the system, we present
a three-stage EIMC design procedure by decoupling the setpoint tracking and disturbance
rejection characteristics. To improve the load disturbance characteristics, we solve the se-
lection of controller gains as an optimization problem and augment derivate filters to coun-
teract the effect of sensor noise.

2. The tracking and regulatory performances of the proposed EIMC has been experimentally
validated on a benchmark magnetic levitation system. The key feature of the EIMC is
that the trade-off between the servo tracking and robustness can be obtained by adjusting
a single tuning parameter.

To validate the efficacy of the proposed scheme, three test cases namely combination of multi-
sine servo tracking, regulatory response, and reference following with additional time delay are
assessed. Moreover, the tracking performance of the EIMC is compared with that of the PIV
controller and the CPSD error of the controller schemes are presented.

The remainder of the paper is organized as follows. Section 2 gives the problem formula-
tion. Section 3 details the conventional IMC design, and section 4 describes the enhanced IMC
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structure to deal with the exogenous disturbance and sensor noise. Section 5 presents the math-
ematical modelling of magnetic levitation plant using the first principles. Section 6 explains the
real-time experimental results of EIMC on the magnetic levitation system for trajectory tracking
application. Section 7 gives the concluding remarks of the paper.

2. Problem formulation

Consider a second order unstable process with time delay.

G(s) =
K

(τ1s−1)(τ2s+1)
e−θs, (1)

where: K is the steady state gain, τ1 and τ2 are the time constants and θ is the time delay. The
objective is to design a feedback control scheme based on the extended IMC technique such that
the closed loop system is not only robust against exogenous disturbances and model uncertainty
but asymptotically stable as given in (2).

lim
t→∞

∥r(t)− y(t)∥= 0, (2)

where: r(t) is the reference and y(t) is the response. The challenge of the design is to minimize
the tuning parameters involved in the closed loop IMC framework so as to obtain a nominal
balance between steady state and transient performance characteristics. Moreover, we aim to
extend the enhanced IMC to the tracking control applications of a magnetic levitation system,
which is a highly sensitive and unstable process.

3. Conventional IMC

Fig. 1 shows the conventional IMC structure, where G is the process to be controlled G̃ is
the estimated model, Q is the IMC controller, d is the disturbance, r and y are the reference and
process output respectively.

Fig. 1. Conventional IMC scheme Fig. 2. IMC equivalent classical feedback scheme

The process output is:

y =
GC

1+GC
r+

GC
1+GC

d. (3)
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From Fig. 2, which shows the IMC equivalent classical feedback structure, the Q-controller
can be represented as:

Q =
C

1+ G̃C
. (4)

Hence, the classical feedback controller is:

C =
Q

1− G̃C
. (5)

The process output affected by the setpoint tracking and disturbance is given by:

y =
GQ

1+Q(G− G̃)
r+

1− G̃Q

1+Q(G− G̃)
d, (6)

y = Tr+Sd, (7)

where: T =
GQ

1+Q(G− G̃)
is the complementary sensitivity, and S =

G̃Q

1+Q(G− G̃)
is the sensi-

tivity. In the absence of disturbance, if G = G̃, it is possible to implement perfect control because
the complementary sensitivity is reduced to GQ.

y
r
= GQ. (8)

The IMC structure is internally stable if and only if both Q and G are stable. Moreover, for
physical realization the Q controller must be causal and proper. According to the well-known
two step IMC design procedure, first the process model G̃ is parameterized into two components
such as G̃+G̃− where G̃+ represents all non-minimal phase components (RHP zeros and time
delay) of the estimated process and G̃− represents all minimal and invertible components. The
invertible portion of the model is taken as Q̃ = G̃−1

− to make it stable and causal. Second, an IMC
filter is augmented with Q̃ to ensure the properness of the Q controller.

Q = Q̃ f (s), (9)

where f (s) =
1

(λ s+1)n . λ is the tuning parameter, and n is the filter order chosen sufficiently

large to guarantee that the number of poles of Q is greater than the no of zeros of Q so as
to make the IMC controller proper. The choice of the tuning parameter λ helps in achieving
the trade-off between speed of response and robustness of the process. Increasing the value of
λ increases the closed loop time constant of the system and increases the robustness of the
system against external disturbance. Similarly, decreasing the value of λ improves the speed of
response of the system at the cost of reduced robustness against disturbance. Hence, λ can be
tuned on-line according to the model mismatch to achieve optimality between the response time
and disturbance rejection.

However, the fundamental limitation with the conventional IMC is that it cannot be applied
for an unstable process. The standard IMC can be extended for an unstable process if only the
control design satisfies the following conditions to guarantee internal stability of the closed loop
system.
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1. The IMC controller (Q) must be stable, proper and causal.
2. The unstable poles of plant (G) should be nullified by the zeros of Q.
Ensuring these factors during the design phase, we present the enhanced version of IMC,

which can overcome the inherent limitations of conventional IMC, through H∞ optimization
based controller synthesis in the following section.

4. Enhanced IMC

The EIMC structure contains four controllers, namely K0, K1, K2 and K3, with each one has
a role and direct effect on the closed loop response as given below.

– K0 stabilizes the actual unstable plant model G∗, neglecting the time delay.
– K1 acts as the IMC controller for the stabilized plant model.
– K2 ensures the internal stability of the EIMC structure by stabilizing the actual unstable

plant model with time delay.
– K3 counteracts the sensor noise and model variation so as to enhance the robustness of the

closed loop system.

From the EIMC structure shown in Fig. 3, the process output is:

y =
GK1(1+K2G∗e−θs)

(1+G∗K0)(1+GK2)+K1(G−G∗e−θs)+GK3(1+G∗K0 −K1G∗e−θ s)
r+

+
G(1+G∗K0 −K1G∗e−θs)

(1+G∗K0)(1+GK2)+K1(G−G∗e−θs)+GK3(1+G∗K0 −K1G∗e−θs)
d .

(10)

Fig. 3. Enhanced IMC structure

The additional controller gain K3 will come in to act only during model mismatch and noisy
sensor data. In the absence of sensor noise, and exact plant model G = G∗e−θs, the process
output is:

y =
GK1

1+G∗K0
r+

G
1+G∗K0

1+G∗K0 −GK1

1+G∗K2
d. (11)
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Let
P∗ =

G∗

1+G∗K0
, (12)

P =
G∗

1+G∗K0
= G∗e−θs. (13)

Equation (11) can be rearranged as:

y = PK1r+
(1−PK1)G

1+GK2
d. (14)

Equation (14) indicates that setpoint tracking is independent of K2. Hence, K1 acts as the
IMC controller if K2 = 0. The key advantage of the EIMC structure is that the setpoint tracking
and disturbance rejection are decoupled via independent compensators. Hence, from a practical
stand point, tuning the controller gain for improving the tracking performance has less influence
over the robustness of the system against disturbance.

The sensitivity transfer function between the disturbance (d) and output (y) is:

Syd =
(1−PK1)G

1+GK2
. (15)

Similarly, the transfers between the control input (u2) and the external disturbance (d) is:

Ru2d =
GK2

1+GK2
. (16)

The external disturbance d can be rejected by solving the following H∞ optimization problem.

inf
K2

∥∥∥∥ W1Sys

W2Ru2s

∥∥∥∥
∞
, (17)

where W1 and W2 are the weights for the input and control sensitivities K2 respectively. Since
representing the control objective in terms of bound on the sensitivity function is practically
appealing, the weights corresponding to input and control sensitivities (Syd and Ru2d) are chosen
in such a way that they bound the sensitivity function over all frequencies and ensure that the
disturbances are not excessively amplified over a magnitude of 6 dB. The following section
details the design procedure for tuning the four compensators of EIMC.

4.1. Controller synthesis

Tuning of K0
From Fig. 3, consider the estimated process model excluding the time delay.

G∗ =
K

(τ1s−1)(τ2s+1)
. (18)

Since the process has one unstable pole, and one stable pole, selecting K0 as a PD controller
cancels out the unstable pole and yields:

P∗(s) =
K

(τ1s−1+KK0)(τ2s+1)
. (19)
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P∗ is stable if K0 > 1/K. Hence, selecting K0 > 2/K makes the estimated model stable as
given below.

P∗(s) =
K

(τ1s−1)(τ2s+1)
. (20)

Tuning of K1
The stabilized model with time delay is:

P∗(s)e−θs =
K

(τ1s+1)(τ2s+1)
e−θs . (21)

Augmenting a first order filter with K1, as given below, ensures that IMC controller is proper.

K1 =
(τ1s+1)

K(λ s+1)
. (22)

Tuning of K2
To increase the robustness margins, the controller K2 is chosen as a PD controller with robust

proportional gain Kc and time constant τc.

K2 = Kc(τcs+1), (23)

where

Kc =


1
K

[
0.53
θ/τ1

+0.75
]

if θ/τ1 ≤ 0.7

1
K

[
0.51
θ/τ1

+0.683
]

if 0.7 ≤ θ/τ1 ≤ 1.5
, (24)

τc = (0.426θ/τ1 −0.014)τ1 + τ2 . (25)

The tuning expressions (24) and (25), which are synthesized based on the time constant of
the plant and its time delay, guarantee that the plant dynamics are integrated into the controller
computation.

Tuning of K3
To attenuate the sensor noise, the controller K3 is modelled as a proportional controller and

augmented with second order high pass filter.

K3 = Kp

(
ω2s

s2 +2δωs+ω2

)
, (26)

where δ is the damping ratio and ω is the natural frequency of derivative filter.

5. Magnetic Levitation System

Magnetic levitation technology has received wide attention recently due to its practical im-
portance in many of the engineering applications including high-speed maglev trains, friction-
less bearings, vibration isolation in sensitive machine manufacturing, and contactless control in
semiconductor manufacturing [13]. Minimizing the physical contact between the stationary and
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moving stages, the maglev technology eliminates the friction problem and offers better point
to point control for moving masses. The key aspects which enable the industries to utilize the
magnetic levitation technology are elimination of the friction problem and better point to point
tracking, using contactless control [14].

In this work, we utilize the Quanser’s magnetic levitation (maglev) plant to assess the perfor-
mance of the EIMC framework. A maglev plant contains an electromagnet, a free-floating mass,
and a position sensor. Fig. 4 shows the schematic of magnetic levitation plant and Table 1 gives
the plant parameters. The entire system is placed in a rectangular enclosure that consists of three
distinct sections. The upper section comprises an electromagnet, made of a solenoid coil with
a steel core. The middle section contains a chamber where the suspension of the free-floating
mass takes place. One of the electromagnet poles faces the top of a black post upon which a one
inch steel ball rests. A photo sensor embedded in the post measures the position of free-floating
mass. The bottom section of the maglev plant houses the signal conditioning circuit which is
needed for conditioning the coil current.

Fig. 4. Schematic of the Maglev plant

Table 1. Magnetic levitation plant parameters

Symbol Description Value

Rc Coil resistance 10 Ω

Lc Coil inductance 412.5 mH

rc Coil steel core radius 8 mm

Rs Current sense resistance 1 Ω

Rb Radius of the free-floating mass 0.127 mm

Mb Free-floating mass 0.068 kg

Tb Ball travel 9 mm

g Gravitational constant 9.81 m/s2

Kb Ball position sensor sensitivity 2.83 mm/V

Km Electromagnet force constant 0.653 µN.m2/A2
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5.1. Mathematical Modelling

The attractive force Fc acting on the mass due to the electromagnet is:

Fc =
KmIc(t)2

2xb(t)2 , (27)

where: xb is the position of floating mass and Km is the electromagnetic force constant. Similarly,
the opposing force Fg acting on the mass due to gravity is:

Fg = Mbg. (28)

Hence, according to Newton’s second law, the total force experienced by the free-floating
mass is:

Fext =−Fc +Fg ⇒̇Mbxb(t) =
KmIc(t)2

2xb(t)2 +Mbg. (29)

Therefore, the nonlinear equation of motion (EoM) of the floating mass is:

ẍb(t) =− KmIc(t)2

2Mbxb(t)2 +g. (30)

We can obtain the following transfer function of the magnetic levitation system about the
equilibrium point (xb0, Ic0) by linearizing (30) using the Taylor’s series.

Gb(s) =
∆xb(s)
∆Ib(s)

=
Kbω2

n

s2 −ω2
b

(31)

where: Kb =
xb0

Ic0
is the steady-state gain, and ωb =

√
2g
xb0

is the natural frequency. The transfer

function (31) highlights that the open loop subsystem formed by free-floating mass is unstable
due to the presence of a pole in the right half of imaginary axis. Hence, the maglev plant needs
a feedback controller to stabilize the plant.

6. Experimental Results and Discussion

The experimental test-bed, as shown in Fig. 5, consists of a personal computer, maglev plant,
two channel data acquisition board (DAQ) and a signal conditioning circuit. The DAQ board,
which has an input range of ±10 V and a resolution of 12 bit, can measure signals until 0.5 kHz
control rate. A power amplifier which can provide a regulated supply of ±10 V at 3 A governs
the current supplied to the electromagnet. For hardware in loop (HIL) testing, the control algo-
rithm implemented in Simulink interacts with the Quanser real-time control (QUARC) software.
The control objective is to make the mass float freely and follow the reference trajectory by
controlling the current supplied to the electromagnet.

We can obtain the following time delayed (θ = 1 ms) transfer function model of the magnetic
levitation system by substituting the plant parameters given in Table 1 into (31).

G(s) =− 0.007
(0.0175s−1)(0.0175s+1)

. (32)
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Fig. 5. Experimental testbed

The time constants and the steady state gain of the plant are 0.0175s and 0.007s respectively.
The four compensator gains of the EIMC structure, tuned as given in section 4, are as follows:

K0 =−285.92(0.175s+1), (33)

K1 =− (0.0175s+1)
0.007(0.2s+1)

, (34)

K2 =−239.92(0.0215s+1), (35)

K3 =−1.3
[

222066s
s2 +848.23s+222066

]
. (36)

The efficacy of the EIMC is validated through three test cases namely, servo tracking, regu-
latory response, and tracking with additional time delay.

6.1. Servo tracking

In real time scenario, the maglev system should adapt not only to directional changes but to
variations in the magnitude as well. Hence, we utilized the following multi-sine test pattern to
validate the reference following capability of EIMC.

r =

{
14, t = 0,

Tb + sin(2π0.015t)+0.5sin(2π0.5t + sin2π0.7t), t > 0,
s.t., |ṙ| ≤ 5 mm.

(37)

To avoid sudden jump, the floating mass initially begins at Tb and gradually follows the
combination of sine patterns. Fig. 6, which shows the tracking response along with the respective
control input and tracking error, highlights that the EIMC can make the free-floating mass track
even the multi-sine reference pattern, which is highly challenging due to its sudden varying
nature and combination of three different frequencies. The maximum tracking error of 0.014 mm
during the initial transient phase and 0.004 mm peak to peak during tracking substantiates that
EIMC can offer good reference following response even with the challenging reference signal.
The control input, coil current (Ic), plot shows that the precise control is implemented for the
position control of free-floating mass.
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Fig. 6. Servo tracking response for multi-sine test signal

6.2. Steady state performance evaluation

A constant setpoint of 9 mm is given as a test signal and an external impulse disturbance with
a magnitude of 0.2 mm is introduced into the system from t = 20 s to t = 22 s. The effect of tuning
parameter (λ ) on tracking and rejecting the external disturbance is assessed for two test cases,
namely 0.17 and 0.2. From Fig. 7, which shows the regulatory response, we can read that with
λ = 0.2 the EIMC offers increased robustness against the external disturbance compared to the
tracking response of λ = 0.17. The response indeed proves that increasing the value of tuning
parameter improves the disturbance rejection (robustness) property by reducing the deviation
from steady state to a minimum level, whereas the smaller values of tuning parameter focuses
on reference tracking by bringing the trajectory quickly to steady state even in the presence of
disturbance.

Fig. 7. Regulatory response

6.3. Tracking with additional time delay

One of the key features of the EIMC methodology is that the inherent time delay present in the
maglev system is also considered in the controller design to combat the effect of delayed control
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signal. Two test cases with additional time delays θ = 10 ms and θ = 30 ms are considered for
analysis. Fig. 8 shows the tracking performance of the EIMC along with their control signal and
tracking error. Since the critical gain K2 is chosen based on the time delay and time constant
of the system, the oscillations in the position of free-floating mass even with higher time delay
of θ = 30 ms is maintained within the nominal range of 1 mm by compensating the delayed
response through controlled coil current.

Fig. 8. Tracking with time delay

6.4. Discussion: Performance validation

Finally, for validation, the tracking efficiency of EIMC is compared with that of the PIV
controller put forward in [15]. Fig. 9, which shows the reference tracking responses of both
EIMC and PIV, proves that even though during the initial transient phase the tracking response of
EIMC drops faster from the desired setpoint compared to that of PIV, EIMC offers a good steady
state tracking response with lesser deviation in state trajectory compared to PIV. Moreover, to
assess the tracking features, the CPSD of tracking error for the two controllers are illustrated in
Fig. 10. The CPSD of the error is calculated as a summation of FFT of the tracking error and
its root mean square. It is worth to note that even though CPSD of EIMC is slightly larger in

Fig. 9. Servo tracking of EIMC and PIV Fig. 10. CPSD of error for PIV and EIMC
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the high-frequency region due to the sudden drop of the position of the floating mass from its
setpoint compared to that of PIV, the low-frequency performance of EIMC is better than that
of PIV.

7. Conclusions

This paper has presented an EIMC structure which can offer improved robustness against
exogenous disturbance and model variation for a second order unstable process with time delay.
Modifying the Q-parameterization of conventional IMC structure as a combination of four com-
pensators, we have presented an EIMC framework, which can offer better trade-off between servo
and regulatory performance through a single tuning parameter. The selection of controller gains
to reject the load disturbance has been solved using H∞ optimization problem and the derivative
filters have been augmented with the controller to attenuate the performance deterioration due to
sensor noise. The performance of the EIMC scheme has been validated on a magnetic levitation
plant for reference following application. Three test cases namely setpoint tracking under the
presence of multi-sine reference signal, regulatory response, and tracking under explicitly time
delayed control signal have been assessed. The experimental results accentuate that the EIMC
can offer better servo and regulatory performance compared to a conventional PIV scheme.
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