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Abstract: This paper presents an analytical model of a three-phase axial flux coreless
generator excited by permanent magnets, with special focus on determining the model pa-
rameters. An important aspect of this model is the derivation of a coefficient that corrects
the flux on the inside and outside edges of the magnets. The obtained parameters are ver-
ified by performing field analyses and measurements. A comparison of the results show
satisfactory convergence, which confirms the accuracy of the proposed analytical model.
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1. Introduction

In recent years, there have been reports on improved techniques for the design and mathemat-
ical modelling of permanent magnet (PM) machines [1–8]. The simplest models of traditional
machines are based on the distribution of the air-gap field radial component because of the spe-
cific structure of the magnetic circuit. The geometry of the magnetic circuit in the axial flux
permanent magnet (AFPM) machine is different compared with that of classical machines, and
the relations which describe the flux-density distribution used for modelling should therefore
be modified. Over the years, several AFPM machines have been developed, and a number of
different topologies can be distinguished [5].

This work focuses primarily on AFPM generators (AFPMGs) with a coreless stator (Fig. 1)
and winding topology of non-overlapping windings [5–8]. Such designs are commonly per-
formed in a crude manner. While AFPM generators with coreless stators are mainly used in
small, domestic wind-power plants, they have some disadvantages. These include the formation
of very large attractive forces between the disks of the rotor with a relatively large volume re-
lated to the obtained power. Obvious advantages are that there is no formation of cogging torque
and the design simplicity. Therefore, this paper aims to show the methodology of mathematical
modelling for a specific AFPMG class.

The main assumption of AFPMG modelling is its simplicity. The main goal was to refer to
traditional electrical machines models as well as to consider the effect of the interaction of higher
harmonics of the flux-density distribution on the shape of the electromotive force (EMF).
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Fig. 1. Construction of dual-rotor AFPM generator

2. Analytical model of 3-phase coreless AFPM generator

2.1. Flux-density distribution in AFPM generator air gap

The main features of the AFPM generator are presented in Table 1. For this example, the
analytical formula which describes the magnetic-field distribution in the machine air gap was
developed.

Table 1. Main features of machine construction with non-overlapping windings

Number of phase coils ps

Total number of stator coils 3ps

Number of magnets (one rotor side) 4ps = 2p

p/ps 2

Maximal angle of coil pitch εmax =
2π
3ps

=
4π
3p

For the AFPM generator, the authors made an assumption concerning the linear approxima-
tion for the PM demagnetization characteristics Bm = Br + µ0 · µrm ·Hm (where: Br is the mag-
net remanence, µrm is the relative magnet permeability), and neglecting the magnetic voltage
drops in iron. The main elements of the AFPMG are shown in Fig. 2.

To illustrate the methodology of the field distribution in the air gap, the authors used the co-
ordinates model, which depicts the AFPM machine, as shown in Fig. 3.

The model of the magnetic-field distribution in the air gap of the AFPM machine is generally
a function of four variables (dependent on the axial coordinate z, the location according to the
stator θ , the angle of the rotor position φ and the radial location Ri ≤ r ≤ Ro). In the paper,
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Fig. 2. Cross-section of AFPM generator: (a) stator (3-phase non-overlapping winding ps = 2);
(b) one of rotor discs (p = 4)

Fig. 3. Model of coordinate system for flux-density distribution

the general formula which represents the magnetic flux density is simplified, and only the axial
component at the coordinate z = 0 is considered.

B(z = 0,θ ,φ ,r) = B(θ ,φ,r) = BΘ(θ ,r)+Bm(θ −φ,r), (1)

where: BΘ(θ ,r) is the axial component of the flux density induced by the winding magnetomo-
tive forces (MMFs) at z = 0, and Bm(θ −φ,r) is the PM axial component of the flux density
at z = 0.

The MMF component describes the field distribution, which is dependent on the winding
currents. The 3-phase AFPM machines with a symmetrical structure (the layouts of the stator
windings are shown in Fig. 4) can be presented in the following form [9, 10, 11]:

BΘ(θ ,r) = λ0 ·
3

∑
a=1

Θa(θ ,r), (2)

where λ0 is the unit permeance and Θa(θ ,r) is the function of the MMF of winding “a”.



394 N. Radwan-Pragłowska, T. Węgiel, D. Borkowski Arch. Elect. Eng.

sca

1

3 2

oR

iR

θ0

θ

r

)(rε

lc

coa

cia

Fig. 4. Layout of non-overlapping winding type

The unit permeance, which is due to the properties of the magnet being similar to those of air
(µrm ∼= 1.01, · · · , 1.1), is virtually constant.

λ0 =
µ0

lδ +2l′m
, (3)

where l′m =
lm

µrm
, lm is the magnet height and lδ is the length of the equivalent air gap.
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Fig. 5. Winding “a” MMF distribution

The Fourier distribution of the MMF of winding “a” (Fig. 5) is represented by the following
formula:

Θa(θ ,r) = ∑
ν∈P

Θa
ν(r) · ejν(θ−θa), (4)

where the Fourier spectra of the MMFs contain harmonics of the ν th order, which belongs to the
set P = {. . . ,−3ps,−2ps,−ps, ps, 2ps, 3ps, . . .}.

Θa
ν(r) = ia

1
π

W s
ν (r), (5)

W s
ν (r) =

ws · k|ν |s (r)
|ν |

, (6)

ws is the total number of phase winding turns, k|ν |s (r) is the winding factor for ν th harmonic.
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For the 3-phase winding θa = (a−1)
2π
3ps

, where a = 1, 2, 3.

For concentrated coils, the winding factor can be written as [5]:

k|ν |s (r) = sin
(
|ν |ε(r)

2

)
·

sin
(
|ν|αsc(r)

2

)
|ν |αsc(r)

2

, (7)

where ε(r) =
ac

r
is the angle of the coil pitch or coil span at coordinate r

(
ac ≈

aco +aci

2

)
, and

αsc(r) =
asc

r
is the angle of the coil side width at coordinate r.

An approximation of the axial component of the PM flux density in the middle of the air gap
(coordinate z= 0) for the AFPM machines (the layout of the rotor is shown in Fig. 6) is presented
in Fig. 7.
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Fig. 6. Layouts of exemplary PM shapes located on the rotor
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Fig. 7. Approximated functions of PM axial flux-density distribution
in air gap according to coordinate θ −φ

The Fourier series coefficients of the PM flux-density distribution (Fig. 7) can be determined
from the following formula [7, 11–13]:

Bm(θ −φ ,r) = ∑
ς∈Q

BPM
ς (r) · ejς(θ−φ), (8)

where the Fourier spectra contain harmonics of the ς th order, which belongs to the set
Q = {. . . − 5p,−3p,−p, p, 3p, 5p . . .}. Fourier coefficients BPM

ς (r) can be determined using
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a one-dimensional (1D) model which is independent of the z coordinate, and is sufficiently ac-
curate for machines with small air gaps [11]. However, for AFPM coreless generators, the two-
dimensional (2D) model is more appropriate, which is dependent on the z coordinate where it is
assumed that z = 0 [12, 13].

BPM
ς (r) =

4Br

π
p
ς
· sin(ς ·β (r))

sinh
(
|ς | lm

r

)
µrm · sinh

(
|ς | lδ +2lm

r

) ·

·

cosh

|ς |

lδ
2
+ lm − z

r

+ cosh

|ς |

lδ
2
+ lm + z

r


, (9)

where
β (r) =

am

2r
. (10)

β (r) is the half angular pitch of the magnet pole at coordinate r
(

am ≈ amo +ami

2

)
.

3. Mathematical model of AFPM generator

Using Lagrange’s formalism to develop the mathematical model, the AFPM generator equa-
tions can be written in a standard matrix form, according to [10, 11], as follows:

d
d t

 ψPM1(φ)
ψPM2(φ)
ψPM3(φ)

=
 u1

u2
u3

+
 Lσs +Lss Mσs Mσs

Mσs Lσs +Lss Mσs
Mσs Mσs Lσs +Lss

· d
d t

 i1
i2
i3

+Rs ·

 i1
i2
i3

, (11)

J
d 2φ
d t2 = TL −

[
i1 i2 i3

]
· ∂

∂φ

 ψPM1(φ)
ψPM2(φ)
ψPM3(φ)

−D
dφ
d t

. (12)

In order to determine the basic parameters of the mathematical model of the generator (11),
(12) the flux linked with windings has to be defined. The flux, ψa, which is linked with the “a”
winding, can be expressed as:

ψa(φ) =
Ro∫

Ri

ws


ε(r)−αsc(r)

2 +θa∫
−ε(r)+αsc(r)

2 +θa

B(θ ,φ,r)dθ

r dr. (13)

For the assumed flux-density distribution, B(θ ,φ,r), integrations in Expression (13) are te-
dious. However, they are simplified under the assumption which introduces an average value

r ≈ rs =
Ro +Ri

2
. (14)
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The “a” winding’s flux linkage, ψPMa, which is generated by magnets in the current-less
state, is represented by the classical relationship

ψPMa(φ) = ∑
ς∈Q

ψPMs
ς · ejς

{
(a−1) 4π

3p −φ
}

for a = 1, 2, 3. (15)

The coefficients of the function distribution of the stator flux PM linkage (15) have to be
modified in order to model the flux attenuation on the magnet edges. This correction is impor-
tant for the quantitative analysis because of the relatively large air gap in the studied generator
construction with coreless stator. By introducing the flux-density distribution in the 2D air gap
according to (9), (10), it is possible to model the effects on the magnet edges (along coordinate r).
A separate problem is the implementation of the PM flux attenuation on the edges which are per-
pendicular to coordinate r, that is, the inside (for r = Ri) and outside (for r = Ro) edges of PM.
The analytical formulas enable us to determine whether the edge effects are complex [7, 12, 13].
The approximated flux-density distribution generated by magnets in the middle of the air gap,
z = 0, along the radial coordinate is presented in Fig. 8.

Fig. 8. Approximated functions of PM axial flux-density distribution in the middle
of the air gap (z = 0) according to coordinate r for θ −φ = 0

This paper proposes to determine the correction coefficient ke which models the flux attenu-
ation on the inside and outside magnet edges using characteristic parameters Bedge/Bmax deter-
mined from field analysis. The parameters are presented in Fig. 8. The value of these parameters
can be calculated as a ratio of the average value of the sinusoidal approximation of the step func-
tion (solid line in Fig. 8) within the range (Ri, Ro) to the maximal value. The coefficient can be
found as follows:

ke =

4
π
(Bmax −Bedge)

2
π
+Bedge

Bmax
. (16)

The corrected form of the function distribution coefficients (15) is given below:

ψPMs
ς = 2ke ·BPM

ς (rs) ·W s
ς (rs) · rs · lc , (17)

where lc = Ro −Ri is the length of the coil side.
The EMF of the ‘a’ winding generated by magnets in a current-less state for a constant rotary

speed is given by

ePMa = ∑
ς=p,3p,5p...

Eς · cosς
{

Ωt − (a−1)
4π
3p

}
for a = 1, 2, 3, (18)

where Eς = 2ς ΩψPMs
ς and Ω is the rotary speed (rad/s).
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After completion of the formal mathematical operations, the winding inductances are repre-
sented by the standard general dependence [10, 11]

Lss = ∑
ν∈P

Lss
ν , Lss

ν =
2
π
· [W s

ν (rs)]
2 · rs · lc ·λ0 . (19)

The leakage inductances are expressed analytically as a sum of two components [5]. One of
them is connected with the leakage flux around the radial portions of the active conductors (cor-
responding to the slot leakage in classical machines), and the second is dependent on the leakage
flux around the coil end connections. The leakage inductance coefficient can be determined from
the following formula:

Lσs ≈ 2µ0 · (ws)
2[lc +(ac −asc)] ·0.3/ps . (20)

Equations (19), (20) can yield approximated results; therefore, for some cases, it is neces-
sary to apply the FEM calculations in order to achieve correct results [14]. The leakage mutual
inductances can be approximated to zero Mσs ≈ 0.

4. Experimental results

The tests were carried out for the 3-phase AFPM generator constructed under workshop
conditions. The design data and parameters are summarized in Table 2.

Table 2. The main data of AFPM generator

Number of phase coils ps = 7 Number of pole pairs p = 14

Total number of stator coils = 21 Total number of phase winding turns ws = 980

Stator coil dimensions
lc = 40 mm; ac = 50 mm; asc = 30 mm Length of equivalent air gap lδ = 26 mm

Ri = 270 mm Ro = 310 mm

rs = 290 mm Phase winding resistance Rs = 2.0 Ω

Angle of coil side width αsc(rs) = 0.1034 rad Angle of coil pitch ε(rs) = 0.1517 rad

Magnet size (type N40)
Br = 1.2 T, Hc = 899 kA/m, µrm = 1.07,
10×18×40 mm; am = 18 mm; lm = 10 mm

Number of magnets (one rotor side) 2p = 28
Half-angular pitch of magnet pole
β (rs) = 0.0345 rad

The view of the stator and rotor before assembling the AFPM generator, and the assembled
generator installed in a lab station is presented in Fig. 9.

To assess the usefulness of analytical formulas, the calculations in the field package ANSYS-
Maxwell (FEM – 3D) were performed. The layouts of the FEM model are presented in Fig. 10.

Based on the results obtained from the FEM calculations, the main flux values were separated
from the leakage flux, and this enabled us to perform the inductance calculations. The comparison
of the analytical calculations with the results obtained from the FEM is presented in Table 3.
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(a) (b) (c)

Fig. 9. AFPM generator: (a) stator; (b) rotor (one side); (c) at the laboratory test bench

Fig. 10. AFPMG model for FEM calculations

Table 3. Inductances of AFPM generator

Inductances Lσs Mσs Lss

Analytical formulas 6.2 mH 0 4.0 mH

FEM calculations 5.12 mH −0.009 mH 4.1 mH

The analysis of results from Table 3 show a satisfactory correctness of the results obtained
using the analytical formulas. The values of the leakage inductances differ themselves by around
20% owing to the simplified analytical Formula (20).

In the next step, the functions of the PM axial flux-density distribution in the air gap according
to coordinate θ −φ in the middle of air gap (coordinate z = 0) obtained using analytical formula
and FEM analysis were calculated. The results are presented in Figs 11, 12.

From Fig. 11, it is seen that the PM axial flux-density distributions in the middle of the air
gap are almost identical. However, the distributions differ significantly for different values of
radial coordinate r, which is shown in Fig. 12.

The characteristic parameters, which equal Bedge/Bmax = 0.16/0.29 (taken from Fig. 12),
allow us to determine the coefficient that models the PM edge effects on the inside and outside
sides of the magnet. The value of this coefficient equals ke = 0.93, and it is used in analytical
calculations of phase back EMF (19).

The time-domain waveforms of EMF voltages and the spectrum analysis are presented in
Figs 13, 14. The voltage level at 1 mV was chosen as a reference for the magnitude presentation
(in dB).
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(a) (b)

Fig. 11. Functions of PM axial flux density distribution in the middle of air gap Bm(θ −φ,rs)

for one pole pitch: (a) solid line – analytical formula; (b) dashed line – FEM calculations)

(a) (b)

Fig. 12. FEM calculations of PM axial flux density distribution in middle of air gap: (a) Bm(θ −φ,r)
for one pole pitch and different values of coordinate r; (b) Bm(θ −φ = 0.225 = const,r) according to

coordinate r

By observing the voltage waveforms from Fig. 13, the deformation of the induced EMF
waveform from a sine wave can be determined. The RMS values and THD of the back EMF at
rotary speed n = 206 rpm ( f = 48 Hz) are: analytical calculations 61.1 V (THD 6.1%); mea-
surements 61.8 V (THD 8.4%) and FEM calculations 64.4 V (THD 6.2%). These values vary by
about 10%. By analysing the amplitude values obtained from Fig. 14, a significant content of the
third harmonic and a minor part of the fifth harmonic in the back EMF can be observed. These
results confirm good agreement between the measurements and calculations.



Vol. 67 (2018) Parameters identification of coreless axial flux permanent magnet generator 401

(a) (b)

Fig. 13. Phase-1 back EMF at rotary speed n = 206 rpm ( f = 48 Hz):
(a) FEM calculations; (b) measured
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Fig. 14. Comparisons of phase back EMF magnitudes at rotary speed n = 206 rpm
( f = 48 Hz): dash-dot line – computed analytically; solid line – measurement

results and dashed line – FEM calculations

5. Conclusions

This paper presents the methodology employed for the development of circuit models of the
3-phase AFPM generator. The laboratory tests and FEM analysis, which verify the mathematical
model parameters obtained using the basic analytical formulas, are presented. The good agree-
ment of the analytical calculation with the measurement results and FEM calculations confirms
the correctness of the developed models. It should be noted that there is perfect agreement be-
tween the results from analytical calculation and field analysis.
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[10] Węgiel T., Space harmonic interactions in permanent magnet generator, Wydawnictwo Politechniki
Krakowskiej, Monograph 447, ISSN 0860-097X, Cracow (2013).
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