
ARCHIVES OF ELECTRICAL ENGINEERING VOL. 67(2), pp. 403–417 (2018)

DOI 10.24425/119649

An observer for magnetic levitation system control
based on a coefficient diagram method

and backstepping

FOUAD HAOUARI1, NOURDINE BALI2, MOHAMED TADJINE1,
MOHAMED SEGHIR BOUCHERIT1

1 Department of Electrical Engineering, Process Control Laboratory, ENP
10. avenue Hassan Badi P.O Box 182 Algiers, Algeria, 16200

2 Electrical Engineering and Computing Faculty
USTHB P.O Box 32 El Alia, Bab Ezzouar Algiers, 16111 Algeria

e-mail: haouari_fouad@yahoo.fr

(Received: 18.09.2016, revised: 19.03.2018)

Abstract: In this paper, we propose a robust nonlinear control design concept based on a
coefficient diagram method and backstepping control, combined with a nonlinear observer
for the magnetic levitation system to achieve precise position control in the existence of
external disturbance, parameters mismatch with considerable variations and sensor noise
in the case, where the full system states are supposed to be unavailable. The observer
converges exponentially and leads to good estimate as well as a good track of the steel
ball position with the reference trajectory. A simulation results are provided to show the
excellent performance of the designed controller.
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1. Introduction

Magnetic levitation systems are needed in various industrial applications, e.g., frictionless
bearings, high-speed maglev passenger trains, vibration isolation of sensitive machinery [1–3],
etc. These systems are characterized by a narrow travel range, open loop instability, highly non-
linear dynamics [4] and some of their dynamic parameters are uncertain, subsequently, the prob-
lem of designing of a robust controller is essential. Several control techniques have been planned
for the control of a magnetic levitation system in the past. The classical proportional, integral and
derivative (PID) controller can be used in the position control, but this technique may not achieve
best performance requirements due to the presence of nonlinear dynamics inherent in this range
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of systems. In fact, the classical PID scheme necessitates the linearization of the system dynam-
ics around an operating point and requires the exact knowledge of system parameters. The sliding
mode control may lead to considerable control efforts and chattering control response, whereas
the adaptive control exhibits unsatisfactory transient performance. In other study a feedback lin-
earization controller is presented; but the controller is sensitive for parameters mismatch. As a
result, attention should be paid to defeat these problems. However, in order to realize advanced
concepts of the control, the acquaintance of state variables is not generally available; this can be
attained by means of state observers.

In order to resolve the last well-known problems, a nonlinear robust tracking controller is
created by combining the coefficient diagram method (CDM) [5–9] and backstepping procedure
[10–18] (CDM-backstepping) to keep almost all the robustness properties in the presence of
considerable variations in parametric mismatches, external disturbances and sensor noise with
exponential convergence. CDM-backstepping by means of a nonlinear observer is founded to
control the position of the steel ball for the interested system. This method of control is a rigor-
ous and procedure design methodology for nonlinear feedback control. It is a recursive technique
[10, 11] based on the Lyapunov stability method [12–15], which consists of iterative steps. It in-
cludes the accomplishment of global stability by describing an error variable and a corresponding
stabilizing function of each subsystem to realize the control law. The approach also permits the
insertion of additional nonlinearities into the control laws for elimination of disagreeable ones.
Most of the control algorithms need to be implemented through digital devices. For this reason,
a discrete-time controller based on Euler approximation is briefly described. The precision of the
position control and the convergence of the estimated errors can be confirmed by the proposed
controller.

The paper is organized as follows: section 2 presents the state space model of the interested
plant. Section 3 briefly describes the CDM controller in the case of a linear system. In section 4
a nonlinear observer is proposed for the considered system. Next, stability is proven using the
Lyapunov stability analysis. In section 5 the nonlinear controller coefficient diagram method
based on backstepping with the nonlinear observer is described by using the Lyapunov stability.
Section 6 describes the discrete CDM-backstepping by using the Euler method. In section 7 the
results of the simulations are discussed, then conclusions are drawn in section 8.

2. Magnetic levitation state space model

The state space model of the magnetic levitation system shown in Fig. 1 is described as [2]:

ẋ1 = x2

ẋ2 = g−
Qx2

3
2M(X∞ + x1)2

ẋ3 =
x3(Qx2 −R(X∞ + x1)

2)

Q(X∞ + x1)+L∞(X∞ + x1)2 +
(X∞ + x1)

Q+L∞(X∞ + x1)
u

. (1)

where: x1 is the vertical position of the steel ball, x2 is the speed of the steel ball, x3 is the coil
current, g is the gravitational acceleration, M is the mass of the steel ball, R is the electrical
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resistance, u is the voltage control input, L∞, Q and X∞ are positive constants established by the
characteristics of the coil, magnetic core, and steel ball, respectively.

Electromagnet

u

+

-

M
Steel ball

x1

x10

x3

R

L

Fig. 1. System diagram and coordinate system

3. CDM control design

The coefficient diagram method is an algebraic method applied to a polynomial loop in the
parameters space [5]. This controller gives the system response of the controlled system, fulfilling
both transient and steady state response requirements. Stability and speed are designed from the
standard stability index and the equivalent time constant respectively. When the settling time of
the controlled system has been chosen, the equivalent time constant is achieved.

Consider the mathematical model of a linear, time invariant system, described in a transfer
function as follows:

R(s) =
N(s)
D(s)

=
amsm +am−1sm−1 + . . .+a0

bnsn +bn−1sn−1 + . . .b0
. (2)

N(s) and D(s) are the numerator and the denominator of the system transfer function.
From Fig. 2, the output y of the controlled closed loop system can be expressed as:

y =
N(s)F(s)

P(s)
r+

A(s)N(s)
P(s)

d, (3)

where: y is taken as the output of the controlled system, r is denoted as the reference input to the
system, u is the control signal, d is the external disturbance signal, F(s) is called the reference
numerator of the controller. While P(s) is the characteristic polynomial [5] of the closed loop
system and is formulated as follows:

P(s) = D(s)A(s)+N(s)B(s) =
n

∑
i=0

µisi, (4)

where µi are the coefficients of P(s).
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Fig. 2. A block diagram of a CDM control system

The polynomials A(s) and B(s) are the controller polynomials [6] and are expressed as:

A(s) =
n

∑
i=0

lisi and B(s) =
n

∑
i=0

qisi,

where: li and qi are the controller parameters.
Controlling with the CDM necessitates some design parameters which are represented by the

equivalent time constant τ to designate the speed of time response in the closed loop and the
stability indices γi to provide the stability and the shape of the closed loop response.

They are related to the coefficients of the characteristic polynomial [7] specified in (4) as:

τ = µ1/µ0 and γi = µ2
i /µi−1µi+1 for i ∈ [1 n−1].

The relation between the settling time ts and the equivalent time constant is given as follows: τ =
ts

(2.5∼3)

γ1 = 2.5, γi = 2, i ∈ [2 n−1], γ0 = γn = ∞
. (5)

The stability limit values can be changed by the designer as per the requirement in robustness
by using γi > 1.5γ∗i with i ∈ [1 n−1]. The characteristic polynomial [6, 7], can be defined as:

P(s) = µ0

[{
n

∑
i=2

i−1

∏
j=1

1

γ j
i− j

(τ0s)i

}
+ τs+1

]
. (6)

The reference numerator polynomial F(s) is a pre-filter [6], it can be defined as follows:

F(s) =
P(s)|s=0

N(s)
. (7)

4. Observer design and stability analysis

In the following, we design and prove the exponential stability of the nonlinear observer,
based on the backstepping method for the Lipschitz nonlinear system [19].
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Let us consider the Lipschitz nonlinear system given as follows:{
ẋ = Ax+Bu+ϕ(x,u)
y = x1

, (8)

where the pair (A, B) is controllable and the pair (C, A) is observable.
The observer given by (9) can be proposed for the Lipschitz nonlinear system specified by

(8) as:
˙̂x = Ax̂+Bu+ϕ (x̂,u)+H (y− x̂1) , (9)

where H is the observer gain vector and ϕ(x,u) is Lipschitz with respect to the state x, uniformly
in the control u, that is, there exists a constant η such that{

∥ϕ(x1,u)−ϕ(x2,u)∥ ≤ η∥x1 − x2∥, ∀x1, x2 ∈ R3, u ∈ R

∥ϕ(x,u)∥ ≤ η∥x∥, ∀u ∈ R
. (10)

Let the estimation error eo = x− x̂, its dynamics is given as:

ėo = ẋ− ˙̂x = (A−H)eo +ϕ(x,u)−ϕ(x̂,u) = Aoeo +ϕ(x,u)−ϕ(x̂,u). (11)

Consider the following Lyapunov function candidate Vo = eT
o Peo, where P = PT , its time

derivative is specified as:

V̇o = eT
o
(
AT

o P+PAo
)

eo +2eT
o P(ϕ(x,u)−ϕ(x̂,u)) . (12)

Using (10), gives
V̇o ≤ eT

o
(
AT

o P+PAo
)

eo +2η∥Peo∥∥eo∥ . (13)

Completing squares on the term 2η∥Peo∥∥eo∥, for any α > 0, we obtain:

V̇o = eT
o (A

T
o P+PAo +PP+η2I)eo . (14)

Then AT
o P+PAo +PP+η2I =−αI, afterward

V̇o ≤−αe2
o . (15)

The considered system (1) is rewritten in the next form to verify the conditions of controlla-
bility and observability given previously.

ẋ1 = x2

ẋ2 = x3 +g−
Qx2

3 +2Mx3(X∞ + x1)
2

2M(X∞ + x1)2

ẋ3 =
x3(Qx2 −R(X∞ + x1)

2)

Q(X∞ + x1)+L∞(X∞ + x1)2 +
1

L∞
u− 1

L∞

Q
Q+L∞(X∞ + x1)

u

. (16)

Taking

f1(x) = g−
Qx2

3 +2Mx3(X∞ + x1)
2

2M(X∞ + x1)2 ,
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g(x) =− 1
L∞

Q
Q+L∞(X∞ + x1)

and

f2(x) =
x3(Qx2 −R(X∞ + x1)

2)

Q(X∞ + x1)+L∞(X∞ + x1)2 .

State space model (16) can be simplified as:
ẋ1 = x2

ẋ2 = x3 + f1(x)

ẋ3 = f2(x)+
1

L∞
u+g(x)u

. (17)

Then

A =

 0 1 0
0 0 1
0 0 0

, B =

 0
0

1/L∞

, CT =

 1
0
0

, ϕ(x,u) =

 0
f1(x)

f2(x)+g(x)u

. (18)

Tacking the nominal physical parameters M0, R0, Q0, M∞0 , L∞0 and X∞0 , we have the follow-
ing nominal nonlinear functions:

f10(x) = g−
Q0x2

3 +2M0x3(X∞0 + x1)
2

2M0(X∞0 + x1)2 ,

f20(x) =
x3(Q0x2 −R0(X∞0 + x1)

2)

Q0(X∞0 + x1)+L∞0(X∞0 + x1)2 ,

g0(x) =− 1
L∞0

Q0

Q0 +L∞0(X∞0 + x1)
.

The model mismatches between the real system and the supposed nominal are given as:

∆ f 1(x) = f1(x)− f10(x),

∆ f 2(x) = f2(x)− f20(x)

and
∆g(x) = g(x)−g0(x).

5. CDM-backstepping control with nonlinear observer

The development of the exponential stability of the nonlinear observer in the previous section
is independent of the control input. In this section, the nonlinear observer is composed with the
CDM-backstepping control to explore the feedback control as illustrated in Fig. 3.

The control objective is to design a control law to oblige the steel ball to track exponentially
a reference position input.
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Fig. 3. Scheme of CDM-backstepping controller with nonlinear observer

The nonlinear observer (19) is used to estimate the state of the considered system
˙̂x1 = x̂2 +h1(y− x̂1)

˙̂x2 = x̂3 + f1(x̂)+h2(y− x̂1)

˙̂x3 = f2(x̂)+g(x̂)u+h3(y− x̂1)

. (19)

where the observer gain vector is H = (h1 h2 h3)
T .

The procedure for demonstrating the stability is pretty much the same with respect to con-
ventional backstepping, only some important changes occur at the final step, when the nonlinear
CDM can be developed. We maintain the same terminology definitions like virtual control, but
add some new ones like parameters of adjustment. The procedure can be developed in 3 steps.

In the first step, let us take into consideration only the first equation of (19), then consider
the position error z1 given as z1 = x̂1 − xd , where xd is the reference signal, its time derivative is
ż1 = ˙̂x1 − ẋd = x̂2 +h1eo1 − ẋd .

The first candidate Lyapunov function is selected as V1 = 0.5z2
1+Vo, its derivative is given as:

V̇1 = z1ż1 +V̇o . (20)

Using Equation (15), one has

V̇1 ≤ z1ż1 −αVo = z1 (x̂2 +h1eo1 − ẋd)−αVo . (21)

Choosing the first stabilizing function ϕ1 =−c1z1 + ẋd and tacking z2 = x̂2 −ϕ1, one has

V̇1 ≤ z1(z2 +h1eo1 − c1z1)−αVo =−c1z2
1 + z1z2 +h1eo1z1 −αVo , (22)

where the second observer error is eo2 = x2 − x̂2.

Using the generic inequality eo1z1 ≤ κ1z2
1 +

1
4κ1

e2
o1, with κ1 > 0, tacking h1 > 0, one has

V̇1 ≤−(c1 −h1κ1)z2
1 + z1z2 +

h1

4κ1
e2

o1 −αVo ≤−(c1 −h1κ1)z2
1 + z1z2 −

(
α − h1

4κ1

)
e2

o1 . (23)

If we tack α > h1/4κ1 and c1 > h1κ1 with an appropriate choice of h1 and κ1, we obtain:

V̇1 ≤−c̄1z2
1 + z1z2 , c̄1 = c1 −h1κ1 > 0. (24)
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For the second step, let us consider the subsystem containing the first two equations of (19)
and select the second Lyapunov function as V2 =V1 +0.5z2

2 +Vo, its derivative is written as:

V̇2 = V̇1 + z2ż2 +V̇o ≤−c̄1z2
1 + z1z2 + z2ż2 −αVo , (25)

where {
ż2 = ˙̂x2 − ϕ̇1 = f1(x̂)+h2eo1 − ϕ̇1

ϕ̇1 =−c1ż1 + ẍd =−c1( ˙̂x1 − ẋd)+ ẍd =−c1x̂2 − c1h1eo1 + c1ẋd + ẍd
. (26)

Substituting (26) into (25) gives

V̇2 ≤−c̄1z2
1 + z1z2 + z2( f1(x̂)+ c1x̂2 +(c1h1 +h2)eo1 − c1ẋd − ẍd)−αVo . (27)

Now, the desired control input ϕ2 of x̂3 is chosen as:

ϕ2 = x̂3 − f1(x̂)− z1 − c2z2 − c1x̂2 +(c1h1 +h2)eo1 + c1ẋd + ẍd . (28)

Define the tracking error z3 = x̂3 −ϕ2, substituting the term of ϕ2 in (27), then

V̇2 ≤−c̄1z2
1 − c2z2

2 + z2z3 −αVo . (29)

Subsequently, V̇2 ≤−c̄1z2
1 − c2z2

2 + z2z3.
In the third step of design procedure, let us consider the complete system (19) and tacking

the third Lyapunov function V3 =V2 +0.5z2
3 +Vo, then

V̇3 ≤−c̄1z2
1 − c2z2

2 + z2z3 + z3ż3 −αVo . (30)

Define the stabilizing control law ϕ2 and the tracking error as:

z3 = x̂3 −ϕ2 . (31)

Its derivative is expressed as:
ż3 = ˙̂x3 − ϕ̇2 . (32)

Then, one has
V̇3 ≤−c̄1z2

1 − c2z2
2 + z2z3 + z3ż3 −αVo . (33)

Taking into consideration the virtual control ζ̂ = x̂3, this provides ˙̂ζ = fo(x̂)+g(x̂)u, where
fo(x̂) = f2(x̂) + h3eo1, after that, the control law based on the nonlinear CDM can be formu-
lated as:

ao0(x̂)u+ao1(x̂)
du
d t

= zo(t), (34)

where
zo(t) = co0(x̂)ϕ2 −bo0(x̂)ζ̂ −bo1(x̂)

˙̂ζ . (35)

The terms ao0(x̂), ao1(x̂), co0(x̂), bo0(x̂) and bo1(x̂) represents the nonlinear gains of the non-
linear CDM controller in the company of the observer.
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Consider the observer specified by (19) with the CDM control given by (34) and (35) and
presume that the gains δo0 and co0 are such that∣∣∣∣∣∣co0δo0 sign(zs)

t∫
0

z3(σ)dσ

∣∣∣∣∣∣≥ |z2|+ |ho(x̂)| , (36)

where sign(zs) = +1 if zs > 0, sign(zs) = 0 if zs = 0 and sign(zs) =−1 if zs < 0.
Then, we can create the control signal to ensures the asymptotic convergence of z3(t).
Tacking the ko positive constant to select the nonlinear gains as follows: ao0(x̂) =−ko

dg(x̂)
d t

ao1(x̂) =−kog(x̂)
. (37)

After that, combining (31) with (35), results in

z3 = (co0b−1
o0 −1)ϕ2 −b−1

o0 zo . (38)

Afterward, tacking co0(x̂) = bo0(x̂) = co0 as constants and bo1(x̂) = 0, one has

zo =−co0z3 . (39)

Then compute the second time derivative of zo as follows:

z̈o = co0ϕ̈2 − co0
¨̂ζ (t). (40)

Combining (34) with (35) and using (37), gives

¨̂ζ (t) = ḟo(x̂)− ko1zo , (41)

where ko1 = k−1
o after that, substituting (41) into (40), gives

z̈o = co0ϕ̈2 − co0( ḟo(x̂)− ko1zo). (42)

Subsequently

żo = co0ϕ̇2 − co0

 fo(x̂)− ko1

t∫
0

zo(σ)dσ

 . (43)

Introducing (39) into (43) provides

ż3 = ho(x̂)− ko2

t∫
0

z3(σ)dσ , (44)

where: ko2 = co0ko1 and ho(x̂) = fo(x̂)− ϕ̇2(t).
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Supposing that ko2 = δo0 sign(zs), the related constants are ko1 =
δo0

co0
sign(zs) and

ko =
co0

δo0
sign(zs), then, we take that zs = z3

t∫
0

z3(σ)dσ and if we insert (44) into (33), it gives us:

V̇3 ≤−c̄1z2
1 − c2z2

2 + z2z3 + z3

ho(x)− ko2

t∫
0

z3(σ)dσ

−αVo ≤−c̄1z2
1 − c2z2

2 + vo(t), (45)

with

vo(t) = z3

z2 +ho(x)− ko2

t∫
0

z3(σ)dσ

= z3(z2 +ho(x)− co0δo0zs sign(zs)).

While the function zs sign(zs) at all times is positive, vo(t) is negative, if the gains δo0 and co0 are
selected with respect to inequality (36), they are adjusted till acceptable results are achieved, at
last, we obtain V̇3 ≤−c̄1z2

1 − c2z2
2, or V̇3 negative definite. This indicates the exponential conver-

gence to zero of the tracking error. As a result, the position control with the nonlinear observer
of the considered system is realized.

6. Discrete CDM-backstepping controller

The Euler approximation for the interested system given by (17) and the observer given by
(19) are represented by (46) and (47), respectively.

x1( j+1) = x1( j)+Tsx2( j)

x2( j+1) = x2( j)+Tsx3( j)+Ts f1(x( j))

x3( j+1) = x3( j)+Ts f2(x( j))+
Ts

L∞
u( j)+Tsg(x( j))u( j)

, (46)


x̂1( j+1) = x̂1( j)+Tsx̂2( j)+Tsh1(y( j)− x̂1( j))

x̂2( j+1) = x̂2( j)+Tsx̂3( j)+Ts f1(x̂( j))+Tsh2(y( j)− x̂1( j))

x̂3( j+1) = x̂3( j)+Ts f2(x̂( j))+Tsg(x̂( j))u( j)+Tsh3(y( j)− x̂1( j))

, (47)

where Ts is the sufficiently short sampling time.
The discrete control law for a magnetic levitation system is given as:

u( j+1) =
(

1−Ts
ao0(x̂( j))
ao1x̂( j)

)
u( j)+

Ts

ao0(x̂( j))
ẑo( j)

ζ̂ ( j+1) =
(

1−Ts
bo0(x̂( j))
bo1x̂( j)

)
ζ̂ ( j)+

Tsco0(x̂( j))
bo1(x̂( j))

ϕ2(x̂( j))− Ts

bo1(x̂( j))
ẑo( j)

. (48)
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7. Simulation result

To test the suggested control procedure, we plot two tests, which are illustrated in Fig. 4 and
Fig. 5, in order to display the robustness and performance in terms of time response and the
convergence of the estimation and tracking errors for the observer as well as the controller. The
reference to a position can be created by applying a sequence of three different sine waves in
frequency bands. In the first test, this reference signal has an amplitude of 5 mm and a nominal
position of 5 mm.

When it has an amplitude of 4.5 mm and a nominal position of 4.5 mm in the second test, the
controller is discretised with a sampling time T of 0.5 ms. The simulation is provided in a small
range of motion to use the electromagnet with low cost and simple construction.

Initial conditions on states are the property of the system and are set to be zero x(0)= (0 0 0)T

in the first test and x(0) = (1 0 0)T in the second test, when the initial estimated states are chosen
x̂(0) = (2 0 0)T in the vicinity of the actual state x(0) to ensure good performance results. The
CDM gains are adjusted with respect to inequality (36) and modest δo0 = 3.1 and co0 = 1.4 are se-
lected to avoid noisy or considerable control efforts and the observer gain vector H = (h1 h2 h3)

T

is chosen such that the matrix A−BH is stable. In addition, high observer gains help decrease the
influences of disturbance and model mismatch and is taken as H = (1 2.2 6.1 0.9)T . However,
the parameters of the controller c1 and c2 are relatively selected c1 = 35, c2 = 35, to guarantee
small error signals, without causing considerable amplitude of the control input.

The parameters of the magnetic levitation system are set as follows [2]:
M = 0.54 kg, g= 9.81 m/s2, X∞ = 0.008114 m, Q= 0.001624 H·m, L∞ = 0.7987 H, R= 11.88 Ω.

Test one: ideal case. In the first test of simulations, only nonzero initial errors have considered,
and all other conditions are considered as an ideal one, that is, the observer model is an accurate
equivalent to the system, no external disturbances, and no parameters mismatch.

Fig 4a, 4c and 4e shows the estimated states and the actual states. The observer errors are
displayed in Fig 4b, 4d and 4e. We can observe that the estimated position tracks the actual
position exponentially, this property is ensured for speed and coil current, also the observer error
of all states converges to zero exponentially. Fig. 4g illustrates the behaviour of the input control
voltage. Indeed, it appears clearly that the obtained input control signal is acceptable.

Test two: robustness to external disturbance, parameters mismatch with considerable nonlinear
variation and sensor noise.

We disturb the output of system with sinusoidal external disturbance d(t) = 1.5+ sin(2πt),
designated in Fig. 5h, at initial time and the following nominal system parameters with consider-
able nonlinear variation were employed for simulation studies: to confirm the robustness of the
controllers to parameters mismatch, X∞0 , Q0, L∞0 and R0 vary up to 30% and M0 varies up to
200 %, then a uniformly distributed stochastic noise between −0.2 mm and 0.2 mm is added to
the position.

The controller performance and voltage control input are plotted in Fig. 5. Qualitatively, our
simulation results show in Fig. 5b, 5d and 5f that the tracking error immediately converges with
exponential form, into a small region of 0.3 mm, by a small root mean square error of 0.09 mm
and rapid responses are achieved as shown in Fig 5a, 5c and 5e. It also illustrates in Fig. 5g that
the control effort changes rapidly to ensure a fast response, when the disturbance, parameters
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(a) (b)
(a) Positions dynamic. 1 – Actual position, 2 – reference, 3 – estimated position; (b) observer error

(c) (d)
(c) Speeds dynamic. 1 – Estimated speed, 2 – actual speed; (d) observer error

(e) (f)
(e) Coil currents dynamic. 1 – Estimated coil current, 2 – actual coil current; (f) observer error

(g) Control input dynamic

Fig. 4. Controller performance, test one
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(a) (b)
(a) Positions dynamic. 1 – Actual position, 2 – reference, 3 – estimated position; (b) observer error

(c) (d)
(c) Speeds dynamic. 1 – Estimated speed, 2 – actual speed; (d) observer error

(e) (f)
(e) Coil currents dynamic. 1 – Estimated coil current, 2 – actual coil current; (f) observer error

(g) Control input dynamic; (h) disturbance variation

Fig. 5. Controller performance, test two
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mismatch and sensor noise are applied at the initial time. Then this controller ensures robust
performance in this pre-defined framework, therefore, this result demonstrates the effectiveness
of the controller.

8. Conclusion

In this paper, the robust nonlinear control for a magnetic levitation system using the CDM
approach with backstepping technique and the nonlinear observer has been proposed. The Lya-
punov analysis indicated that the errors in the completely closed loop system, controller, and
observers converge to zero exponentially.

The proposed controller is applied in a discrete form with the Euler method. The sampling
time is kept adequately small so that the discrete model resembles the continuous time model
property.

The proposed control algorithm was found to generate better tracking performance and tol-
erable control effort. This superior performance is due to the fact that all the effect of parameters
mismatch, disturbance and sensor noise are compensated with suitable feedback gains values.

The future research on this topic aims to propose the use of a reduced-order nonlinear ob-
server with a CDM-backstepping controller.
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