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STUDY OF CONJUGATE HEAT TRANSFER IN ELECTROMAGNETIC
LIQUID METAL DREAM PIPE

The combined effect of conjugation, external magnetic field and oscillation on the
enhancement of heat transfer in the laminar flow of liquid metals between parallel
plate channels is analyzed. In order to make our results useful to the design engineers,
we have considered here only the wall materials that are widely employed in liquid
metal heat exchangers. Indeed, all the results obtained through this mathematical
investigation are in excellent agreement with the available experimental results. The
effective thermal diffusivity κe is increased by 3 · 106 times due to oscillation and that
the heat flux as high as 1.5 · 1010 (W/m2) can be achieved. Based on our investigation,
we have recommended the best choice of liquid metal heat carrier, wall material and
its optimum thickness along with the optimum value of the frequency to maximize
the heat transfer rate. At the optimum frequency, by choosing a wall of high thermal
conductivity and optimum thickness, an increase of 19.98% in κe can be achieved.
Our results are directly relevant to the design of a heat transfer device known as
electromagnetic dream pipe which is a very recent development.

1. Introduction

The rapid changes in modern technology quite often demand the scientists and
engineers to deal with very high temperature and hence there is an ever increasing
need to develop devices for enhancement of heat transfer. Heat pipe is one such
device. The interest in analytical studies and experimental designs of heat pipes
started growing rapidly following the seminal publication by Grover et al. [1].
Kurzweg [2] designed a heat transfer device called dream pipe, for the enhancement
of heat transfer, in which heat is transported from a hot to a cold reservoir by means
of sinusoidal oscillations of viscous fluid contained within open ended capillary
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tubes connecting the reservoirs. It should be noted here that the problem on the
enhancement of heat transfer by sinusoidal oscillations of the fluid is called a dream
pipe problem and Kurzweg [3] established that the same heat transfer process can
take place in the oscillatory flow in an array of parallel plate channels. Heat
transfer through capillary tubes connecting two fluid reservoirs having different
temperatures was examined analytically and experimentally by Kurzweg and Ling
de Zhao [4]. Effective thermal diffusivity is increased up to 17900 times than
that in the non oscillation case. Ozawa and Kawamoto [5] who carried out a
numerical simulation and thermal flow visualization of the dream pipe provided
phenomenological explanations of the fundamental heat transfer mechanism in
this novel heat transfer process. They concluded that the enhancement of heat
transfer is mainly owing to the lateral diffusion of heat, accumulation capacity
of heat in a region of depth of penetration formed near the wall and convective
motion forced by the oscillation. Similar explanation was also rendered earlier
by Kurzweg [6].

Indeed, this oscillation technique is based upon the periodic longitudinal con-
vective and lateral diffusive thermal energy transport in the presence of a constant
axial temperature gradient. Since this heat transfer process involves no net convec-
tive mass transfer, this is suitable for the removal of heat from hazardous substances
like radioactive fluids [3]. Also, since devices based on this thermal pumping pro-
cess are driven by external oscillations, it is possible to construct devices based on
the technique of thermal valves which find applications in the field of cryogenics
[6]. It also finds applications in the accelerated cooling devices for removing heat
in combustion processes [3]. Some more remarkable advantages of dream pipes
are explained elaborately in [2] and [7].

Incidentally, Kurzweg [3] suggested that it is better to use the liquid metals
in the heat exchangers since their density, temperature gradient and specific heat
capacity are very large. Heat transmission by oscillating the liquid metals is a topic
of current interest owing to its tremendous applications in transporting thermal
energy from Sterling and Brayton engines [8, 9] and cooling of space nuclear
reactors [10], high power electrical and electronic equipments. Further details on
the designs of heat removal devices using liquid metals for fission surface power
for Mars Moon and surface missions are well explained in [11].

Further, in these heat pipes with Na, NaK and K, the only relevant and mostly
used wall materials are nickel, niobium and stainless steel [12, 13]. In such heat
transfer devices, not only the fluid properties but also the properties of the wall such
as its thermal conductivity and thickness also influence the heat flux transported
by the fluid and hence the problem becomes a conjugate heat transfer problem.
Further, if the wall thickness is equal to or larger than the hydraulic diameter,
the effect of heat conduction in the wall on the heat flux transported in the fluid
cannot be neglected, and hence the level of conjugation becomes predominant
[14]. Therefore, in the present investigation, as we are considering the channels
with small hydraulic diameters, the effect of conjugation has to be considered.
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Several authors have considered the effect conjugation on the augmentation of
heat transfer in the laminar and oscillatory flows. Kurzweg and de Zhao [4] inves-
tigated the effect of wall thermal conductivity on the effective thermal diffusivity
of the fluid in a circular tube with infinite wall thickness and showed that the large
amount of heat is transported when the frequency and amplitude are large. Kurzweg
[3] analyzed the hydrodynamics of enhanced longitudinal heat transfer through a
sinusoidally oscillating viscous fluid in an array of thermally conducting parallel
plate channels analytically. Even though it is modelled as a conjugate heat transfer
problem, the conjugation effect has not been carried out since the ratio of wall to
fluid thickness is fixed as two and the wall and the fluid are considered to have
similar thermal properties. Kaviany [15] extended the above problem of Kurzweg
by including the effects of viscous dissipation, the presence of harmonics other
than the fundamental harmonics, channel spacing and wall thickness and analysed
the effect of wall thickness. Inaba et al. [16] examined the effect of conjugation on
the heat transfer enhancement in an oscillatory flow through a circular pipe with
conducting wall. Puvaneswari and Shailendhra [17] studied the effect of conjuga-
tion on the heat flux transported in a laminar liquid metal flow past a thermally
conducting and sinusoidally oscillating infinite flat plate and concluded that the
heat flux is increased by 46.14% by increasing the wall thickness to an optimum
value.

The variations in the heat transfer characteristics with respect to the tube wall
thickness were analysed by Kaviany [18] in an oscillatory flow through capillary
tubes connecting two reservoirs having different temperatures. Inaba et al. [19]
investigated the case of enhancement of heat transfer in the flow through bundles
of conductive pipes of various regular polygonal cross sections including a circle.
Takahashi [20] proposed a double-pipe heat exchange model to analyse the effect
of oscillation on the effective thermal diffusivity of the fluid. However, in all these
problems the authors have not considered the effect of conjugation.

In recent years, there is a great resurgence in the investigation of heat transfer
in hydromagnetic oscillatory flows of liquid metals as these investigations are es-
sential to design liquid metal magnetohydrodynamics heat exchange devices. The
electromagnetic version of dream pipe is becoming a topic of current interest owing
to its tremendous applications. Masao Furukawa et al. [21] examined the feasibility
of an electromagnetic driven dream pipe by the analyses from both thermal and
electrical points of view and showed that this novel heat transfer device may pos-
sibly replace the existing mechanically-driven dream pipes. Heat transfer studies
with magnetohydrodynamic liquid metal flows are of great interest in the concep-
tual design of fusion power reactor [22] as liquid metals have incomparable heat
transfer characteristics such as high thermal conductivity, high melting point and
boiling point which eliminates the probability of local boiling [23]. The mentioned
properties of liquid metals make them a good choice for the vacuum environment
of space. Moreover, in the design of lithium blankets of thermo-nuclear reactors,
the liquid metal has to be circulated in the presence of a strong magnetic field [24].
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Shailendhra and Anjali Devi [25] analysed the effect of transverse magnetic field
on the heat transfer enhancement in the flow past an oscillating flat plate immersed
within a viscous fluid. The spatial variation of axial heat flux in various time in-
tervals of the oscillation cycle in the case of hydromagnetic liquid metal flows in
dream pipe with insulated walls was investigated by Shailendhra and Anjali Devi
[26]. Moreover, studies on the heat transfer in the hydromagnetic flow of liquid
metals are important in the development and design of metallurgical plants and
electromagnetic stirring devices [27].

Many experiments on hydromagnetic thermo-hydraulics were mainly carried
out from 1970’s to 80’s and Kirillov et al. [28] have summarized all these works.
For further details on the current status and future scope of Liquid Metal Magneto
HydrodynamicHeat Transfer Systems, onemay refer to the survey article byMorley
et al. [29].

Recently, Puvaneswari and Shailendhra [30] have investigated the effects of
magnetic field, wall thickness and wall thermal conductivity on the enhancement
of heat transfer in a hydromagnetic laminar flow of liquid metals past an oscillating
and thermally conducting infinite flat plate.

Motivated by the above investigations and applications, it is proposed to extend
the earlier of work of Kurzweg [3] by considering the combined effects of conjuga-
tion and a transverse magnetic field when the working fluids are exclusively liquid
metals like Na, K and NaK. The walls are considered to be of finite thickness and
made up of compatible materials like Ni, Nb, AISI 316, which are commonly used
in liquid metal heat pipes [12, 13].

To the best of the knowledge of the authors, this is the very first attempt to
investigate the combined effects of conjugation, oscillation and magnetic field on
the enhancement of heat transfer in the flow between parallel plates. This inves-
tigation provides phenomenological explanations about the effect of conjugation
and magnetic field on the enhancement of heat transfer. The new insights gained
will be of immense use in the design, construction, control and improvement of a
corresponding Liquid Metal Magneto Hydrodynamic Heat Transfer systems that
can be designed using this oscillation technique. Such a heat transfer system can
possibly be employed in nuclear reactors and also can be coupled with solar thermal
systems.

2. Mathematical formulation and solution

Consider the laminar flow of a liquid metal, induced by a sinusoidal pressure
gradient, within an array of channels, bounded by a long thermally-conducting
infinite parallel plates, connecting a hot and a cold reservoir. The x axis is chosen
to be the axis of fluid motion and the y axis is chosen normal to it. A constant
axial temperature gradient γ =

∂T
∂x

is maintained both within the fluid and the
plates. The thickness of the fluid layers and solid walls are assumed to be 2a and 2b
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Fig. 1. Schematic representation of the problem

respectively. In parallel flows, neglecting the end effects is a fair approximation to
reality provided the flow oscillation amplitude and the hydraulic diameter are both
small compared to the plate length and hence the end effects present at points where
the fluid enters and leaves the channels are neglected [31]. A uniform magnetic
field with strength B0 is applied in a direction transverse to the fluid motion.

The continuity equation is
∇.~q = 0 (1)

where ~q is the velocity of the fluid represented as ~q = [u, 0, 0] which gives

∂u
∂x
= 0 (2)

and hence u = u(y, t).
The momentum equation is

ρ f
∂~q
∂t
= −∇p + µ∇2~q + ~j × ~B, (3)

~B = B0~j and ~j × ~B = −σeuB2
0
~i

where ρ f is the density of the fluid, p – the pressure, µ – the dynamic viscosity,
B0 – the strength of transverse magnetic field, σe – the electrical conductivity of
the fluid, ~j – the current density vector, and ~j × ~B – the Lorentz force due to the
transverse magnetic field.

The boundary condition for the velocity is

u = 0, y = a. (4)

It must be noted here that the induced magnetic field is neglected in equation
(3). This is because, under laboratory conditions, in the flow of liquid metals,
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induced magnetic field cannot be realized unless the flow becomes turbulent [32].
That is, magnetic Reynolds number, which is the ratio of the induced magnetic
field to the applied magnetic field, in the case of liquid metal flows, is considerable
enough to take into account the inducedmagnetic field onlywhen the corresponding
Reynolds number becomes very large that makes the flow to become turbulent. It
should be noted here that the fluid flow is considered to be laminar in the present
investigation.

The physical quantities are cast in non-dimensional form usingU =
u

U0
, η =

y

a
where U0 is the representative axial velocity and η is the non-dimensional vertical
coordinate.

Assuming
∂p
∂x
= [A0eiωt ]R and accordinglyU (η, t) = [ f (η)eiωt ]R whereω is

the frequency of oscillation and A0 is the magnitude of the pressure gradient, from
equations (3) and (4) we obtain

f (η) =
iλ

α2 − iM2

[
1 −

cosh(Cη)
cosh(C)

]
(5)

where λ =
a2 A0
νρU0

– the non-dimensional magnitude of imposed sinusoidal pressure

gradient, M =

√
σea2B2

0
ρν

– Hartmann number, α =
√

a2ω

ν
– Womersley number

and C =
√

M2 + iα2.
The tidal displacement 4x is defined as

4x = U0

���������

π
2ω∫
−π
2ω

eiωtdt

1∫
0

f (η)dη

���������

=
2U0λ

ω

�����
1

α2 − iM2

[
1 −

tanh C
C

] �����

The heat equation in the fluid and solid are given by

∂Tf

∂t
+ γ

[
U0 f (η)eiωt

]
R
=
κ f

a2
∂2Tf

∂η2 , 0 < η < 1 (6)

∂Ts

∂t
=
κs

a2
∂2Ts

∂η2 , 1 < η < 1 + 2ε, ε =
b
a

(7)

where Tf , κ f and Ts, κs are the temperature distribution and thermal diffusivity of
the fluid and solid respectively.

As liquid metals have low Prandtl numbers, viscous dissipation term is ne-
glected in equation (6). Following the lines of Kurzweg [6] it is to be noticed that
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the axial temperature gradient
∂T
∂x

is small compared to the very large time depen-

dent transverse temperature gradient
∂T
∂y

that exists during most of the sinusoidal

cycles which means that
∂2T
∂y2 is much larger than

∂2T
∂x2 and hence

∂T
∂x

is taken as γ

which is actually the time averaged value of
∂T
∂x

.
As the heat flow is symmetrical with respect to x axis, there is no heat flow

along y direction across planes located in the middle of the fluid channels and in
the middle of the bounding walls so that(

∂Tf

∂η

)
η=0
= 0, (8)

(
∂Ts

∂η

)
η=1+ε

= 0. (9)

Both the temperature and the heat flux are continuous on the fluid-solid interface
at η = 1 so that

Tf (1) = Ts (1) (10)

k
(
∂Tf

∂η

)
η=1
=

(
∂Ts

∂η

)
η=1

, k =
k f

ks
, (11)

where k f and ks represent the thermal conductivities of the fluid and the wall
respectively.

In fact, it has been firmly established that the effect or level of conjugation, in
general, is more pronounced in the case of unsteady, laminar flow of low Prandtl
number fluids such as liquid metals [33] and the present problem satisfies all these
requirements for a typical conjugate heat transfer problem.

To solve (6) and (7) for T , a temperature distribution of the following form
[34] is assumed for both the fluid and the solid:

T[x, η, t] = γ [x + ag(η)eiωt ]R (12)

It should be noted that this form of solution is locally valid that has a physically
realistic time averaged constant axial temperature gradient and that it exhibits a time
dependent cross-stream variation in temperature [3]. This form has been already
used by many authors like [4, 6, 7, 15–17] and [30].

From equations (6), (7) and (12) it is evident that

g′′f (η) − iα2Pr gf (η) = Pe f (η), 0 < η < 1, (13)
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g′′s (η) − iα2Prσgs (η) = 0, 1 < η < 1 + 2ε (14)

where Pe =
aU0
κ f

, Peclet number.

Solving (13) and (14) subject to conditions (8)–(11) it is found that

gf (η) = Pe λ
[
a3b1(η) + a4 + a5b2(η)

]
(15)

gs (η) = Pe λ [a1(a2 − C)] b3(η) (16)

where the constants defined in the above expression are given in the appendix.

2.1. Effective (enhanced) thermal diffusivity

The effective (enhanced) averaged thermal diffusivity κe, can be defined by
the equality [3]

− κeγ =
ω

2π

2π
ω∫

0

dt

1∫
0

[
T

[
x, η, t

] ]
R [U0 f (η)eiωt ]Rdη (17)

where the subscript R represents the real part of the terms shown. It is to be noted
here that the quantities in this integrand do not average out to zero when integrated
over one period of oscillation, so that there will be a net heat flow, although,
obviously the time average of the velocity will be zero, so that there can be no net
accompanying mass transport. However, there will be some axial diffusion mass
transfer but this will be small for the fluids with high Schmidt number such as
liquid metals [3].

Using (5) and (15) and performing the time integration in (17), the ratio of
enhanced thermal diffusivity to the molecular thermal diffusivity is obtained as

κe
κ f
=
−1
4

Pe
1∫

0

(
f gf + gf f

)
dη (18)

where the bars represent the complex conjugate of the functions shown.
The effective ( enhanced ) thermal diffusivity κe is obtained from (18) as

κe =
−U0a

2

1∫
0

[
f gf

]
R

dη (19)

where f gf = Peλ2z1, (20)

where z1 defined in the above expression is given in the appendix.
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Using (20) and the definition of tidal displacement (4x) , the final expression
for the effective thermal diffusivity is obtained as

κe =
−ω(4x)2α2Pr (M4 + α4)

8 × a14

1∫
0

[
f gf

]
R

dη (21)

where the expression for a14 is given in the appendix.
The non-dimensional effective (enhanced) thermal diffusivity is given by

κ∗e =
κe

ω(4x)2 (22)

2.2. Transverse temperature difference

The non-dimensional transverse temperature difference (NTTD), obtained from
(12) is given by

NTTD =
T (x, 1, t) − T (x, 0, t)

γ4x
=
α2Pr g(τ)

2h31
, g(τ) = h38 cos τ − h39 sin τ

where τ = ωt . The constants occurring in the above equation are provided in the
appendix.

3. Results and discussion

The objective of the present study is to analyse the combined effects of wall
thickness, wall thermal conductivity, the Hartmann number and the Womersley
number on the enhancement of heat transfer.

As stated above, K,Na andNaK (22%Na, 78%K) are used as the heat exchange
fluids and the wall is considered to be made up of Ni, Nb and stainless steel of
grade AISI 316. The operating temperature range (◦C) of heat pipes with K, Na
and NaK as the working fluids are 500-1000, 600-1200 and 425-825, respectively
[13]. Hence, all the properties of the fluids and the wall materials are selected at
600◦C for the sake of comparing the results. Accordingly, the following values are
fixed for the various physical quantities. The thermal conductivities k f ( W/(mK))
and the thermal diffusivities κ f (m2/s) of K, Na, NaK (22% Na, 78% K) are 35.50,
63.63, 28.28 and 6.765 · 10−5, 6.220 · 10−5, 4.408 · 10−5 respectively. The Prandtl
numbers of these fluids are 0.003143, 0.004202 and 0.00579 respectively. The
electrical conductivities (S/m) of the same fluids are 1893939.39, 3215434.08 and
1468428.78. The thermal conductivities ks (W/( m K)) of the above-mentioned
wall materials (Ni, Nb and stainless steel of gradeAISI 316) are 65.6, 58.2, 18.3 and
the corresponding thermal diffusivities κs (m2/s) are 1.39071 ·10−5, 2.39969 ·10−5

and 4.03893 · 10−6, respectively [35]. In this context, ε is varied from 0.4 to 2; α is
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varied from 10−2 to 50. The strength of magnetic field is varied from 0 mT to 100
mT, which is the usual range of magnetic field applied on the laminar flow of liquid
metals [36]. Accordingly, the Hartmann number varies from 0 to 79, 0 to 86 and 0
to 62 for K, Na and NaK respectively.

Computing the value of κ∗e by varying the parameters as mentioned above,
the optimum ε, the optimum α corresponding to the maximum value of κ∗e are
obtained and presented in Table. 1 for all the fluids and solids under consideration,
when M = 0 and M = 60. Maximum enhancement has been observed for the
fluid NaK with the wall material Ni and the corresponding maximum value of the
non-dimensional effective (enhanced) thermal diffusivity is 0.047.

Table 1.
Optimum ε, optimum α, the corresponding maximum value of κ∗e

Fluid Wall material
Ni Nb AISI 316

K M = 0 0.75 1 0.5
25.73 24.7 22.69
0.046 0.043 0.041

M = 60 0.75 1 0.5
25.89 24.9 22.87
0.045 0.042 0.040

Na M = 0 1 1.5 0.75
19.6 17.25 14.91
0.042 0.038 0.036

M = 60 1 1.5 0.75
19.76 17.47 15.06
0.041 0.037 0.034

NaK M = 0 1 1.5 0.5
18.54 17.4 17.62
0.047 0.044 0.042

M = 60 1 1.5 0.5
18.90 17.64 17.9
0.046 0.043 0.040

Even though the analysis has been carried out and the discussions are made
for a wide range of M , from 0 to 62, the graphs are presented only for M = 10 to
minimize the number of graphs.

3.1. Effect of magnetic field

With the fluid NaK and the wall material Ni, it is found that at any frequency
κ∗e decreases with increasing M from 0 to 62 (Fig. 2a), which corresponds to the
typical MHD deterioration of heat transfer. One of the reasons for the reduction
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Fig. 2. Effect of M on κ∗e and ANTTD at optimum frequency

in κ∗e is the reduction in velocity due to the action of the Lorentz force. It is in
good agreement with Shailendhra and Anjali Devi [25, 26] and Puvaneswari and
Shailendhra [17]. Even though this analysis has been carried out for all possible
values of α, the results are presented only for optimum α to reduce the number
of graphs. For the fluid NaK with the wall material Ni the optimum value of α
is 18.78, which is the average of the optimum values of α for M = 0, 30, 62, by
selecting ε = 1, the optimum wall thickness which is found to be the same for each
M when the fluid is NaK and the wall material is Ni.

Earlier, Kurzweg [6] established that the large transverse temperature gradient
generated by the fluid vibration is the main reason for the heat transfer augmenta-
tion. To justify this result, the non-dimensional transverse temperature difference
(NTTD) between η = 0 and η = 1 is calculated for all possible combination of
fluids and solids. It should be noted here that larger the value of NTTD, larger in the
conduction heat flux in the transverse direction. The sign of NTTD merely decides
the direction in which the heat flows. That is, NTTD is positive when the heat flows
from the wall to the fluid core and it is negative when the heat flows from the center
of the pipe to the wall. Hence, all our discussions are based on the absolute value
of NTTD denoted by ANTTD.

It is found that ANTTD decreases with increasing M from 0 to 62 almost all
the times. This result is shown in Fig. 2b when τ = π/3. τ is varied continuously
from 0 to 2π and similar observations were made for almost all the values of τ.
As the effects of M on ANTTD and κ∗e are similar, we conclude that the effect
of M on κ∗e depends on the effect of M on ANTTD. This result has been already
reported by Shailendhra and Anjali Devi [25] in the non-conjugate case of the
hydromagnetic flow between counter-oscillating plates and by Puvaneswari and
Shailendhra [17] in the conjugate case of hydromagnetic flow past an oscillating
and thermally conducting flat plate.

3.2. Effect of Womersley number

The Womersley number (α) is defined as the square root of the ratio of the
viscous penetration time scale to the oscillation time scale. Fig. 3a shows the effect
of α on κ∗e for the fluid NaK with the wall material Ni for M = 10. It is observed
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that when α increases, κ∗e increases initially and then it starts decreasing from a
particular value of α onwards whatever may be the wall thickness. This result is
valid for all values of M from 0 to 62. This is because, for small frequencies κ∗e is
directly proportional to α2, while for high frequency, it is inversely proportional to
α, as observed by Kurzweg [3].
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Fig. 3. Effect of α on κ∗e and NTTD at optimum ε

To understand the effect of α on κ∗e, we examined the effect of α on the non-
dimensional transverse temperature difference (ANTTD) between the interface at
η = 0 and η = 1. It is observed that, when α increases, ANTTD also increases at
most all the times when M = 10 and ε = 1 (Fig. 3b). The same result is observed
whatever may be the strength of magnetic field and wall thickness. As α increases
both κ∗e and ANTTD increase up to an optimum value of α and hence the main
reason for the enhancement of heat transfer up to optimum α is due to the increase
in ANTTD. However, even though ANTTD increases after optimum α, that is, in
the case of large frequency, κ∗e decreases. This can be explained as follows.

Incidentally, β2 =
α2Pr
κ f

is defined as the ratio of the thermal diffusion time

scale to the oscillation time scale. When α → ∞ i.e., when β → ∞, thermal
diffusion time >> oscillation period. Then most of the times the fluid oscillates
between the reservoirs without carrying heat. In other words, the fluid behaves
as a non-conductor. As a result of this, the axial convection heat flux decreases.
Therefore, in the case of large frequency, even if ANTTD increases κ∗e decreases.
Moreover, when α decreases to zero (i.e., when β → 0) thermal diffusion time
<< oscillation period. In this case, the fluid oscillates between the reservoirs very
slowly and the heat flows from the core to the wall very fast. As a result, there is
a huge loss in transverse conduction heat flux which is reflected in κ∗e. Therefore,
when α decreases to zero κ∗e decreases. Further, physically at higher frequencies
the velocity distribution in the channel changes and an inertial core with uniform
velocity is formed around the axis of the channel. The presence of such an inertial
core dominates over the viscous force and hence reduces the effectiveness of the
fluid to store heat and, as a consequence, the heat flux transported by the fluid
decreases [37].
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Thus, in general, the effect of α on κ∗e depends on its effect on ANTTD only
from α = 0 to α = α optimum. Also, it is observed that the optimum value of α at
which maximum κ∗e is obtained depends on the fluid chosen as well as the thermal
conductivity and thickness of the wall.

3.3. Effect of wall thickness

The wall thickness plays a significant role in the enhancement of heat transfer
because the thermal energy is stored in the wall and then released during one cycle
of operation. Indeed, the walls absorb the heat energy from the hot fluid and give
it off to the cold fluid, during various phases of the oscillation cycle. Following are
the effects of ε at low, optimum and high frequencies for M = 10.

At low frequency as ε increases κ∗e increases. On the other hand, at optimum
frequency as ε increases κ∗e increases initially but when ε is increased further it has
no effect on κ∗e. However, when the frequency is very large κ∗e is independent of ε.
These results are depicted in Fig. 4 for M = 10. Similar observations were made
for all the values of M from 0 to 62. These results have been already observed by
[15–17] in the absence of magnetic field and by [30] in the presence of magnetic
field. However, they have not rendered any physical justification for the above
observation and hence we provide one here. The wall does not play any role on
the heat transfer process in the fluid if the period of oscillation is less than the
time required for heat to diffuse across the wall. That is, the wall thickness has no

effect on κ∗e if
2π
ω

<
b2

κs
which is equivalent to 2π < α2ε2Prσ. Therefore, given

a fluid and a wall material, larger the value of α smaller will be the value of ε
for the above condition to be satisfied. This fact is illustrated in Fig. 4 for three
different values of α, one corresponding to the optimum frequency at which the
maximum κ∗e is obtained, and the other two corresponding to the low and high
frequencies. Moreover, at the optimum frequency and the optimum wall thickness,
κ∗e is increased by 19.98% while using a wall with high thermal conductivity.

0 . 5 1 . 0 1 . 5 2 . 0
0 . 0 1
0 . 0 2
0 . 0 3
0 . 0 4
0 . 0 5 M  =  1 0

a  =  5

a  =  4 0

a  =  1 8 . 6 8

 

 

P r  =  0 . 0 0 5 7 9 ,  k s  =  6 5 . 6

e

k e*

Fig. 4. Influence of ε on κ∗e for three different α corresponding to the low, optimum and high
frequencies
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Fig. 5. Effect of ε on NTTD

It is also observed that, by and large, ANTTD behaves in the same way as κ∗e
due to the effect of ε which is explained as follows. ANTTD is observed to increase
as ε increases when the frequency is small ( Fig. 5a). At optimum frequency as
ε increases the ANTTD also increases up to a certain ε and the effect is saturated
beyond that ε (at some values of τ) ( Fig. 5b). In the case of large frequency ANTTD
becomes a constant with increasing ε ( Fig. 5c). Thus, the effect of ε on κ∗e almost
depends on its effect on ANTTD when M = 10. The same results are obtained for
all values of M from 0 to 62. Also this result is consistent with the results reported
by Puvaneswari and Shailendhra [30].

We further observe fromFig. 4 that κ∗e is independent of εwhen α is sufficiently
large. This was shown analytically by [3].We provide a physical justification for this

result as follows. Thewall thermal penetration distance is defined as d =

√
2κs
ω

. For
a given wall material, in the limiting case of α tending to infinity, this penetration
distance tends to zero and hence there won’t be any thermal interaction between
the wall and the fluid and the wall thickness has no effect on κ∗e. This can also be
reasoned out as follows. In the case of large frequency, it is observed that ANTTD
is independent of ε as in Fig. 5c. As the transverse temperature gradient plays a
vital role in this heat exchange process and since ANTTD is independent of ε, κ∗e is
also independent of ε when the frequency is large.
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3.4. Effect of the wall thermal conductivity

Kaviany [18] mentioned that, in the case of oscillatory flows heat transfer rate
is increased by the unsteady heat transfer between the pipe wall and the oscillating
fluid. During the forward part of the oscillation, hotter fluid within the core causes
a heat flow to the colder portions of the fluid within the boundary layers and to the
colder solid walls bounding the fluid. During the other half of the cycle, heat from
the hotter fluid in the boundary layers and the walls will diffuse into the fluid core,
which is now colder [3]. Hence, the wall thermal conductivity plays a significant
role in this heat transfer process.

Kurzweg and de Zhao [4] conducted experiments to investigate the effect of
wall thermal conductivity on the effective thermal diffusivity of the fluid in a
circular tube with infinite wall thickness by considering three interesting cases
of zero, infinite wall conductivity and the case where the thermal conductivities
and thermal diffusivities of the fluid and wall are equal. They reported that the
performance of dream pipe is better when the thermal conductivity of the wall is
higher. Inaba et al. [16] observed that the amount of heat transported by the fluid
is increased when the conductivity of the pipe wall is increased. Following are
the results obtained in the present study and the same are presented in Fig. 6 for
M = 10.
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Fig. 6. Effect of wall thermal conductivity on κ∗e
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In the case of large frequency, κ∗e increases as ks is increased whatever may be
the value of ε (Fig. 6c). Also, at optimum frequency, κ∗e increases as ks is increased
(Fig. 6b). But this result is valid only beyond a particular value of ε. However, the
above observations are not valid when the frequency is small (Fig 6a). Therefore,
our results are in good agreement with the experimental results of Kurzweg and
de Zhao [4] and the analytical results of Inaba et al. [16] beyond a particular wall
thickness only when the frequency is either optimum or large.

The same trend is observed for ANTTD also. At low frequency, ANTTD doesn’t
increase in the increasing order of ks at any wall thickness (Fig. 7a). At optimum
frequency,ANTTD increases as ks increases only after a certain value of ε (Figs. 8a,
b). Moreover, at high frequency ANTTD increases as ks is increased at any wall
thickness (Fig. 7b).
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Fig. 7. Effect of wall thermal conductivity on NTTD at low and high frequency
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Fig. 8. Effect of wall thermal conductivity on NTTD at optimum frequency

Thus, from the above observations, it is concluded that the effect of ks on κ∗e
depends on its effect on ANTTD and these effects depend on the range of values of
α and ε as explained above. The same observations are made for all values of M
from 0 to 62.
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During simulation it is found that, for the other fluid and solid combinations
all the results obtained in the present study are qualitatively the same but there is a
quantitative change in the optimum values of α and ε.

3.5. Total heat flux transported from the hot to the cold reservoir

Total amount of heat transported between the axes of symmetry namely, y = 0
(η = 0) ( in the fluid ) and y = a + b (η = 1 + ε) (in the solid) per unit time for a
channel of width W is the sum of the amount of heat transported by the fluid per
unit time between y = 0 and y = a and the amount of heat transported by the solid
per unit time between y = a and y = a + b.

That is,
Q(a + b)W = keaWγ + ksbWγ (23)

where ke is the effective thermal conductivity of the fluid and Q is the net heat
transported (W/m2).

By neglecting the axial conduction in the solid since it is negligibly small as
compared to the heat flux transported by the conduction in the fluid in the axial
direction, the above equation gives the net heat flux transported as follows.

Q = ke
a

a + b
γ =

κ∗e ρ f cf γ
1 + ε

(W/m2) (24)

where ρ f and cf represent the density and the specific heat capacity of the fluid,
respectively.

The values of Q corresponding to the maximum value of κ∗e, and the optimum
value of α and ε (refer Table 1) are computed for various fluids and solids under
consideration and are presented in Tables 2-3.

It is to be noted that, an axial heat flux of 1.3 · 1010 W/m2 was achieved
experimentally by Kurzweg [2] with liquid Sodium heat carrier at an oscillation
amplitude of 10 cm at a frequency of 30 Hz. Moreover, Kurzweg [3] predicted
an axial heat flux of 1.8 · 1010 W/m2 using pressurized water with ρ f cf = 1 (cgs
units), temperature gradient = γ = 10◦C, µ = σ = 1, ε = 2, ω = 300 rad/s and
4x = 100 cm. In order to calculate the maximum net heat flux transported (Q)
and to compare our results with those of Kurzweg [2, 3], we consider ω = 300
rad/s. In this case of high oscillation frequency (ω = 300 rad/s), there is a decrease
in Q when M = 60 and the percentage of decrease varies from 2.1% to 4.01%
(refer Table 2). As the percentage of reduction in Q is very small, the magnetic
field of strength up to 100 mT can be effectively used as an additional control
mechanism to maintain Q at a desired level and to postpone the onset of transition
to turbulence, thereby stabilizing the flow, if necessary. However, whenω is fixed as
300 rad/s the corresponding value of a, calculated from the optimum value of α,
becomes so small (0.44 mm ≤ a ≤ 0.69 mm), which is less than 3 mm. This value
of a corresponds to mini-channel heat exchangers [38]. In this case, the pressure
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Table 2.
Maximum net heat flux Q per unit area and the percentage of change in Q due to the applied

magnetic field when ω = 300 rad/s
Fluid Wall material

Ni Nb AISI 316
K M = 0

(1010 W/m2) 0.87 0.71 0.90
M = 60
(1010 W/m2) 0.85 0.70 0.88
% −2.10 −2.19 −2.38

Na M = 0
(1010 W/m2) 1.51 1.11 1.47
M = 60
(1010 W/m2) 1.46 1.07 1.42
% −3.13 −3.32 −3.45

NaK M = 0
(1010 W/m2) 1.09 0.82 1.29
M = 60
(1010 W/m2) 1.05 0.78 1.24
% −3.84 −4.01 −3.93

gradient required to drive the fluid through a channel of such a small hydraulic
radius will become sufficiently large since ∂p/∂x is proportional to 1/a4 for a
constant mass flux. It is to be noted that, Kurzweg has recommended a hydraulic
diameter of 3 mm with the frequency in the range of 2 to 50 Hz, when the working
fluid is liquid metal [2].

However, if we would like to have the dream pipe as a conventional heat pipe
and take a = 3 mm [38], the angular frequency ω takes values only between 6.46
to 15.83 (rad/s). In this case, the percentage of decrease in Q when M = 60 varies
from 0.1% to 1.57% (refer Table 3). Moreover, in this case, as the oscillation
frequency varies from 1.03 Hz to 2.52 Hz, a high rate of heat transfer is achieved
even at low frequency. This result is in good agreement with Masao Furukawa et
al. [21].

From Tables 2-3, it is inferred that the heat flux of order of 1010 W/m2 can be
achieved in dream pipe with liquid metals with compatible wall materials of finite
thickness with ω = 300 rad/s (as fixed by Kurzweg [3]) only if the dream pipe
becomes a mini-channel heat exchanger and that the maximum heat flux obtained
is 1.5 · 1010 W/m2. Moreover, in this case, κe is increased by 31,39,383 times
than that existing in the absence of oscillations. However, as a conventional heat
exchanger, the maximum heat flux that can be achieved in dream pipe is only of
the order of 108 W/m2 and the maximum heat flux obtained is 5.62 · 108 W/m2.
In this case, κe is increased by 1,03,600 times than that existing in the absence of
oscillations.
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Table 3.
The optimum frequency of oscillation, the corresponding maximum net heat flux Q per unit area

and the percentage of change in Q due to the applied magnetic field when a = 3 mm
Fluid Wall material

Ni Nb AISI 316
K M = 0

ω 15.64 14.41 12.16
Q(108 W/m2) 4.54 3.43 3.66
M = 60
ω 15.83 14.65 12.36
Q(108 W/m2) 4.50 3.41 3.63
% −0.91 −0.56 −0.78

Na M = 0
ω 11.16 8.64 6.46
Q(108 W/m2) 5.62 3.18 3.17
M = 60
ω 11.34 8.86 6.59
Q(108 W/m2) 5.54 3.16 3.13
% −1.57 −0.86 −1.50

NaK M = 0
ω 9.75 8.59 8.8
Q(108 W/m2) 3.54 2.34 3.77
M = 60
ω 10.13 8.83 9.09
Q(108 W/m2) 3.54 2.31 3.74
% −0.1 −1.33 −0.77

4. Comparison of our results with the results reported in the literature

All the results obtained in the present investigation have been compared, in
section 3, with the earlier works by [4, 15–18] and [30] in the non magnetic case
and [25, 26] in the magnetic case, without the effect of conjugation.

Now, we would like to compare our results with those of Kurzweg [3], which
is the basis for the present analysis. Kurzweg [3] analyzed the effect of Womersley
number on the effective thermal diffusivity when the thermal conductivity and
diffusivity of the fluid and wall are equal and ε = 2. This result can be recovered
from the present investigation by taking the limit as M → 0 (nonmagnetic case)
which is depicted in Fig. 9.

In the work of Kurzweg [3], the interface boundary condition should have
been g′s (ε + 1) = 0 instead of g′s (ε) = 0 (as given by Kurzweg [3]). Similarly, the

formula for net heat flux per unit area should have been Q =
κeρ f Cf γ

1 + ε
and not
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Q =
κeρ f Cf γ

ε
(as given by Kurzweg [3]). The curves drawn by us, incorporating

the above conditions, given in Fig. 9 are neither qualitatively nor quantitatively
different from those presented by Kurzweg [3] since κ∗e is independent of ε for
higher values of ε,viz; (ε ≥ 0.75).
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Fig. 9. Effect of α on κ∗e for three different Prandtl numbers when µ = σ = 1 and ε = 2

5. Conclusions

Elaborate discussions along with appropriate physical explanations on the
combined effects of conjugation and uniform transverse magnetic field on the
enhancement of heat transfer in the hydromagnetic version of the dream pipe have
been rendered in the previous section. Here we highlight only the results that are
hitherto not reported in the literature that are useful to the research community.

• At any frequency, Q decreases with increasing M , which corresponds to the
typical MHD deterioration of heat transfer. In particular, when M = 60, Q
decreases by about 2.10% to 4.01%, respectively, depending on the fluid,
the wall and the oscillation frequency.

• An axial heat flux of 1.5 · 1010 W/m2 can be achieved with ω = 300 rad/s as
stated by Kurzweg only when 0.44 ≤ a ≤ 0.69, which corresponds to mini-
channel heat exchanger [38] and the effective thermal diffusivity is increased
by 31,39,383 times than that existing in the absence of oscillations. On the
other hand, the maximum heat flux of 5.62 · 108 W/m2 can be achieved in
the case of dream pipe as a conventional heat pipe (a = 3 mm) [38] and κe is
increased by 1,03,600 times than that existing in the absence of oscillations.
Therefore, mini-channel heat exchangers with ω = 300 rad/s can be used to
achieve a heat flux of order of 1010 W/m2.

• The optimum wall thickness, the corresponding optimum frequency of os-
cillation for achieving maximum value of κ∗e are presented.

• As ε is increased up to a critical value which depends on the frequency of
oscillation, the fluid and thewallmaterial used, κ∗e is also increased.However,
when ε is increased beyond the critical value, κ∗e becomes constant. At the
optimum frequency, by choosing a wall of high thermal conductivity, an
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increase of 19.98% in κ∗e can be achieved by optimizing the wall thickness.
When the frequency is very large, κ∗e is independent of wall thickness.

• As ks is increased κ∗e is also increased only after the optimum frequency.
• In general, the substantial increase in the transverse temperature gradient
due to oscillation is the main cause for the enhancement of heat transfer. The
effects of all the parameters on the effective thermal diffusivity depend on
their effects on the absolute value of the transverse temperature gradient.

A. Appendix
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