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THERMOELASTIC INTERACTIONS IN A ROTATING INFINITE
ORTHOTROPIC ELASTIC BODY WITH A CYLINDRICAL HOLE AND

VARIABLE THERMAL CONDUCTIVITY

In the present article, we introduced a new model of the equations of general-
ized thermoelasticity for unbounded orthotropic body containing a cylindrical cavity.
We applied this model in the context of generalized thermoelasticity with phase-lags
under the effect of rotation. In this case, the thermal conductivity of the material is
considered to be variable. In addition, the cylinder surface is traction free and sub-
jected to a uniform unit step temperature. Using the Laplace transform technique,
the distributions of the temperature, displacement, radial stress and hoop stress are
determined. A detailed analysis of the effects of rotation, phase-lags and the vari-
ability thermal conductivity parameters on the studied fields is discussed. Numerical
results for the studied fields are illustrated graphically in the presence and absence
of rotation.

1. Introduction

In material science, building insulation, electronics, research, and associated
fields, particularly where high operational temperatures are achieved, variability
of thermal conductivity is very important. The effect of temperature on thermal
conductivity is distinctive for metals and nonmetals. Thermal conductivity of met-
als is around relative to the absolute temperature (in Kelvin) times the electrical
conductivity. It is to be noted that the electrical conductivity in pure metals dimin-
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ishes with expanding temperature, the thermal conductivity remains approximately
constant. In amalgams the change in electrical conductivity is normally smaller and
in this way thermal conductivity increments with temperature, regularly relatively
to temperature [1].

The generalized theories of thermoelasticity have created to defeat unbounded
proliferation speed of thermal signals, which was predicted in classical dynamical
coupled theory of thermoelasticity. Biot [2] built up the coupled model of thermoe-
lasticity which tackles the first shortcoming of the uncoupled theory, however, it
shares the second shortcoming of the uncoupled theory. Lord and Shulman [3] pre-
sented generalized theory thermoelasticity with one relaxation time by proposing
another law of heat transfer to change traditional Fourier’s law. This law includes
heat flux vector and also its time derivative. Green and Lindsay [4] developed a the-
ory that contains two constants times that act as relaxation times and modifies not
the heat conduction equation only but also all the equations of the coupled theory.
Zenkour [5] presented a comparison between various generalized thermoelasticity
theories to discuss three-dimensional thermal shock plate problem. Zenkour [6–8]
restricts his attention to the theory of Green and Naghdi of type III to deal with
nano-machined beam resonators subjected to various boundary conditions and
those resting on visco-Pasternak’s foundations. Tzou [9] suggested a dual phase
delay model of the heat conduction (DPL) to combine the effects of infinitesimal
interactions in the fast-transient procedure of heat transportation mechanism in a
macroscopic design. Two diverse phase-lags have been presented in the constitutive
relation among the vector of heat flux and the gradient of the temperature [10].

Abouelregal [11] studied a piezo-thermo-electric half-space medium with de-
pendent properties of temperature under a ramp-type changing heating using the
generalized theorywith fractional order. Zenkour andAbouelregal [12] introduced a
generalized newmodel of the nonlocal generalized thermoelasticity for nanobeams
due to a harmonically changing in heat taking into consideration the variability
of thermal conductivity. Zenkour et al. [13] discussed the generalized theory of
the nonlocal thermoelasticity presented by Lord and Shulman [3] to study the
Euler-Bernoulli nanobeams vibrations assuming the temperature-dependent ther-
mal conductivity. Ezzat and El-Bary [14] studied the fractional derivative effects
in a perfect conducting infinite hollow cylinder and considering that the thermal
conductivity is variable.

It has been shown up there that rotation causes thermoelastic generalized
medium to be diffusive and having a physical property that has different values
when measured in different directions. This treatise joined some examination on
the phenomenon of the free surface in a rotating medium. It gives the idea that little
consideration has been paid to examination of propagation of plane thermoelastic
waves in a rotating medium.

Many investigations have been devoted to studies on the rotation effect of ther-
moelastic propagation ofwaves in an isotropic infinite cylindermaterials. Abouelre-
gal and Abo-Dahab [15, 16] introduced the effect of dual phase lag model on a non-
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homogeneous magneto-thermoelastic infinite solid having a spherical cavity and
studied the diffusion effect and Thomson’s phenomenon on magneto-thermoelastic
solid cylinder. Abouelregal and Zenkour [17] concerned the effect of rotation on
an isotropic homogeneous thermoelastic half-space due to a crack of Mode-I using
the generalized theory of thermoelasticity. Singh and Kumar [18] explained the
rotation effect on micropolar magneto-thermoelastic body. Xiong and Guo [19]
investigated the effect of heat source moving with constant speed, and variable
properties of a magneto-thermoelastic medium, under the fractional order theory
of thermoelasticity. Kumar et al. [20] analyzed the interactions subjected to the ef-
fect of rotation and hall current in a magneto- thermoelastic micropolar half-space
under the fractional order thermoelasticity. Sherief and Hamza [21] considered
the variability of thermal conductivity effect on a magneto-thermoelastic infinitely
hollow cylinder.

In the current article, a problem of an infiite homogeneous orthotropic ther-
mally conducting body containing a cylindrical cavity affected by the angular
velocity is discussed in the context of Tzou model. The thermal conductivity of the
body is thought to be changing with the temperature [22–24]. The surface of the
cylinder is exposed to thermal shock that depends on the time and surface of the
body drop free. The outcomes for generalized and classical theories of thermoe-
lasticity have been obtained from the resultant model as special cases. To explain
and compare the theoretical results, the numerical solution is done by means of
Laplace transform technique. The variability effects of thermal conductivity, ro-
tation, phase lags on distributions of displacements, temperature and stresses are
displayed graphically.

2. The basic equations

We consider an infinite orthotropic, homogeneous, isotropic conducting ther-
moelastic rotating body with density ρ at initial constant temperature T0. The field
equations in generalized thermoelasticity with dual-phase-lags in the absence of
the body force are [25, 26]:
equations of motion:

Ci jmnεmn, j − βi jθ, j + Fi = ρüi + ρ
[
~Ω × (~Ω × ~u)

]
i
+ 2ρ

(
~Ω × ~̇u

)
i
. (1)

Constitutive relations are

σi j = Ci jmnεmn − βi jθδi j, i, j = 1, 2, 3, (2)

where

εi j =
1
2

(ui, j + u j,i). (3)
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The generalized heat conduction equation in the context of dual-phase-lag
theory (DPL) suggested by Tzou is given by(

1 + τθ
∂

∂t

) (
Ki jθ, j

)
,i
=

(
δ + τq

∂

∂t

) (
ρCE

∂θ

∂t
+ βi jT0

∂um,m
∂t

− ρQ
)
. (4)

In all the above governing equations (1)–(4), an over dot indicates the partial
derivative as for the time variable, θ = T − T0 represents the thermodynamical
temperature, δi j is Kronecker’s delta, βi j are the thermoelastic components of the
coupling, Ci jmn are isothermal elastic constants, σi j are the stress tensor compo-
nents, Fi are the body force components, ~Ω = Ω~n is the angular velocity, ~n is the
direction of the axis of rotation, ~Ω× (~Ω×~u) is the centripetal acceleration, 2(~Ω× ~̇u)
is the Coriolis acceleration and ui are the displacement vector components. In
addition, εi j symbolizes the strain tensor, εkk = e is cubical dilatation, Ki j is the
thermal conductivity tensor which is considered to be temperature-dependent, CE

represents the specific heat of the body at constant strain, Q is the heat source, τq
and τθ are the phase-lags of the heat flux and gradient of temperature, respectively,
such that 0 6 τθ < τq.

The coupled and generalized theories thermoelasticity can be obtained as
limited cases depending on the values of δ, τq and τθ . Putting τθ = 0, δ = 1, and
τq = τ0 (the first relaxation time), gives the basic equations of governing Lord and
Shulman’s theory (LS). Also, when τq = τθ = 0, governing equation for a classical
thermoelastic body (CTE) are obtained.

3. The problem formulation

In this section, we study an infinite thermoelastic orthotropic body with cylin-
drical cavity. The surface of cavity is exposed to a time dependent varying heat
and traction free. We take the cylindrical coordinates (r, ξ, z) with the z-axis con-
sidering all the functions depending on the radial space r and the variable time t
according to the symmetry about z-axis.

For axially symmetric problem, the displacement vector has its components

ur = u(r, t), uξ (r, t) = uz (r, t) = 0. (5)

Consequently, the radial and hoop strains εrr and εξξ are given by:

εrr =
∂u
∂r
, εξξ =

u
r
. (6)

The sum of normal strains gives the cubic dilatation

e = εrr + εξξ =
∂u
∂r
+

u
r
. (7)
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The stress-displacement relations (2) can be obtained after using Eq. (6) as




(σrr

σξξ

σzz



=



c11 c12 −β11

c12 c22 −β22

c13 c23 −β33






∂u
∂r
u
r
θ




. (8)

Taking the rotation term about the z-axis as a body force only, Eq. (1) in the r
direction will be in the following form

∂σrr

∂r
+
σrr − σξξ

r
= ρ

∂2u
∂t2 − ρΩ

2u, (9)

where Ω is the uniform angular velocity. Introducing Eqs. (8) into equation of
motion (9), we get

c11

(
∂2u
∂r2 +

1
r
∂u
∂r

)
− c22

u
r2 = ρ

∂2u
∂t2 + β11

∂θ

∂r
+ (β11 − β22)

θ

r
− ρΩ2u. (10)

Also, the one-dimensional generalized heat equation (4) can be obtained as(
1 + τθ

∂

∂t

)
(Krθ,r ),r =

(
δ + τq

∂

∂t

) [
ρCE

∂θ

∂t
+ T0

∂

∂t

(
β11

∂u
∂r
+ β22

u
r

)]
, (11)

where the thermal conductivity Kr is temperature dependence, the above heat Eq.
(11) is nonlinear of temperature and possibly of specific heat CE .

4. Temperature-dependent thermal conductivity

Experimentally, the thermal properties of the material differ with tempera-
ture and this translates into a nonlinear heat equation and nonlinear thermoelastic
problem, so that the temperature dependence of material properties must be con-
templated in the thermal stress investigation of these components [27–30]. The
solution of the nonlinear problems can be observed and obtained by supposing the
material to be temperature dependent implying that the specific heat CE and the r
direction thermal conductivity Kr depend on the distribution of temperature [31].
Additionally, the experimental information demonstrates that variations of Pois-
son’s ratio and the thermal expansion coefficient, because of the high temperature,
can be dismissed [31].

Assuming that the thermal conductivity Kr is a linear function of temperature
θ [32]:

Kr = Kr (θ) = k0(1 + k1θ), (12)

where k0 is the thermal conductivity at initial temperature T0 and k1 is a factor
characterizing the variety of thermal conductivity.
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To solve the problem, we will take the following transformation [32]

ψ =
1
k0

∫ θ

0
Kr (θ)dθ, (13)

where the new function ψ expressing the heat conduction. Substituting from Eq.
(12) into Eq. (13) and integrating, we obtain [32]

ψ = θ

(
1 +

1
2

k1θ

)
. (14)

From Eqs. (13) and (14), we deduce the following two relations

∇ψ =
Kr (θ)

k0
∇θ, (15)

∂ψ

∂t
=

Kr (θ)
k0

∂θ

∂t
. (16)

The generalized heat conduction equation (11) of thermally conducting or-
thotropic, homogeneous solids with variable thermal conductivity after using Eqs.
(15) and (16) reduce to(

1 + τθ
∂

∂t

)
∇2ψ =

(
1 + τq

∂

∂t

) [
ρCE

∂ψ

∂t
+

T0
K0

∂

∂t

(
β11

∂u
∂r
+ β22

u
r

)]
, (17)

where ρCE = Kr/k and

∇2 =
∂2

∂r2 +
1
r
∂

∂r
. (18)

Substituting from Eqs. (15) and (16) into motion equation (10), we have

c11

(
∂2u
∂r2 +

1
r
∂u
∂r

)
− c22

u
r2 = ρ

∂2u
∂t2 +

β11
1 + 2k1θ

∂ψ

∂r
− ρΩ2u

+
β11 − β22

k1r

[√
1 + 2k1ψ − 1

]
. (19)

Assuming that θ = T − T0 is small and does not cause insignificant variations of
elastic and thermal coefficients, these will be regarded as independent of T . In
addition to the assumption |θ/T0 | � 1, one can assume that second powers and
products of the components of strain may be neglected in comparison with the
strains εi j .

For linearity and by means of the binomial theorem for fractional powers and
the assumption |θ/T0 | � 1, the radial equation of motion (19) and constitutive
relations (8) will be in the forms

c11

(
∂2u
∂r2 +

1
r
∂u
∂r

)
− c22

u
r2 = ρ

∂2u
∂t2 + β11

∂ψ

∂r
+ (β11 − β22)

ψ

r
− ρΩ2u, (20)
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σrr

σξξ

σzz



=



c11 c12 −β11

c12 c22 −β22

c13 c23 −β33






∂u
∂r
u
r
ψ




. (21)

Presenting the following dimensionless variables,

{r ′, u′, R′} =
c0
k
{r, u, R}, {t ′, τ′q, τ

′
θ } =

c2
0
k
{t, τq, τθ },

ψ ′ =
ψ

T0
, Ω

′ =
Ω

ηc2
0
, σ′i j =

σi j

c11
, k ′1 = T0k1, c2

0 =
c11
ρ
,

(22)

the dimensionless basic equations are given by

∂2u
∂r2 +

1
r
∂u
∂r
− c2

u
r2 =

∂2u
∂t2 + ε1

∂ψ

∂r
+ ε3

ψ

r
−Ω2u, (23)(

1 + τθ
∂

∂t

)
∇2ψ =

(
1 + τq

∂

∂t

) [
∂ψ

∂t
+
∂

∂t

(
(ε4

∂u
∂r
+ ε5

u
r

)]
, (24)




σrr

σξξ

σzz



=



1 c1 −ε1

c1 c2 −ε2

c3 c4 −ε6






∂u
∂r
u
r
ψ




, (25)

where

{ε1, ε2, ε3, ε6} =
T0
c11
{β11, β22, (β11 − β22), β33},

{ε4, ε5} =
1
ρCE
{β11, β22}, {c1, c2, c3, c4} =

1
c11
{c12, c22, c13, c23}.

(26)

5. Application and boundary conditions

We take the conditions that initially occurred in the problem as

u =
∂u
∂t

�����t=0
= 0, ψ =

∂ψ

∂t

�����t=0
= 0. (27)

Also, one can consider that the medium is quiet and the cylindrical surface is
subjected to the following boundary conditions:
• Thermal shock varying heat

θ(r, t) = θ0H (t), r = R, θ0 = const., t > 0. (28)
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From Eq. (16), then boundary condition (28) is given by

ψ(R, t) = θ0H (t) +
1
2

k1[θ0H (t)]2. (29)

• The cylindrical surface is traction free, i.e.,

σrr (r, t) = 0, r = R. (30)

6. Solution in Laplace’s transform domain

Laplace’s transform is utilized to change governing equations from the time
domain into Laplace and space field. Assume that the underlying conditions for
dimensionless temperature and displacement are zero. Applying Laplace’s trans-
formation

f̄ (r, s) =
∫ ∞

0
e−st f (r, t)dt, (31)

under the initial conditions (27) to Eqs. (23)–(25) and assuming that β11 = β22
(i.e., ε4 = ε5 = ε) and c11 = c22. That is

d2ū
dr2 +

1
r
dū
dr
−

ū
r2 − (s2 −Ω2)ū = ε1

dψ̄
dr
, (32)

d2ψ̄

dr2 +
1
r
dψ̄
dr
=

s(1 + τqs)
1 + τθ s

[
ψ̄ + ε

(
dū
dr
+

ū
r

)]
, (33)




σ̄rr

σ̄ξξ

σ̄zz



=



1 c1 −ε1

c1 c2 −ε2

c3 c4 −ε6






dū
dr
ū
r
ψ̄




. (34)

Equations (32) and (33) can be reduces to

(DD1 − s2 +Ω2)ū = ε1Dψ̄, (35)

εqD1ū = (D1D − q)ψ̄, (36)

where
D =

d
dr
, D1 =

d
dr
+

1
r
, q =

s(1 + τqs)
1 + τθ s

. (37)

Presenting the potential function φ(r), defined by

u =
dφ
dr
, (38)
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into reduced equations (35) and (36), thus we have

(DD1 − s2 +Ω2)φ̄ = ε1ψ̄, (39)

εqD1Dφ̄ = (D1D − q)ψ̄. (40)

Combining Eqs. (39) and (40) one obtains the equation

{∇4 − [s2 −Ω2 + q(1 + ε1ε)]∇2 + q(s2 −Ω2)}φ̄ = 0. (41)

If m2
1 and m2

2 are roots of the specific equation

m4 − [s2 −Ω2 + q(1 + ε1ε)]m2 + q(s2 −Ω2) = 0, (42)

we can factorize Eq. (41) as

(∇2 − m2
1)(∇2 − m2

2)φ̄ = 0. (43)

The roots m2
1 and m2

2 are obtained as

m2
1 =

1
2

(
2A +

√
A2 − 4B

)
, m2

2 =
1
2

(
2A −

√
A2 − 4B

)
, (44)

where
A = s2 −Ω2 + q(1 + ε1ε), B = q(s2 −Ω2). (45)

Equation (43) can be written as the modified Bessel equation form of order zero as(
d2

dr2 +
1
r
d
dr
− m2

1

) (
d2

dr2 +
1
r
d
dr
− m2

2

)
φ̄ = 0. (46)

The general solution of Eq. (46), which is bounded as r → ∞, is given by

φ̄ =

2∑
i=1

AiK0(mir), (47)

where A1 and A2 represent arbitrary integration parameters determined from the
boundary conditions and K0(·) are modified Bessel’s functions of order zero of the
first kind. Accordingly, the solution of the function ψ̄ is derived as

ψ̄ =
1
ε1

2∑
i=1

(m2
i − s2)AiK0(mir). (48)

Furthermore, using the Bessel function relation

zK ′n(z) = −zKn±1(z) ± nKn(z), (49)
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leads to

ū = −
2∑
i=1

mi AiK1(mir). (50)

After some mathematical manipulations, the thermal stress can be obtained as

{
σ̄rr, σ̄ξξ, σ̄zz

}
=

1
2r

2∑
i=1
{Ψi, Γi,Φi }Ai, (51)

where
Ψi = r (2s2 − m2

i )K0(mir) − 2c1miK1(mir) + m2
i rK2(mir),

Γi = r
[
m2

i (2 + c1) − 2s2
]

K0(mir) − 2miK1(mir) + c1m2
i rK2(mir), (52)

Φi = r
[
m2

i

(
c3 −

2ε6
ε3

)
+

2ε6
ε3

s2
]

K0(mir) − 2c4miK1(mir) + c3m2
i rK2(mir).

From Eq. (17), we get the solution of temperature θ̄ as

θ̄(r, s) =
−1 +

√
1 + 2k1ψ̄

k1
. (53)

Also, Laplace’s transform of the boundary conditions (29) and (31) gives

ψ̄(R, s) = θ0

(
1
s
+

k1
2s

)
= Ḡ(s), (54)

σ̄rr (R, s) = 0. (55)

Using Eqs. (48) and (51) of the functions ψ̄ and σ̄rr into the boundary condi-
tions (54) and (55), we obtain

2∑
i=1

(m2
i − s2)AiK0(miR) = ε1Ḡ(s), (56)

2∑
i=1

[
R(2s2 − m2

i )K0(miR) − 2c1miK1(miR) + m2
i RK2(miR)

]
Ai = 0. (57)

Solution of the system of Eqs. (56) and (57) gives the values of the constants A1
and A2 completing the solution in the domain of Laplace’s transform.
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7. Numerical inversion of Laplace’s transforms

Keeping in mind the end goal to get the solutions in the physical domain,
we convert Laplace’s transform into the governing functions. We adopt a numer-
ical reversal strategy that depends on a Fourier’s series expansion [33]. In this
technique, any function ḡ(s) in Laplace domain can be modified to the time area
g(t) as

g(t) =
ect

t




1
2
ḡ(c) + Re



N∑
n=1

(−1)nḡ
(
c +

inπ
t

)



, i =

√
−1. (58)

For speedier convergence, various numerical trials have demonstrated that the
estimation of c fulfills the relation ct ≈ 4.7 [34].

8. Discussions of numerical results

In this section, to explain the general solution behavior of the obtained theoretic
results, we display some discussions and numerical results. For the purpose of
numerical evaluations, we take cobalt as an orthotropic material. Values of the
appropriate parameters of the material are [35]

c11 = c22 = 3.071 · 1011 Nm−1, c12 = c13 = 1.650 · 1011 Nm−1, c23 =
1
2

c12,

ρ = 8836 kg/m3, β11 = β22 = 7.04 · 106 N/m2K, β33 = 6.90 · 106 N/m2K,

CE = 427 J/kgK, Kr = 69 W/mK, T0 = 298 K.
Using the above material parameters, the distributions of dimensionless phys-

ical quantities; displacement u, temperature θ and thermal stressess σrr and σξξ
have been calculatedmathematically and presented graphically in Figs. 1–12. Com-
parisons of numerical calculations were carried out for three cases.

8.1. Effect of phase-lags

Let us discuss how the non-dimensional temperature, displacement and ther-
mal stresses vary with the phase-lag of the heat flux τq and the phase-lag of
temperature gradient τθ when the variability thermal conductivity parameter k1 re-
mains constant. In this case (Figs. 1–4), we take different values of the parameters
τq and τθ . To get the governing equations of CTE theory from the introduced new
model, we take (τθ = τq = 0). To obtain the basic equations of LS model, we take
(τθ = 0, τq = 0.1). Finally, in the case of generalized theory of thermoelasticity
suggested by Tzou (DPL), we put (τq > 0, τθ > 0). We can conclude the following
points from the demonstrated figures:

• The heat wave front moves forward with a finite speed in the medium with
the passage of time.
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Fig. 1. Temperature distribution θ for different
values of phase-lags τq and τθ
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Fig. 2. Displacement distribution u for different
values of phase-lags τq and τθ
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Fig. 3. Thermal stress distribution σrr for
different values of phase-lags τq and τθ
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Fig. 4. Thermal stress distribution σξξ for
different values of phase-lags τq and τθ

• The temperature distribution decreases as the space variable r increases
(Fig. 1).

• From Fig. 2, it is seen that value of displacement u increases as r decreases
in the interval 1.1 > r > 0 and decreases in the interval 1.6 > r > 1.1, then
it reaches to steady state when r > 1.6.

• FromFigs. 3 and 4, it can be found that thermal stressesσrr andσξξ increase
as the distance r increases. Also, it is clear that the most extreme estimations
happen close to the surface of the hole and it decreases when r increases.

• Near the surface of the cylinder, where the boundary conditions dominate,
the coupled and the generalized theories give very close results. Inside the
cylinder, the solution ismarkedly different. This is due to the fact that thermal
waves in the coupled theory travel with an infinite speed of propagation as
opposed to a finite speed in the generalized case.

• In all Figs. 1–4, it is observed that the phase-lag of the heat flux τq and the
phase-lag of temperature gradient τθ have significant effects on all fields.

• It is observed that all the waves reach the steady state depending on the
values of the phase-lags τq and τθ .

• The variations of temperature for DPL theory is small in comparison to CTE
theory.
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• The difference between the three curves at any fixed point as well as at fixed
parameter k1 for the three theories is clearly visible from these figures.

• The values in classical theory of thermoelasticity (CTE model) are different
compared to those of other theories. The fact that in generalized thermoe-
lasticity theories (DPL and LS), the waves propagate with finite speeds
is evident in all figures. This validates clearly the difference between the
modified theories of thermoelasticity and the classical coupled model.

• The behavior of three theories is generally quite similar. With the increase
in distance, the results are quite close to each other, which is in agreement
with the generalized theories of thermoelasticity.

8.2. Effect of thermal conductivity parameter

Investigating the variability thermal conductivity parameter k1 effect on the
non-dimensional temperature, displacement and thermal stresses when phase-lag
of the heat flux τq and the phase-lag of temperature gradient τθ remain constants.
Here, we consider three distinct quantities of the parameter of variability thermal
conductivity k1 to examine the effect of temperature on thermal conductivity. We
take k1 = −1,−0.5 when the thermal conductivity is dependent of temperature and
k1 = 0 for fixed thermal conductivity.
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Fig. 5. Temperature distribution θ for different
values of thermal conductivity parameter k1
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We selected the rotation parameter as Ω = 5 and lags τq = 0.02 and τθ = 0.01
in this case. We also observe the following important facts from Figs. 5–8:

• The variability parameter k1 has pronounced effects on all the studied fields.
• From Fig. 5, it is easily seen that the value of temperature increases with the
increase of k1 in all contexts of all theories of thermoelasticity and satisfied
the considered boundary conditions.

• FromFig. 6, it is shown that the amplitude of distribution of the displacement
u rises with the increase of k1.

• From Figs. 7 and 8, it can be found that the absolute values of thermal
stresses σrr and σξξ increase as the parameter k1 decreases.

• We have noticed from these figures that the variability thermal conductivity
parameter k1 has a significant effect on all the fields which add an importance
to our consideration about the thermal conductivity to be variable.

• From these figures, we find that the field quantities depend not only on the
state and space variables t and r , but also on the variability thermal con-
ductivity parameter and phase-lags parameters. The phenomenon of finite
speeds of propagation is manifested in all figures.

8.3. Effect of rotation

Studying the effect of rotation on dimensionless physical quantities when
phase-lag of the heat flux τq and the phase-lag of temperature gradient τθ and
the variability thermal conductivity parameter k1 remain constants. In this case,
Figs. 9–12 show the variations of temperature, displacement and thermal stresses
along the radial direction at various values of rotation parameter Ω. From these
figures it is observed that:

• The amplitude of the temperature has a slight increase for the rotating case in
comparison with the non-rotating case due to the presence of rotation term
(see Fig. 9).

• It is clear from the graph in Fig. 10 that the variations of displacement with
the varied values of the rotation parameter Ω in the context of phase-lag
model is close in both rotating and non-rotating case.

• Also, a significant difference in thermal stresses is noticed for different values
of rotation parameter Ω (see Figs. 11 and 12).

• Consequently, the idea of rotation in a thermoelastic orthotropic medium
with the parameters of phase-lags will yield more destruction as contrast
with non-rotating type.

• Therefore, the presence of rotation in current model is of significance.
• Rotation will play its role in the wave propagations that has been appeared by
looking at the distributions of various waves in a rotating and non-rotating
thermoelastic orthotropic medium.

• As detected from the introduced graphical results, the parameter of rotation
plays a significant role on the deformation variants in the body.
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Fig. 9. Temperature distribution θ for different
values of angular velocity (rotation) Ω
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Fig. 11. Thermal stress distribution σrr for
different values of angular velocity (rotation) Ω
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9. Conclusions

In this work, we have investigated a one-dimensional problem for an infinite
homogeneous orthotropic thermally conducting body containing a cylindrical cav-
ity affected by the angular velocity under thermal shock surface heating using the
method of Laplace’s transform. From the obtained numerical results, some main
conclusions are given by:

• The studied field quantities depend on time t and space r and on the variability
of thermal conductivity, rotation and phase-lags parameters.

• The dependence of thermal conductivity on the temperature has significant
effects on the velocity of propagation of waves and mechanical interactions.

• In the introduced model, the presence of rotation terms is essential.
• When the considered medium rotates with some angular velocity, the values
of temperature distribution are much smaller in magnitude.

• The idea of rotation in a thermoelastic orthotropic medium will yield more
pulverization as contrast with non-rotating sort.

• The theories of Biot and generalized thermoelasticity proposed by Lord and
Shulman can be obtained as special cases from the current model.
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• The results displayed in this work should prove to be valuable for researchers
in scientific and designing, in addition, for thoseworking on the improvement
of mechanics of materials.
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