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CONTACT DETECTION BETWEEN CONVEX SUPERQUADRIC
SURFACES

This paper presents a methodology for contact detection between convex quadric
surfaces using its implicit equations. With some small modifications in the equations,
one can model superellipsoids, superhyperboloids of one or two sheets and super-
toroids. This methodology is to be implemented on a multibody dynamics code,
in order to simulate the interpenetration between mechanical systems, particularly,
the simulation of collisions with motor vehicles and other road users, such as cars,
motorcycles and pedestrians.

The contact detection of two bodies is formulated as a convex nonlinear con-
strained optimization problem that is solved using two methods, an Interior Point
method (IP) and a Sequential Quadratic Programming method (SQP), coded in MAT-
LAB and FORTRAN environment, respectively. The objective function to be mini-
mized is the distance between both surfaces. The design constraints are the implicit
superquadrics surfaces equations and operations between its normal vectors and the
distance itself. The contact points or the points that minimize the distance between
the surfaces are the design variables. Computational efficiency can be improved by
using Bounding Volumes in contact detection pre-steps. First one approximate the
geometry using spheres, and then Oriented Bounding Boxes (OBB).

Results show that the optimization technique suits for the accurate contact de-
tection between objects modelled by implicit superquadric equations.

1. Introduction

This paper studies contact detection problem between two convex ob-
jects described as implicit superquadric surfaces [1,2]. The contact detection
algorithm developed here is used in the narrow phase of the problem, where
the minimum distance or the maximum interference between the objects has
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interest for future methodology purposes. Before this narrow phase, compu-
tational efficiency can be improved by using Bounding Volumes in contact
detection pre-steps, where the bodies geometry is approximated using spheres
and Oriented Bounding Boxes (OBB) [3,4].

The contact detection methodology can be used in several applications,
for instance, in computer graphics, robotic arms path planning and haptics.
The main objective for this methodology is the simulation of mechanical
systems in multibody dynamics [5], in particular, the simulation of collisions
between cars and motorcycles and other road vehicles, as well as pedestrian
impacts with them [6].

The contact detection between two superquadric implicit surfaces is for-
mulated as a convex nonlinear constrained optimization problem that is solved
using two different methods, an interior point method (IP) [7-10] and a Se-
quential Quadratic Programming method (SQP) [11,12], coded in MATLAB
and FORTRAN environment, respectively. The objective function to mini-
mize is the distance between both surfaces. The design constraints (equality)
are the implicit superquadrics surfaces equations, so that the contact points
or the points that minimize the distance are located over the surface. Other
equality constraints are added using the surfaces normal vectors, to guarantee
that the algorithms converge to the minimum. The contact points or the points
that minimize the distance between the surfaces are the design variables.

2. Contact detection broad phase

This section describes the broad phase of contact detection [3,4], where
bodies are first approximated by Spheres and then by Oriented Bounding
Boxes. Consider, for example, the bodies shown in Fig. 1, the radii of the
spheres that approximate those bodies are obtained from the largest dimen-
sion of the bodies (Fig. 2a).

Fig. 1. Example of contact pairs for contact detection
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Fig. 2. a) Spheres’ approximation of the contact pairs; b) OBB approximation of the contact pair

for contact detection

If the distance between the centres of the spheres is less or equal than the
sum of their radii, then the spheres intersect each other. Then, the Spheres’
test consists in evaluating if the distance rAB = ‖rA − rB‖ is lower or equal
to the sum of the sphere’s radii (ρA + ρB), Eq. (1).

‖rA − rB‖ ≤ (ρA+ρB) (1)

The following stage survey for the existence of a separating axis between
the oriented bounding boxes that approximate the bodies (Fig. 2b). For non-
intersection convex objects, a separating axis always exists. An arbitrary
vector u is a separating axis if the projections of those boxes onto u do not
overlap.

Being rA = (xA, yA, zA) and rB = (xB, yB, zB) the coordinate reference
frames of boxes A and B, the distances (box’s scalar projections) hA and hB
onto u are given by, (see Fig. 3).

hA = a1|xAux | + a2|yAuy| + a3|zAuz| (2)

hB = b1|xBux | + b2|yBuy| + b3|zBuz| (3)

where (a1, a2, a3) and (b1, b2, b3) are the half dimensions of the boxes.
Defining ‖rAB‖ = ‖rB − rA‖ as the distance between the origins of both

boxes (relatively to the local reference frame of box A), u forms a separating
axis if the value of rAB projected onto u is lower than the sum of the
projections of each box onto u, as

|rAB · u| > hA + hB (4)

Figure 3 illustrates the Separating Axis Test (SAT) between two boxes.
In the presented case, the boxes intersect each other.

In a 3D space, two boxes A and B must be tested for fifteen axes, in
order to determine if one of them is a separating axis. Those axes are the six
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Fig. 3. OBB approximation of the contact pair for contact detection

principal coordinate axes of A’s and B’s local reference frames and the nine
axes obtained by the cross products of a coordinate axis of the box A and a
coordinate axis of the box B. If none of the tests is satisfied, the objects are
in contact. For facility purposes, the box B’s axes, as well as the distance
between boxes rAB should be written as a combination of the axes of box
A, i.e, B’s axes (Eq. (5)) and rAB (Eq.(6)) are written in the local reference
frame of box A. The rotation matrix TB/A of box B with relation to box A is
obtained using Eq. (7), where the orientation of both boxes is known from
the transformation matrices TA/G and TB/G regarding to the global reference
frame.

rB= TT
B/A

rA (5)

rAB= TT
B/A

rAB (6)

TB/A= TB/G · TT
A/G=



t
′
11 t

′
12 t

′
13

t
′
21 t

′
22 t

′
23

t
′
31 t

′
32 t

′
33

 (7)

The method of separating axes tests is described in more detail in [3,4].
Table 1 sum-marises the quantities that must be determined for the SAT.
When one separating axis is found the remaining ones are not calculated.
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3. Superquadrics and their geometric properties

Superquadrics are a family of geometric shapes that includes superellip-
soids, superhyperboloids of one or two pieces and supertoroids (Fig. 4). The
differences in this shapes are obtained with minor changes in the superquadric
equations.

Table 1.
SAT test quantities for OBB contact detection

axis u extent hA extent hB |rAB · u|
xA a1 b1|t′11| + b2|t′12| + b3|t′13| |xAB|
yA a2 b1|t′21| + b2|t′22| + b3|t′23| |yAB|
zA a3 b1|t′31| + b2|t′32| + b3|t′33| |zAB|
xB a1|t′11| + a2|t′21| + a3|t′31| b1 |xABt′11 + yABt′21 + zABt′31|
yB a1|t′12| + a2|t′22| + a3|t′32| b2 |xABt′12 + yABt′22 + zABt′32|
zB a1|t′13| + a2|t′23| + a3|t′33| b3 |xABt′13 + yABt′23 + zABt′33|

xA × xB a2|t′31| + a3|t′32| b2|t′13| + b3|t′12| |zABt′21 − yABt′31|
xA × yB a2|t′32| + a3|t′22| b1|t′13| + b3|t′11| |zABt′22 − yABt′32|
xA × zB a2|t′33| + a3|t′23| b1|t′12| + b2|t′11| |zABt′23 − yABt′33|
yA × xB a1|t′31| + a3|t′11| b2|t′23| + b3|t′22| |xABt′31 − zABt′11|
yA × yB a1|t′32| + a3|t′12| b1|t′23| + b3|t′21| |xABt′32 − zABt′12|
yA × zB a1|t′33| + a3|t′13| b1|t′22| + b2|t′21| |xABt′33 − zABt′13|
zA × xB a1|t′21| + a2|t′11| b2|t′33| + b3|t′32| |yABt′11 − xABt′21|
zA × yB a1|t′22| + a2|t′12| b1|t′33| + b3|t′31| |yABt′12 − xABt′22|
zA × zB a1|t′23| + a2|t′13| b1|t′32| + b2|t′31| |yABt′13 − xABt′23|

Usually, a superquadric surface is defined as a spherical product of two
parametric 2D curves, for instance, superellipses, resulting in a parametric
three-dimensional shape. Some mathematical manipulation of this parametric
equation leads to the superquadric implicit equation as defined by Eq. (8),
in this case a superellipsoid, where parameters a1, a2 and a3 represents the
surface semi-axes and ε1 and ε2 are the indices that determine the surface
shape. The parameter ε1 determines the shape of the superquadric cross sec-
tion in a perpendicular plane to (x, y) and containing z, while ε2 determines
the shape of the cross section parallel to (x, y). Figure 5 depicts the influence
of ε1 and ε2 on the shape of superquadrics.
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Fig. 4. Superquadric shapes: a) superellipsoid; b) superhyperboloid of one piece and c)

supertoroid

h(x, y, z) = 0⇔

(

x
a1

) 2
ε2

+

(
y
a2

) 2
ε2



ε2
ε1

+

(
z
a3

) 2
ε1

= 1 (8)

The left-hand side of Eq. (8) is called the inside-outside function F,
because its value provides a way to determine if a certain point (x, y, z) lies
inside or outside the surface,; if F < 1, then point (x, y, z) is inside the surface
if F > 1, then (x, y, z) is outside the superellipsoid, every point (x, y, z) that
verify F = 1 lies in the superquadric surface.

Fig. 5. ε1 and ε2 influence on the shape of superquadrics (superellipsoids)

The normal of an implicit superquadric equation (Eq. (8)) is its gradient
or its partial derivative. Knowing this, one can calculate the surface normal
vector as

n(x, y, z) = ∇h(x, y, z) =

(
∂h
∂x

∂h
∂y
∂h
∂z

)
= (nxnynz) (9)
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where the normal vector components are

nx=
2

ε1a1


(

x
a1

) 2
ε2

+

(
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) 2
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ε2
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−1 (
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) 2
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−1

(10)
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(
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+
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) 2
ε2



ε2
ε1
−1 (

y
a2

) 2
ε2
−1

(11)

nz=
2
ε1a3

(
z
a3

) 2
ε1
−1

(12)

Superellipsoids are described in their local frame, in order to determine
the distance or the interference among a pair of objects it is necessary to
transform them to a global frame. This is done by applying the usual rotation
and translation operations. Eq. (13) represents the transformation matrix T,
where the rotation matrix is a function of the Euler parameters e0, e1, e2 and
e3 [5], and the translation is given by the vector [pX , pY , pZ]T , that represents
the local frame position of each surface in the global frame.

T =



t11 t12 t13 pX

t21 t22 t23 pY

t31 t32 t33 pZ

0 0 0 1


= 2



e2
0 + e2

1 − 1
2 e1e2 − e0e3 e1e3 + e0e2 pX

e1e2 + e0e3 e2
0 + e2

2 − 1
2 e2e3 − e0e1 pY

e1e3 − e0e2 e2e3 + e0e1 e2
0 + e2

3 − 1
2 pZ

0 0 0 1


(13)

Considering the terms Ai given by Eq. (14), one can describe the implicit
superquadrics equations in the system global coordinates.

Ai=
t1i(X − pX) + t2i(Y − pY ) + t3i(Z − pZ)

ai
(14)

with i=1,2,3, implicit Eq. (8) can be written as

h(X,Y ,Z) = 0⇔
(
(A1)

2
ε2 +(A2)

2
ε2

) ε2
ε1

+(A3)
2
ε1−1 = 0 (15)

and Eq. (10) to Eq. (12) which represent the normal vector components as
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2
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4. Optimization problem

Two different optimization techniques for contact detection between sur-
faces modelled by implicit superquadric equations are used. Contact detection
is treated here as problem of convex nonlinear optimization, in what concerns
to the objective function and to the equality constraints.

4.1. Objective Function

The objective of the algorithm deals with the calculation of the distance
among the surfaces A and B. It is considered the square distance for facility
purposes. This being the case, the objective function is described as the
distance between the points rA = (XA,YA,ZA) and rB = (XB,YB,ZB) from
surfaces A and B

‖rAB‖2 = ‖rB−rA‖2 ⇔ ‖rAB‖2 = (XB−XA)2+(YB−YA)2+(ZB−ZA)2 (19)

When the algorithm converges to rAB, it is calculated the contact condi-
tion in order to determine if the value of the objective function correspond
to the minimum distance or the maximum penetration among A and B. This
contact condition is calculated from the sign of the projection of the normal
vector of surface A on the distance vector rAB, in other words if

nA · rAB ≤ 0⇒ contact detected with maximum penetration
nA · rAB > 0⇒ minimum distance between A and B

(20)

In Fig. 6 it is notice that although the objective function converges for the
same value rAB, there is a difference between the two depicted cases. Figure
6a represents a case where the minimum distance rAB separates surfaces A
and B, in the case of Fig. 6b, there is a in-terference between A and B, where
rAB represents the maximum penetration among them.

4.2. Equality Constraints

During optimization, contact points should lie on the superquadric sur-
faces. If so and in the foreground, there are defined two equality constraints,
formulated from the implicit equations of surfaces A and B, in other words,
using Eq. (15) one obtains
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(a) (b)

A A

B
B

Fig. 6. Possible positions for surfaces A and B, for the same value rAB: a) a separation among A

and B and b) an interference between both surfaces

h1= hA(XA,YA,ZA) = 0⇔
(
(A1A)

2
ε2 +(A2A)

2
ε2

) ε2
ε1

+(A3A)
2
ε1−1 = 0 (21)

h2= hB(XB,YB,ZB) = 0⇔
(
(A1B)

2
ε2 +(A2B)

2
ε2

) ε2
ε1

+(A3B)
2
ε1−1 = 0 (22)

The constraints given by Eq. (21) and Eq. (22) do not guarantee con-
vergence for the minimum distance (Fig. 7a), moreover in an interference
situation the algorithm evolutes for a null distance (Fig. 7b), which makes
mandatory the implementation of two additional constraints.

(a) (b) (c)

A B

Fig. 7. Equality constraints: a,b) to ensure that the contact points are located on the surfaces and;

c) Parallelism between the normal vectors of surfaces A and B

The minimum distance rAB between two surfaces is the one that makes
the normal vectors of the superquadrics parallel to each other (Fig. 7c), quite
as well as in the case where interference exists, where rAB represents the max-
imum penetration between both objects, i.e., the contact points correspond
to the maximum elastic deformation.
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This additional constraint h3 is given by the cross product (Eq. (23))
between the surfaces normal vectors nA and nB that represents their alignment
condition [13], in other words

h3= nA×nB= 0 (23)

The cross product can be separated in to its scalar components that results
in three additional constraint equations, as

h3X = 0⇔ nYAnZB−nZAnYB= 0 (24)

h3Y = 0⇔ nZAnXB−nXAnZB= 0 (25)

h3Z = 0⇔ nXAnYB−nYAnXB= 0 (26)

It can be noticed that h3 could lead to some numerical problems, one
way of avoiding this is to replace it by the inner product, as depicted by Eq.
(27) and (28).

nA · nB= −1 (27)

h3= −1⇔ nXAnXB+nYAnYBnZAnZB+1 = 0 (28)

In this way, h3 uses one equation condition so it is numerically more
stable, although revealing the disadvantage of using a more weak formulation
(Eq. (28)), instead of a strong one (Eq. (24-26)), leading to non-convergence,
in some cases.

To ensure that the method converges to the minimum distance (or the
maximum penetration) between both surfaces new geometric equations must
be set. This is done by imposing that the distance vector rAB and the nor-
mal vectors are parallel. The required conditions use Eq. (29) or Eq. (30),
respectively using nA or nB.

nA · rAB= 1⇔ h4=
nXA(XB−XA)
‖rAB‖ +

nYA(YB−YA)
‖rAB‖ +

nZA(ZB−ZA)
‖rAB‖ −1 = 0 (29)

nB · rAB= 1⇔ h5=
nXB(XB−XA)
‖rAB‖ +

nYB(YB−YA)
‖rAB‖ +

nZB(ZB−ZA)
‖rAB‖ −1 = 0 (30)

4.3. Problem Formulation

Once defined the objective function and the constraint equations, the
optimization problem can formulate as
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minimize ‖rB−rA‖2

subject to : hA(XA,YA,ZA) = 0
hB(XB,YB,ZB) = 0
nA×nB= 0or nA · nB= −1
nA · rAB= 1or nB · rAB= −1

(31)

The numerical solution of the optimization problem can be obtained
using a mathematical programming approach. This task is not easy, in terms
of computational efforts and solution stability. There are several sets of nu-
merical libraries, available on the market, to solve this optimization problem,
with different methods and algorithms each one more appropriate to a specific
problem. The discussion of the appropriate optimization algorithm is outside
the scope of this work, but the requirement that a stable convergence to the
solution is necessary.

4.4. Initial Estimate

The optimization algorithms used, need an initial estimate for the design
variables. This estimate lies in the vector that connects both surfaces origins,
deviate from each origin a certain percentage given by the factor δA or δB
respectively. Initial estimate for surfaces A and B are written as



XA

YA

ZA


=



pXA+δA(pXB
−pXA

)
pYA+δA(pYB

−pYA
)

pZA+δA(pZB
−pZA

)


and



XB

YB

ZB


=



pXB−δB(pXB
−pXA

)
pYB−δB(pYB

−pYA
)

pZB−δB(pZB
−pZA

)


(32)

(a) äA= äB = 0.20 (b) äA= äB = 0.45 (c) äA and äB over the surfaces

Fig. 8. Initial estimate for the design variables

Figure 8 shows the initial estimate, with fixed value for δ. Note that the
initial estimate depends on the factor δ, as well as the surfaces position.
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Considering two different configurations, where the distance between the
origins of A and B for the second configuration doubles the first one, the
distance between the initial estimate and the origin of the corresponding
surface will also be the double for the second configuration. Other disad-
vantage of this initial estimate is that the optimization method starts with
the equality constraints from Eq. (21) and Eq. (22) violated. In order to
eliminate the dependency of the superquadrics position, and to start with
non-violated constraints, one minimizes two nonlinear equations that ensure
that the initial estimate lie on the surfaces A and B, [14]. Such nonlinear
equations are obtained by substituting Eq. (32) in Eq. (15), resulting in an
equation dependent on δ (Eq. (33)), where the terms Ri are given by Eq. (34).

(
(R1)

2
ε2 +(R2)

2
ε2

) ε2
ε1

+(R3)
2
ε1−1 = 0 (33)

Ri=
t1iδ(pXB

−pXA
) + t2iδ(pYB

−pYA
) + t3iδ(pZB

−pZA
)

ai
(34)

Solving Eq. (33) for δ, it is obtained the values for δA and δB, substi-
tuting those again in Eq. (32) the initial estimate that lie on the surfaces are
determined.

5. Results

The constraint optimization problem is solved using two different meth-
ods, the first one is a nonlinear Interior Point method [7-10], coded in
MATLAB, using the function fmincon. The second method is a Sequential
Quadratic Programming (SQP), coded in FORTRAN, using the nonlinear
libraries ADS and DOT, [11,12].

The results are obtained on a personal computer showing the simplicity of
the implementation. In this section, one presents several cases that represent
the capability of the method in determining the minimum distance or the
maximum penetration among both surperquadrics. Superquadric properties
and their position are summarized in Tab. 2. The results of these cases are
presented in Tab. 3, where it can be verified the similarities and discrepancies
of the methods.

The results gathered in Tab. 3 and in Fig. 9 show that both methods
are suitable for determine the interpenetration among surfaces modeled by
superquadrics. Note the similarity between the objective function values. In
the time column, the value inside brackets is the time that the method takes
to determine δA and δB.
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Fig. 9. Contact detection results for cases 1 to 6

IP method reveals more efficiency in the number of iterations and func-
tion evaluations, on the other hand, SQP method shows that it takes much
less time to converge.

With the cases 7 and 8 from Tab. 2, the intention is to confront several
different constraint sets, in both studied situations, superquadrics separat-
ed and with some interference. Consequently, there were performed eight
optimizations for each case:
a) Superquadrics surfaces constraints only. These constraints are applied in

all simulations.
b) Same as (a) plus the parallelism constraint written in terms of the cross

product of the normal vectors of the surfaces.
c) Same as (b) plus the parallelism constraint written in terms of the dot

product of the normal vector of surface A and the distance vector rAB.
d) Same as (b) plus the parallelism constraint written in terms of the dot

product of the normal vector of surface B and the distance vector rAB.
e) Same as (a) plus the parallelism constraint written in terms of the dot

product of the normal vectors of the surfaces.
f) Same as (e) plus the parallelism constraint written in terms of the dot

product of the normal vector of surface A and the distance vector rAB.
g) Same as (e) plus the parallelism constraint written in terms of the dot

product of the normal vector of surface B and the distance vector rAB.
h) Same as (a) plus the parallelism constraints written in terms of the dot

product of the normal vectors of surfaces A and B and the distance vector
rAB.
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Figure 10 points out the superquadrics properties, as well as the positions
and orientations of the surfaces for cases 7 and 8. The results for case 7 are
gathered in Fig. 11 and in Tab. 4.

Fig. 10. Superquadric properties and position and initial estimate for: a) case 7 and b) case 8

The simulations shows that minimum distance calculated for case 7 are
not dependent of the type of constraints, the method converge for the min-
imum distance for all constraint sets. One can only notice, in case 7.c, a
significantly higher number of iterations and function evaluations, and con-
sequently, in the computational time.

Fig. 11. Minimum distance for case 7. a) solutions; b) detail
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Results for case 8 are presented in Fig. 12, Tab. 5 summarizes those
results. In case 8, only the constraint sets 8.b and 8.e converged to the value
of penetration among the superquadric surfaces.

Fig. 12. Interference results for case 8

Cases 8(a,c,d,f,g,h) lead to contact points located over the surfaces but
with no penetration. These results indicate that one should only use the
constraint sets that do not restrict too much the algorithm, by other words,
the constraints given by Eq. (21) and Eq. (22) with the parallelism between
the normal vectors give by Eq. (24-26) or Eq. (28). Even so, the obtained
results using the Eq. (28) present better behaviour, as it converges with better
alignment between normal vectors A and B.
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Fig. 13. Detailed interference results for case 8

Figure 13 shows that although both constraint sets converge with non-
violated constraints, the dot product obtains better results for the determi-
nation of the penetration between the surfaces, notice Fig. 13b, where the
normal vectors are perfectly aligned. Moreover, Fig. 13a shows that the nor-
mal vectors are parallel but not collinear, showing that using the cross product
leads to slightly worse results.

6. Conclusions

A methodology for contact detection and quantification between su-
perquadric surfaces is developed in this work, by using their implicit equa-
tions.

The formulation uses the distance between the surfaces as the objective
function. The constraints are introduced in the nonlinear optimization prob-
lem by means of the implicit equations of the superquadrics, which assures
that the contact points lie over it. Other equality constraints use parallelism
conditions between the surfaces normal vectors and the distance vector itself.
The design variables are the coordinates of the contact points or the points
that minimizes the distance between surfaces A and B.

Results show that the optimization technique suits for the accurate contact
detection between objects modelled by implicit superquadric equations, either
with the Interior Point or SQP methods. The initial estimate calculated by
the minimization of two nonlinear equations reduces the number of iterations
and function calls but increase computational time.
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Detekcja kontaktu pomiędzy wypukłymi powierzchniami kawadratowymi

S t r e s z c z e n i e

W artykule przedstawiono metodologię wykrywania kontaktu między wypukłymi powierzch-
niami typu kwadryki (superkwadratowych) opisanych równaniami uwikłanymi. Po niewielkich
modyfikacjach równań, można modelować uogólnione elipsoidy, hiperboloidy jedno- lub dwupowło-
kowe oraz toroidy. Opisana metodologia ma być zaimplementowana w programie do symulacji
układów wieloczłonowych i służyć do modelowania wzajemnej penetracji układów mechanicznych,
w szczególności do symulacji kolizji pojazdów mechanicznych z innymi użytkownikami dróg, taki-
mi jak samochody, motocykle i piesi.

Zagadnienie detekcji kontaktu między dwoma ciałami jest formułowane jako wypukły, nielin-
iowy problem optymalizacyjny z ograniczeniami, który jest rozwiązywany przy użyciu dwu metod:
metody punktu wewnętrznego (Interior Point, IP) oraz metody sekwencyjnego programowania
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kwadratowego (Sequential Quadratic Programming, SQP), dostępnych odpowiednio w środowiskach
MATLAB i FORTRAN. Funkcja celu podlegająca minimalizacji jest odległością pomiędzy obiema
powierzchniami. Ograniczeniami optymalizacji są uwikłane równania powierzchni drugiego stopnia
oraz operacje pomiędzy ich wektorami do nich normalnymi i odległością. Zmiennymi decyzyjnymi
są punkty kontaktu lub punkty wyznaczające minimalną odległość pomiędzy powierzchniami. Efek-
tywność obliczeniową można poprawić stosując metodę objętości otaczających (Bounding Volumes)
we wstępnych krokach detekcji kontaktu. Najpierw aproksymuje się geometrię ciał za pomocą kul,
a następnie zorientowanych prostopadłościanów otaczających (Oriented Bounding Boxes, OBB).
Wyniki pokazują, że taka technika optymalizacji zapewnia dokładną detekcję kontaktu pomiędzy
obiektami modelowanymi przy użyciu uwikłanych równań powierzchni drugiego stopnia.


