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An adaptive control scheme for hyperbolic partial
differential equation system (drilling system) with

unknown coefficient

HAMED SHIRINABADI FARAHANI, HEIDAR ALI TALEBI and MOHAMMAD BAGHERMENHAJ

The adaptive boundary stabilization is investigated for a class of systems described by
second-order hyperbolic PDEs with unknown coefficient. The proposed control scheme only
utilizes measurement on top boundary and assume anti-damping dynamics on the opposite
boundary which is the main feature of our work. To cope with the lack of full state measure-
ments, we introduce Riemann variables which allow us reformulate the second-order in time
hyperbolic PDE as a system with linear input-delay dynamics. Then, the infinite-dimensional
time-delay tools are employed to design the controller. Simulation results which applied on
mathematical model of drilling system are given to demonstrate the effectiveness of the pro-
posed control approach.

Key words: drilling systems, adaptive control, hyperbolic partial differential equation,
wave equation, boundary control

1. Introduction

We investigate boundary stabilization for a class of linear second-order hyperbolic
PDE system with uncertainty coefficient on a finite space domain. The general issue
addressed in this paper is how to deal with the wave in a one-dimensional form, as con-
sidered e.g. when modeling the dynamics of an elastic slope vibrating around its rest
position. Particularly, we consider the wave equation describing the dynamics of the
deformation denoted by z(x, t).The research activities in boundary control field were de-
voted to parabolic PDEs in the early 2000s [1]. In recent years, however, more attention
has been given to the hyperbolic PDEs and in particular to the stabilization of such dy-
namics [2-5].Many physical systems can be described by first-order hyperbolic PDEs,
such as traffic flow, heat exchangers [20].Subsequently, in [6] systems with unknown in-
put delay, i.e., an important class of infinite dimensional systems with first-order hyper-
bolic PDE dynamics is tackled. In [18-19] sufficient condition for exponential stability
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for various class of nonlinear first-order hyperbolic PDE system is given. In [21], back-
stepping approaches have been used for first-order hyperbolic PDEs to achieve stability.

To the best of our knowledge, adaptive output-feedback boundary control problem
has not yet been developed for the second-order hyperbolic PDEs especially when the
dynamics are unstable, namely the wave equation. Wave and beam equations have been
addressed in [7- 9], however, the dynamics are assumed to be stable.In [10], adaptive
boundary control of unstable wave equation is studied by measuring all state z(x, t)x ∈
[0,1] which is not feasible in real application. Recently in [17], an adaptive control law
for wave equation is designed by measuring down and top boundary, simultaneously.

This paper is devoted to the boundary stabilization of uncertain hyperbolic PDE
system. Here, we introduce the main ideas for back-stepping control of hyperbolic PDEs,
the most basic of which is the wave equation . The main distinguished feature of a wave
equation is that it is second order in time.

We consider mathematical model of drilling system [11], as a case study, which de-
scribed (in linear form) by the second-order in time hyperbolic PDE subject to boundary
conditions with unmatched parametric uncertainty.

We use the modified Riemann variables to reformulate the plant model as a linear
input-delay model cascaded with a transport equation opposite of the input propagation
direction. This structure allows us to reconstruct the delayed bottom velocity from top-
boundary measurement. The Lyapunov methodology is then used for stability analysis.
Both control and parameter estimation approaches utilize top-boundary measurement
only, which is the main feature of our work. Toward this objective, first an invertible
infinite-dimensional back-stepping transformation is introduced to transform the orig-
inal system into a target system, from which it is much easier to design the desired
controller and implement the performance analysis.Then, for the target system, a dy-
namic compensation for the unknown parameter is given by an adaptive technique and
projection operator. Subsequently, based on this technique and the certainty equivalence
principle, an adaptive controller is constructed to stabilize the target system in a certain
sense. Finally, by the invertibility of the infinite-dimensional back-stepping transforma-
tion, the controller designed for the target system can stabilize the original system in the
foregoing sense.

The rest of the paper is organized as follows. In Sec. 2, we introduce the mathemati-
cal modeling of drilling system and then present adaptive controller in Sec. 3 followed
by the statement of the main stability theorem and its proof. We finally end our paper
with a numerical simulations to illustrate the effectiveness of our proposed approach
in Sec. 4. Concluding remarks and possible further research lines are presented in Sec. 5.

Notation: || ||L2 denotes the norm in L2(0,1) space, defined by ||u||2L2(0,1) =
∫ 1

0 |u|2dx

for all functions u ∈ L2(0,1). Similarly, H2(0,1) is the set of functions u ∈ H2(0,1) such
that

∫ 1
0 |u|2 + |ux|2 + |u2

xxdx is finite. (ux stands for the partial derivative of the function u
with respect to x). Also, for (a,b)∈ R2 such that a < b, we define the standard projection
operator on the interval [a,b] as a function of two scalar arguments f (denoting the
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parameter being updated) and g (denoting the nominal update law) as

Pro j[a,b]( f ,g) = g


0 if f = a and g < 0
0 if f = b and g > 0
1 otherwise.

2. Mathematical modeling

To evaluate the performance of the proposed adaptive control approach, we consider
a drilling system model [11], shown in Fig. 1. The main process of oil well drilling,
which is depicted in Fig.1, includes in creation of a narrow deep hole in the ground until
the oil reservoir is reached [11]. This system consists of a bit, tool for cutting rock, drill
pipes, drill collars and rotatory table which provides torque on drill pipe for penetrating
into ground.

Figure 1: Drilling system

A distributed parameter model of drilling system is described by the second-order
hyperbolic PDEs as follow [11]:

GJ
∂2θ(ξ, t)

∂ξ2 − I
∂2θ(ξ, t)

∂t2 −β
∂θ(ξ, t)

∂t
= 0, ξ ∈ [0,L], t ­ 0 (1)
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with boundary conditions

IB
∂2θ
∂t2 (0, t) = GJ

∂θ
∂ξ

(0, t)+T
(

∂θ
∂t

(0, t)
)

(2)

GJ
∂θ
∂ξ

(L, t) = Ω(t) (3)

where θ(ξ, t) : [0,L]×R+ → R (angle of rotation) and ∂θ
∂t (ξ, t) (angular velocity) are

the system states with
(

θ(·,0), ∂θ
∂t (·,0)

)
∈ H1([0,L])×L2([0,L]), ∂θ

∂t and ∂θ
∂ξ denote the

partial derivatives of θ(ξ, t) with respect to t and ξ, respectively, T
(

∂θ
∂t (0, t)

)
is the

torque which is a nonlinear function of the bit speed which is uncertain, and Ω(t) :
R+ → R is the control law coming from the rotor, I is the inertia, G is the shear modulus
and J is the geometrical moment of inertia.

In the sequel, the damping coefficient β is assumed to be zero and without loss

of generality, L is assumed to be equal one. By choosing q = dT
d ∂θ

∂t

((
∂θ
∂t

)re f
)

(called

anti-damping coefficient) where
(

∂θ
∂t

)re f
is a given angular velocity to be achieved, the

distributed mathematical model reduces to the unidimensional wave equation

∂2θ(ξ, t)
∂ξ2 = ρ2 ∂2θ(ξ, t)

∂t2 ; ξ ∈ [0,1], t ­ 0;ρ =

√
I

GJ
(4)

∂2θ
∂t2 = c

∂θ
∂ξ

(0, t)+ cq
∂θ
∂t

(0, t); c =
GJ
IB

(5)

∂θ
∂ξ

(1, t) = gΩ(t) =U(t); g =
1

GJ
. (6)

Our objective is to design a feedback law U(t) to ensure dissipativity of the system,
despite uncertainty in anti-damping coefficient q > 0, which does not employ the en-
tire distributed state, but only the top boundary value measurement. We only measure
angular velocity of the top boundary i.e. signal θ

t (1, ·), for all time. This assumption
arises in a new formulation in which we need only the velocity at the boundary for all
time. The main challenge here is instability of dynamics (5) with unmatched parametric
uncertainty, since q acts on the lower boundary while the controller is applied on the
opposite boundary. To deal with parameter uncertainties, as common in adaptive control
approach, we assume that there exist a fixed and known constants Qmin, Qmax such that
Qmin < q < Qmax, ∀x ∈ [0,1].

First, without loss of generality we assume ρ2 = 1 and reformulate the plant (4)-(6)
by introducing Riemann variables u(ξ, t) = ∂θ(ξ,t)

∂t − ∂θ(ξ,t)
∂ξ and v(ξ, t) = ∂θ(ξ,t)

∂t + ∂θ(ξ,t)
∂ξ

as follows:
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∂u(ξ, t)
∂t

=−∂u(ξ, t)
∂ξ

(7)

∂v(ξ, t)
∂t

=
∂v(ξ, t)

∂ξ
(8)

v(1, t) =
∂θ
∂t

(1, t)+U(t) =W (t) (9)

∂2θ
∂t2 (0, t)− c(1−q)

∂θ
∂t

(0, t) = cv(0, t) (10)

u(0, t) = 2
∂θ
∂t

(0, t)− v(0, t). (11)

ODE equation (10) can be represented in standard state space form as:

Ẋ(t) =

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 c(q−1)

][
x1(t)
x2(t)

]
+

[
0
c

]
v(0, t) (12)

where x1(t) = θ(0, t) and x2(t) = ∂θ
∂t (0, t) are the states of linear ODE system (10). It is

obvious that this system is unstable for q > 1.The control objective is to design v(1, t)
and in turns U(t) (from (9)) to achieve asymptotic stability of (10).

3. The proposed adaptive control design

In this section, similar to [10] we present an infinite dimensional back-stepping trans-
formation, using which system (5) is transformed into a target system. Then, based on
this transformation, our proposed adaptive controller is designed, which can stabilize
the original system in the desired sense. If q is known, the back-stepping transformation
(x2(t),u,v)→ (x2(t),u,ω) is given as follows:

ω(ξ, t) = v(ξ, t)− (1− c−q)

 ξ∫
0

k(ξ,y)v(y, t)dy+λ(ξ)
∂θ
∂t

(0, t)

 (13)

where kernel k(ξ,y) and λ(ξ) are to be designed later.
Now, by taking the derivative of ω, we obtain:

∂ω(ξ, t)
∂ξ

= (14)

∂v(ξ, t)
∂ξ

− (1− c−q)

k(ξ,ξ)v(ξ, t)dy+

ξ∫
0

∂k(ξ,y)
∂ξ

v(y, t)dy+λ′(ξ)
∂θ
∂t

(0, t)





68 H.S. FARAHANI, H.A. TALEBI, M. BAGHERMENHAJ

∂ω(ξ, t)
∂t

= (15)

∂v(ξ, t)
∂t

− (1− c−q)
[

k(ξ,y)
∂
∂t

v(y, t)dy+λ(ξ)
∂2θ
∂t2 (0, t)

]
.

Then, using integration by part, and using (10), we can get

∂ω(ξ, t)
∂t

=
∂v(ξ, t)

∂t
− (1− c−q)

[
k(ξ,ξ)v(ξ, t)− k(ξ,0)v(0, t)−

(16)

−
ξ∫

0

∂k(ξ,y)
∂y

v(y, t)dy+λ(ξ)
(

c(q−1)
∂θ
∂t

(0, t)+ cv(0, t)
) .

In case where q is known, the target system is given by [10]:

∂ω(ξ, t)
∂t

=
∂ω(ξ, t)

∂ξ
(17)

ω(1, t) = 0. (18)

Then, by substituting (14) and (16) into (17) and using (18), we can get

∂k(ξ,y)
∂y

+
∂k(ξ,y)

∂ξ
= 0 (19)

λ′(ξ)− c(q−1)λ(ξ) = 0 (20)

k(ξ,0) = c. (21)

The solution of the PDE (19) and ODE (20) can then be given as:

k(ξ,y) = cec(q−1)(ξ−y) (22)

λ(ξ) = ec(q−1)ξ. (23)

In [10], the ODE system with input delay was modeled as a first order hyperbolic
PDE and the back-stepping transformation used to design the controller, however, the
adaptive case has not been addressed.

In case where the damping factor q is unknown, the back-stepping transformation
(13) can be changed to:

ω(ξ, t) = v(ξ, t)− (1− c− q̂)

 ξ∫
0

k̂(ξ,y, t)v(y, t)dy+ λ̂(ξ, t)x2(t)

 (24)

where q̂ is the estimate of unknown q.
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Taking the time derivative of the transformation (24) and using the dynamics (8)-(12)
we obtain

∂ω(ξ, t)
∂t

=
∂v(ξ, t)

∂t
−

ξ∫
0

∂k(ξ,y, t)
∂t

v(y, t)dy−
ξ∫

0

k(ξ,y, t)
∂v(y, t)

∂t
dy−λ(ξ)ẋ2(t) =

∂v(ξ, t)
∂ξ

−
ξ∫

0

∂k(ξ,y, t)
∂t

v(y, t)dy−
ξ∫

0

k(ξ,y, t)
∂v(ξ, t)

∂ξ
dy−λ(ξ)(c(q−1)x2(t)+ cv(0, t)) .

Then, using integration by parts and taking the derivative of (24) with respect to x and
noting that

∂k(ξ,y, t)
∂t

+
∂k(ξ,y, t)

∂y
= 0,

the original system (7)-(12) can be transformed into following target system:

ẋ2(t) =−cc0x2(t)+ cω(0, t)+ cq̃(t)x2(t) (25)

∂ω(ξ, t)
∂t

=
∂ω(ξ, t)

∂ξ
− cq̃(t)x2(t)λ(ξ)+ ˙̂q(t) f (ξ, t) (26)

ω(1, t) = 0 (27)

∂u(ξ, t)
∂t

=−∂u(ξ, t)
∂ξ

(28)

Where q̃(t) = q− q̂(t) and q̂(t) is the estimate of unknown parameter q, and f (ξ, t) is
defined as:

f (ξ, t) =
(

1
1− c0 − q̂(t)

− cξ
)

λ(ξ)x2(t)− c

ξ∫
0

k(ξ,y, t)(ξ− y)v(y, t)dy+

+

(
1

1− c0 − q̂(t)

) ξ∫
0

k(ξ,y, t)v(y, t)dy.

Now, by plugging the transformation (24) into (27) and using (8-10), after a lengthy but
straightforward computation we obtain

k̂(ξ,y, t) = cec(q̂(t)−1)(ξ−y) (29)

λ̂(ξ) = ec(q̂(t)−1)ξ. (30)

Given the back-stepping transformation (24), the following theorem states the main
contribution of the paper which summarizes the proposed control law, adaptation rule
and stability proof.
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Theorem 7 (Stability of the target system (17) and (18)). Consider the target system
(25)-(28). Then, by using control law (38), and adaptation law (36), the zero equilibrium
of target system is exponentially stable in the sense of the following system norm:

Y (t) =

(∣∣∣∣∣∣∣∣∂ω(·, t)
∂t

∣∣∣∣∣∣∣∣
L2(0,1)

∣∣∣∣∣∣∣∣∂ω(·, t)
∂ξ

∣∣∣∣∣∣∣∣
L2(0,1)

+ |x2(t)|2
) 1

2

. (31)

Proof Consider the following candidate Lyapunov function

V (t) = E(t)+
q̃(t)2

γ
(32)

where

E(t) = log

1+(x2(t))
2 +

1∫
0

eξω(ξ, t)2dξ+
1∫

0

e1−ξu(ξ, t)2dξ

 . (33)

In the sequel, we will omit the arguments when the notation is obvious. The time deriva-
tive of V (t) is given by:

V̇ (t) =
1

1+ψ(t)

2x2
∂x2

∂t
+

1∫
0

2eξω
∂ω
∂t

dξ+
1∫

0

2e1−ξu
∂u
∂t

dξ

− 2
γq

˙̂q(t)q̃(t) (34)

where

ψ(t) = (x2(t))
2 +

1∫
0

eξω(ξ, t)2dξ+
1∫

0

e1−ξu(ξ, t)2dξ. (35)

Using Young and Cauchy-Schwartz inequalities yields in:

∃ M̃ > 0 s.t.

∣∣∣∣∣∣2˙̃q(t)
1∫

0

eξω(ξ, t) f (ξ, t)dξ

∣∣∣∣∣∣¬ γqM̃
(

x2(t)2 + ||ω(t)||2
)
. (36)

Then by choosing the following adaptation law

˙̂q(t) =
aγq

1+ψ(t)
Pro j[Qmin,Qmax]{g(t, q̂(t)), q̂(t)} (37)

where

g(t, q̂(t)) = x2(t)
(

x2(t)+(q̂(t)+ c0 −1) ∈( t −1)t f (τ)e(τ−t+1)(c(q̂(t)−1)+1)dτ
)

and by using property of projection operator together with (26)-(29), equality (34) can
be expressed as:

V̇ (t)¬− f rackψ(t)
(
x2(t)2 + ||ω(ξ, t)||2 + ||u(ξ, t)||2

)
; k > 0. (38)
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Finally, plugging (24) into (28) imposes the following control law:

v(1, t) =W (t) = (1− c− q̂(t))

 1∫
0

k̂(1,y, t)v(y, t)dy+ λ̂(ξ)x2(t)

=

(39)

= (1− c− q̂(t))

 1∫
0

cec(q̂−1)(1−y)W (t + y−1)dy+ ea(q̂−1)ξx2(t)

 .
To finish, by suitable change of variable t + y− 1 = τ the control law can be expressed
as follows:

W (t) = (1− c− q̂(t))

∫
(

t −1)tcec(q̂−1)(1−y)W (τ)dτ+ ea(q̂−1)ξx2(t)

 . (40)

Now consider the following inverse back-stepping transformation (x2(t),u,ω) →
(x2(t),u,v) as

v(ξ, t) = ω(ξ, t)− (c0 + q̂−1)

ξ∫
0

m(ξ,y, t)ω(y, t)dy−ρ(ξ)x2(t) (41)

where kernel m(ξ,y, t) and ρ(ξ) can be computed by applying Laplace transformation in
ξ to both sides of (24) and using (30-31) can be expressed as follows:

m(ξ,y, t) = cecc0(ξ−y) (42)

ρ(ξ) = ecc0ξ. (43)

Corollary 1 (Stability of the original system) Consider the plant (4-6), control law (38),
and adaptation law (36), here exist M0, N0 > 0 such that E(t)¬M0(eN0E(0)−1).

Proof We consider the following Lyapunov function candidate

E(t) = (q− q̂(t))2 +

1∫
0

[
∂θ
∂ξ

(ξ, t)
]2

dξ+
1∫

0

[
∂θ
∂t

(ξ, t)
]2

dξ+ x2(t)2. (44)

Notice that
∂θ(ξ, t)

∂t
=

u(ξ, t)+ v(ξ, t)
2

and
∂θ(ξ, t)

∂ξ
=

v(ξ, t)−u(ξ, t)
2

.
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Time differentiation of E(t) yields in

Ė(t) =−2 ˙̂q(t)+
1∫

0

(
∂v
∂t
(ξ, t)− ∂u

∂t
(ξ, t)

)(
v(ξ, t)−u(ξ, t)

2

)
dξ+

+

1∫
0

(
∂v
∂t
(ξ, t)+

∂u
∂t

(ξ, t)
)(

v(ξ, t)+u(ξ, t)
2

)
dξ+2x2(t)ẋ2(t).

Then plugging parameter update law (37) and calculate control law noticing that by
(9) U(t) = v(1, t)− ∂θ

∂t (1, t)(1, t), using (36) and applying Young and Cauchy-Schwartz
inequalities, it can be seen that there exist M0, N0 > 0 such that

E(t)¬M0(eN0E(0)−1). (45)

4. Simulation results

In this section, we present numerical simulation to illustrate the effectiveness of
the proposed controller. Similar to [11] we focus on trajectory of the form θre f (ξ, t) =
−T (ωr)ξ+ωrt + u0 where ωr ≡ ∂θre f (ξ,t)

∂t is uniform rotatory speed with the reference
control input Ū =−T (ωr).

Figure 2: Function presenting rock-on-bit friction

Our objective is to design an adaptive controller that exponential stability of system
(4)-(6) be guaranteed.

According to our proposed scheme, we consider only a measurement of top velocity
ω(t) = ∂θ

∂t (1, t). The parameters of the model used in simulations are taken from [12] to
ease performance comparisons and gathered in Tab. 1.
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Table 3: List of parameter used in simulations

Symbol Description Value

L Length of the drillpipe 2000 m

Id Inertia of the drillpipe per unit length 0.095 kg

Ib Inertia of the BHA 311 kgm2

G Shear modulus 79.3109 kgm2

J Geometric moment of inertia 1.1910−5 m4

β Drill string damping 0

Ttobdyn Torque on the bit parameter 7500 N

α1, α2, α3 Friction parameters 5.5, 2.2, 3500

cb Viscous damping torque at the bit 0.03 Nm sec/rad

Velocity reference is chosen ∂θre f (ξ,t)
∂t = 3. Therefore the unknown parameter q =

0.21. Initial parameter’s estimate is q̂(0) = 0.25. The parameter estimate evolution is
depicted in Fig. 3. By control input as depicted in Fig. 4 where adaptive control is turned
on at t = 9 sec, stabilization of the drill string using back-stepping controller is achieved
and shown in Fig. 5. It means that by control law (39) the stick-slip vibrations of drill
string are reduced. Also in Fig. 5, the velocity at surface follows a similar trend delayed
by 0.5 sec which corresponds to the time needed for the control law to propagate back
to the surface. As shown in Fig. 3, the estimate of q converges but not to the unknown
parameter, even if stabilization is satisfied.

Figure 3: Parameter estimate evolution
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Figure 4: Control signal: input-adaptive controller is turned on after 9 sec

Figure 5: Velocity evolution: adaptive controller turned on after 9 sec

5. Conclusion

In this paper, we consider a class of second-order hyperbolic partial differential equa-
tion (wave equation) with unknown coefficient and propose an adaptive controller. The
achievement of this new control method is that it does not require the measurements of
the entire system state but only of top boundary values. The extension of this technique
to other types of boundary conditions,is a topic of the further work.
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