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Eigenvalue assignment in fractional descriptor
discrete-time linear systems

TADEUSZ KACZOREK and KAMIL BORAWSKI

The problem of eigenvalue assignment in fractional descriptor discrete-time linear systems
is considered. Necessary and sufficient conditions for the existence of a solution to the problem
are established. A procedure for computation of the gain matrices is given and illustrated by a
numerical example.
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1. Introduction

A dynamical system is called a fractional-order system if its state equations are given
by fractional-order derivative of state vector. Mathematical fundamentals of the frac-
tional calculus are given in the [23, 25, 26]. The standard and positive fractional linear
systems have been investigated in [18, 24] and the positive fractional linear electrical
circuits in [20]. Some recent interesting results in the fractional systems theory and its
applications can be found in [8, 27, 28, 30].

Descriptor (singular) linear systems were considered in many papers and books [1-7,
9-11, 17, 18, 22, 29, 31]. The positive standard and descriptor systems and their stability
have been analyzed in [13-16, 28]. Descriptor positive discrete-time and continuous-
time nonlinear systems have been analyzed in [10] and the positivity and linearization of
nonlinear discrete-time systems by state-feedbacks in [14]. New stability tests of positive
standard and fractional linear systems have been investigated in [12]. The controllability
of dynamical systems has been investigated in [21].

In this paper the eigenvalue assignment problem for fractional descriptor discrete-
time linear systems will be investigated and procedure for computation of the state-
feedback gain matrices will be presented.

The paper is organized as follows. In section 2 the problem of eigenvalue assign-
ment in fractional descriptor discrete-time linear systems is formulated. In section 3 the
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problem is solved and procedure for computation of the state-feedback gain matrices is
presented. Concluding remarks are given in section 4.

The following notation will be used: ℜ — the set of real numbers, ℜn×m — the set
of n×m real matrices and ℜn = ℜn×1, In — the n×n identity matrix, Z+ — the set of
nonnegative integers.

2. Problem formulation

Consider the descriptor discrete-time linear system

E∆αxk+1 = Axk +Buk, k ∈ Z+ = {0,1, ...} (1)

where xk ∈ ℜn, uk ∈ ℜm are the state and input vectors and E,A ∈ ℜn×n, B ∈ ℜn×m. The
fractional difference of the order α is defined by

∆αxk =
k

∑
i=0

(−1)k

(
α
i

)
xk−i,

(
α
i

)
=

{
1 for i = 0,

α(α−1)...(α−i+1)
i! for i = 1,2, ...

(2)

Substituting (2) into (1) yields

Exk+1 = Aαxk +
k+1

∑
i=1

ciExk−i+1 +Buk (3)

where

Aα = A+αE, ci = (−1)i

(
α

i+1

)
, i = 1,2, ... . (4)

It is assumed that rankE = r < n and rankB=m. In practical problems it is also assumed
that i is bounded by natural number h = k+1 > n. We may write the equation (3) in the
form

Ēx̄k+1 = Āx̄k + B̄uk, (5)
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where

Ā =



Aα c1E c2E · · · ch−1E chE
In 0 0 · · · 0 0
0 In 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · In 0


∈ ℜn̄×n̄, B̄ =



B
0
0
...
0


∈ ℜn̄×m,

(6)

Ē =



E 0 0 · · · 0
0 In 0 · · · 0
0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In


∈ ℜn̄×n̄, x̄k =



xk

xk−1

xk−2
...

xk−h


∈ ℜn̄, k ∈ Z+, n̄ = n(h+1).

Let us consider the system (1) with the state-feedback

ūk = K1x̄k+1 +K2x̄k (7)

where ūk ∈ ℜm is a new input vector and K1,K2 ∈ ℜm×n̄ are gain matrices. Substitution
of (7) into (5) yields

(Ē − B̄K1)x̄k+1 = (Ā+ B̄K2)x̄k. (8)

The problem can be stated as follows. Given E, A, B, α ∈ (0,1) find K1, K2 such that the
closed-loop system has desired eigenvalues z1, z2, . . . , zn, |zk|< 1, k = 1, . . .n.

3. Problem solution

The problem will be solved by the use of the following two steps procedure.

Step 1. (Subproblem 1) Find K1 such that Ē − B̄K1 = In̄.

Step 2. (Subproblem 2) Find K2 such that Ā+ B̄K2 has desired eigenvalues.

The first subproblem has a solution if and only if [3]

rank[ Ē B̄ ] = n̄, rank B̄ = m. (9)

Theorem 8 If the conditions (9) are satisfied then the equation

Ē − B̄K1 = In̄ (10)
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has the solution

K1 = {[B̄T B̄]−1B̄T +K[In̄ − B̄[B̄T B̄]−1B̄T ]}(Ē − In̄), (11)

where K is an arbitrary matrix.

Proof From (10) we have
B̄K1 = Ē − In̄. (12)

If conditions (9) are met then there exists the left pseudoinverse of the matrix B̄ given by
the formula [19]

B̄L = [B̄T B̄]−1B̄T +K[In̄ − B̄[B̄T B̄]−1B̄T ] (13)

and
K1 = B̄L(Ē − In̄) = {[B̄T B̄]−1B̄T +K[In̄ − B̄[B̄T B̄]−1B̄T ]}(Ē − In̄), (14)

which is equivalent to (11).

Remark 1 In particular case when K = 0 we have

K1 = [B̄T B̄]−1B̄T (Ē − In̄) =
[
[BT B]−1BT (E − In) 0 · · · 0

]
(15)

and then
K1x̄k+1 = [BT B]−1BT (E − In)xk+1. (16)

The second subproblem will be solved substituting (10) into (8). Thus we have

x̄k+1 = (Ā+ B̄K2)x̄k. (17)

Theorem 9 There exists a matrix K2 such that the matrix Ā+ B̄K2 has the desired eigen-
values λk, k = 1, . . . , n̄ if and only if the pair (Ā, B̄) is controllable.

Proof The proof is given in [11].

To solve the problem one of the well-known methods [11] can be applied. To sim-
plify the notation we consider the single-input system (17) with a controllable pair (Ā, B̄).
Following [11] there exists a matrix

P =


p1

p1Ā
...

p1Ān̄−1

 (18)
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that transforms every controllable pair (Ā, B̄) to the canonical form

Ã = PĀP−1 =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ã0 −ã1 −ã2 · · · −ãn̄−1


, B̃ = PB̄ =



0
0
...
0
1


. (19)

The vector p1 in (18) is the n̄-th row of the matrix

[ B̄ ĀB̄ · · · Ān̄−1B̄]−1. (20)

The characteristic polynomial of the matrix Ã has the form

det[In̄z− Ã] = zn̄ + ãn̄−1zn̄−1 + ...+ ã1z+ ã0 (21)

and the characteristic polynomial of the closed-loop system matrix Ã+ B̃K2 has the form

det[In̄z− Ã− B̃K2] = zn̄ + d̃n̄−1zn̄−1 + ...+ d̃1z+ d̃0. (22)

The matrix satisfying (22) is given by

K2 = [ d̃0 − ã0 d̃1 − ã1 · · · d̃n̄−1 − ãn̄−1 ]. (23)

The considerations can be easily extended to multi-input systems [11].

From the above we have the following procedure.

Procedure 1.

Step 1. Knowing A, B, E, α choose h > n and compute the matrices Ā, B̄, Ē defined
by (6).

Step 2. Check the conditions (9), then using Ē and B̄ compute K1 defined by (11).
In particular case when K = 0 we can use matrices E and B (see (15)).

Step 3. Applying one of the well-known methods [11] and using Ā, B̄ compute K2
such that the matrix Ā+ B̄K2 has the desired eigenvalues λk, k = 1, . . . , n̄,
Reλk < 0. The method for single-input systems presented above
can be used.

Example 1 Consider the fractional descriptor discrete-time linear system (1) with the
matrices

E =

 1 0 0
0 1 0
0 0 0

 , A =

 0 1 0
0 0 1
1 0 0

 , B =

 0
0
1

 (24)
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and α = 0.5. Find K1 and K2 such that the closed-loop system has the eigenvalues
λk = 0, k = 1, . . . ,9. Using the Procedure 1 we obtain the following.

Step 1. Step 1. We choose h = 2. From (6) we have

Ā =



0.5 1 0 0.125 0 0 0.0625 0 0
0 0.5 1 0 0.125 0 0 0.0625 0
1 0 0.5 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0


,

Ē =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, B̄ =



0
0
1
0
0
0
0
0
0


.

(25)

Step 2. The conditions (9) are satisfied. Using (25) with (11) for
K = [ 1 0 0 0 0 0 0 0 0] we obtain the first gain matrix

K1 = [ 0 0 −1 0 0 0 0 0 0 ]. (26)

It is easy to check that Ē − B̄K1 = I9.

Step 3. Step 3. Using the presented algorithm for single-input systems we compute the
matrix
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[ B̄ ĀB̄ · · · Ān̄−1B̄]−1 = (27)

=



0 0 1 −1 0 −0.5 0 0 0
0 0 0 0 0 −1 −1 0 −0.5

−13.5 0.5 0 5.5 10.5 −0.5 2.4 3.1 5.4
54 52 0 −48 −96 −52 3.3 22.7 9.2
82 370 0 −2 −248 −370 −49.3 −104.8 −29.2

−688 −1656 0 376 1776 1656 114 84 −174
384 1056 0 −160 −984 −1056 −104 −156 24

−1024 −2368 0 576 2560 2368 160 112 224
640 1408 0 −384 −1600 −1408 −80 −16 176


The vector has the form

p1 = [ 640 1408 0 −384 −1600 −1408 −80 −16 176 ]. (28)

Using (18) we compute the matrix

P =



640 1408 0 −384 −1600 −1408 −80 −16 176
−64 −256 0 0 160 256 40 −88 40
−32 −32 0 32 56 32 −4 −16 −4
16 8 0 −8 −20 −8 −2 −2 −2
0 0 0 0 −1 0 1 0.5 1
0 −1 0 1 0.5 1 0 0 0
1 0 0 0 −0.1 0 0 −0.1 0

0.5 0.9 0 0.1 −0.1 0.1 0.1 0 0.1
0.4 0.9 1 0.1 0.1 0.1 0 0.1 0


(29)

which transforms the pair (Ā, B̄) to the canonical form (see (19))

Ã =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 −0.002 −0.0117 −0.0234 −0.0781 1.125 −0.5 1.5


,
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(30)
B̃ = [0 0 0 0 0 0 0 0 1]T .

Using (23) we have the second gain matrix

K2 = [ 0 0 −0.002 −0.0117 −0.0234 −0.0781 1.125 −0.5 1.5 ]. (31)

The closed-loop system matrix is given by

Ã+ B̃K2 =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


(32)

and has desired eigenvalues λk = 0, k = 1, . . . ,9.

4. Concluding remarks

The problem of eigenvalue assignment in fractional descriptor discrete-time linear
systems has been considered. Necessary and sufficient conditions for the existence of a
solution to the problem have been established. A procedure for computation of the gain
matrices has been given and illustrated by a numerical example.

The considerations can be extended to fractional descriptor continuous-time linear
systems.
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