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New perspectives of analog and digital simulations
of fractional order systems

ABDELFATAH CHAREF, MOHAMED CHAREF, ABDELBAKI DJOUAMBI and ALINA VODA

In the recent decades, fractional order systems have been found to be useful in many areas
of physics and engineering. Hence, their efficient and accurate analog and digital simulations
and numerical calculations have become very important especially in the fields of fractional
control, fractional signal processing and fractional system identification. In this article, new
analog and digital simulations and numerical calculations perspectives of fractional systems are
considered. The main feature of this work is the introduction of an adjustable fractional order
structure of the fractional integrator to facilitate and improve the simulations of the fractional
order systems as well as the numerical resolution of the linear fractional order differential equa-
tions. First, the basic ideas of the proposed adjustable fractional order structure of the fractional
integrator are presented. Then, the analog and digital simulations techniques of the fractional
order systems and the numerical resolution of the linear fractional order differential equation
are exposed. Illustrative examples of each step of this work are presented to show the effective-
ness and the efficiency of the proposed fractional order systems analog and digital simulations
and implementations techniques.

Key words: adjustable fractional operators, Charef approximation, fractional differential
equation, fractional integrator, fractional systems

1. Introduction

The subject of fractional order systems has gained considerable importance in the
recent decades due mainly to their numerous applications in various fields of applied sci-
ence and engineering [10], [23], [24], [33]. Nowadays well known concepts in the fields
of control system, signal processing and identification are being extended for the de-
velopment of their fractional order counterparts as emerging topics [2], [12], [30], [31],
[34]. Hence, the fractional order systems efficient, reliable and accurate simulations and
numerical calculations have become very important research topics. The considerable
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attention given to such systems is to establish a fractional system theory so it may be
accessible to the general science and engineering communities.

A major problem with fractional systems is their time domain simulations which are
more difficult compared to the regular systems because they are basically infinite dimen-
sional systems due to their fractional orders. This is challenging and researchers working
in this domain have developed different interesting methods to simulate them. There are
broadly two major approaches for the time domain simulations of the fractional order
systems: analytical and numerical methods. The purpose of the analytical method is to
obtain an explicit expression for the general responses of the fractional order systems.
Yet, analytical responses are often not simple to obtain. Only some closed form analog
or digital approximation expressions of the responses of the fractional systems have been
developed [3], [4], [5], [14], [16], [20], [25], [27], [28]. On the contrary, the goal of the
numerical method is the development of a robust and stable numerical scheme for the
responses of the fractional order systems. A great deal of effort has been expended in
this research axis leading to a variety of techniques. But, there is no proposed efficient
numerical method which simultaneously achieves speed, accuracy, and ease of simula-
tion. Two types of numerical approaches have been developed for the simulation of the
fractional order systems. The first method is based on the digital approximation of the
irrational analog transfer function of the fractional order system leading to a recurrent
equation. The digital approximation can be obtained by indirect or direct discretization.
In indirect discretization technique two steps are required, first analog frequency domain
fitting of the irrational analog transfer function is made then one of the s to z transform
methods such as Euler, Tustin or Al-Alaoui is used for the discretization. The direct dis-
cretization method is based on the application of power series in the z domain of the
Euler operator, Tustin operator or Al-Alaoui operator to the fractional differentiation of
the irrational analog transfer function of the fractional system [1], [9], [15], [17], [18],
[24], [29], [36]. The most used direct discretization is the Grunwald-Letnikov definition
of the fractional differentiation [24]. Fractional differential equations have also been the
focus of many mathematicians. Consequently, considerable attention has been given to
their numerical solutions [11], [19], [21], [22], [32], [35]. However, these methods may
not be interesting from an engineering approach at least in terms of simulation and im-
plementation of fractional systems.

In this article, new simulations and numerical calculations perspectives of the frac-
tional order systems based on an adjustable fractional order structure of the fractional in-
tegrator are considered. First, using Charef’s approximation method [6], we will derive
an adjustable fractional order rational function approximation of the analog fractional
integrator s−m (m is any real positive number) where the poles of the rational function
are calculated only one time for m = 0.5, which means that they are completely inde-
pendent of the parameter m [7]. Analog and digital simulation structures made up of two
parts will be derived to simulate the fractional order integrator s−m for any real positive
number m. The right part is a fixed structure designed only once for m = 0.5 and it will
be used for any fractional order m> 0. The left part is a structure composed of an ensem-
ble of functions depending on the fractional order m only. Then, the proposed simulation
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structure of the fractional integrator will be used to derive analog and digital simulations
of the fractional order systems represented by linear fractional differential equations.
At last, the numerical solution of the linear fractional order differential equations is ob-
tained. Illustrative examples of this work are presented to show the effectiveness and the
efficiency of the proposed analog and digital simulations techniques and resolution of
the fractional order systems.

2. Fractional order integrator: adjustable fractional order structure

The analog fractional order integrator is represented by the following irrational trans-
fer function:

GI(s) =
1
sm , for m > 0. (1)

In a given frequency band of interest [ωL,ωH ] and a given integer number N, the rational
function approximation of the fractional order operator GI(s) can be expressed by the
following equation [6], [8], [13]:

GI(s) =
1
sm

∼=
1

(ωc)
m

N−1
∏
i=1

[
1+ s

zi(m)

]
N
∏
i=1

[
1+ s

pi(m)

] (2)

the poles pi(m) (for i = 1,2, . . . ,N) and the zeros zi(m) (for i = 1,2, . . . ,(N −1)) of the
above approximation are given as:

pi(m) = ωc10
(

2i− 1−m
m(1 − m)

)
ε
, zi(m) = ωc10

(
2i− 1+m
m(1 − m)

)
ε (3)

where

ε =
m(1−m)

2
(
N + 1−m

2

) [log10(ωmax/ωc)]

is the approximation error and the frequencies ωc and ωmax such that ωc = γωL (for
10−5 ¬ γ¬ 1) and ωmax = θωH (for 1¬ θ¬ 105).

The rational function of equation (2) can be decomposed as:

GI(s) =
1
sm

∼=
N

∑
i=1

hi(m)(
1+ s

pi(m)

) (4)

where the residues hi(m) (for i = 1,2, . . . ,N) are calculated as:

hi(m) =
1

(ωc)
m

N−1
∏
j=1

(
1− pi(m)

z j(m)

)
N
∏
j=1
j ̸=i

(
1− pi(m)

p j(m)

) . (5)
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The adjustable fractional order structure of the rational function approximation of the
fractional integrator is realized such that all the poles pi (for i = 1,2, . . . ,N) are com-
pletely independent of the fractional order m. It has been shown in [7] that the best value
of the parameter m used to calculate the poles pi(m) is m = 0.5. So, equation (4) is
rewritten as:

GI(s) =
1
sm

∼=
N

∑
i=1

hi(m)(
1+ s

pi

) (6)

where the poles pi = pi(m = 0.5) (for i = 1,2, . . . ,N) are given as:

pi = ωc10(8i−6) ε. (7)

In the rational function approximation of equation (2), the error and the frequency ωc
normally depend on the fractional order m. But, ε) and ωc are calculated for m = 0.5
which means that ε = ε(0.5) and ωc = ωc(0.5). For m ̸= 0.5, ε(m) and ωc(m) have
to be adjusted to guarantee that p1(0.5) = p1(m). From [6], ε(m) = 4m(1−m)ε and
ωc(m) = ωc10[4m−2]ε. So, the fixed poles pi (for i = 1,2, . . . ,N) and the zeros zi(m) (for
i = 1,2, . . . ,(N −1)) of equation (3) are given as:

pi = ωc10(8i−6) ε, zi(m) = ωc10(8i−4+4m) ε. (8)

Then, using the expressions of the poles and the zeros of equation (8) the residues hi(m)
(for i = 1,2, . . . ,N) of equation (5) are derived as:

hi(m) =
1[

ωc10(4m−2) ε
]m

N−1
∏
j=1

(
1−108(i− j−m) ε

)
∏

j=1
j ̸=i

N
(1−108(i− j) ε)

. (9)

2.1. Adjustable fractional order structure recap

In a given frequency band of interest [ωL,ωH ] and a given integer number N, we
have:

GI(s) =
1
sm

∼=
N

∑
i=1

hi(m)(
1+ s

pi

) , for m > 0 (10)

the fixed poles pi and the residues hi(m) (for i = 1,2, . . . ,N) of the approximation are
given as:

pi = ωc10(8i−6) ε, hi(m) =
1[

ωc10(4m−2) ε
]m

N−1
∏
j=1

(
1−108(i− j−m) ε

)
∏

j=1
j ̸=i

N

(
1−108(i− j) ε

) (11)

where ε= 1
(8N+2)

[
log10

(
ωmax
ωc

)]
, ωc=γωL, (10−56γ61) and ωmax=θωH , (16θ6105).
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2.2. Analog simulation

The rational function approximation of the fractional integrator s−m of equation (10)
is:

Y (s)
E(s)

= GI(s) =
1
sm

∼=
N

∑
i=1

hi(m)(
1+ s

pi

) . (12)

The output of the fractional integrator is then given by:

Y (s) =
N

∑
i=1

hi(m)

1+ s
pi

E(s) =
N

∑
i=1

(hi(m)E(s))
1

1+ s
pi

=
N

∑
i=1

Vi(s) (13)

with

Vi(s) = (hi(m)E(s))

(
1

1+ s
pi

)
, for i = 1,2, . . . ,N.

In the time domain, for i = 1,2, . . . ,N, vi(t) is simulated by the first order differential
equation

dvi(t)
dt

=− pivi(t)+ pi (hi(m)e(t)) .

Then the analog simulation of the fractional order integrator s−m is given as:
y(t) =

N

∑
i=1

vi(t)

dvi(t)
dt

=− pivi(t)+(pihi(m)) e(t)

 , for m > 0 and i = 1, 2, . . . , N (14)

Fig. 1 shows the analog simulation of the fractional integrator s−m using equation (14).
The right part of the simulation structure representing the second expression of equation
(14) is a fixed structure made of first order sub-systems which are completely indepen-
dent of the fractional order m. So, it can be used for the simulation of the fractional
integrator of any fractional order m > 0. The left part is a structure composed of an
ensemble of functions depending on the fractional order m only.

2.3. Digital simulation

The analog simulation of the fractional integrator s−m is given in equation (14). So,
the digital simulation of the fractional integrator can be obtained from equation (14) as
follows:

y(k) =
N

∑
i=1

vi(k) (15)

and from the second expression of equation (14), we have (for i = 1,2, . . . ,N):

Vi(s) =
1

1+ s
pi

(hi(m)) E(s) . (16)
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Figure 1: Proposed analog simulation of the fractional integrator s−m (m > 0)

The Z transform of the analog transfer function

1
1+ s

pi

, for i = 1,2, . . . ,N (17)

of equation (16) with zero order hold (ZOH) is obtained as follows [26]:

Z

{
(ZOH)

(
1

1+ s
pi

)}
= (1− z−1)Z

 1

s
(

1+ s
pi

)
=

(1−δi)z−1

1−δiz−1 (18)

where δi = exp(−T pi) (for i = 1,2, . . . ,N) with T the sampling period. So, from equa-
tions (16) and (18) we can write that (for i = 1,2, . . . ,N):

Vi(z) =
(
(1−δi)z−1

1−δiz−1

)
(hi(m)) E(z). (19)
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Rearranging equation (19), we will get (for i = 1,2, . . . ,N):

Vi(z) = δiz−1Vi(z)+(1−δi) (hi(m))
(
z−1E(z)

)
. (20)

In the time domain, vi(k) (for i = 1,2, . . . ,N) is given as:

vi(k) = δivi(k−1)+ (hi(m))(1−δi) e(k−1) (21)

Then, the digital simulation of the fractional integrator s−m (for m > 0) is given as fol-
lows: y(k) =

N

∑
i=1

vi(k)

vi(k) = δivi(k−1)+ (hi(m))(1−δi) e(k−1) , for i = 1, 2, . . . , N

(22)

Fig. 2 shows the digital simulation of the fractional integrator s−m (for m> 0). Because it
is derived from the analog one the digital simulation structure is also made of two parts.
The right part representing the second expression of equation (22) is a fixed structure
which can be used for the digital simulation of the fractional integrator of any fractional
order m > 0. The left part is a structure composed of the same ensemble of functions of
the analog structure.

2.4. Illustrative example

To show the effectiveness and the usefulness of the proposed method, we will con-
sider the rational function approximation of the analog fractional order integrators s−0.63

and s−1.74 in the frequency band [ωL, ωH ] = [0.001rad/s, 100 0 rad/s] for N = 20. From
equation (10), we get:

1
s0.63

∼=
20

∑
i=1

hi(0.63)
1+ s

pi

(23)

1
s1.74

∼=
20

∑
i=1

hi(1.74)
1+ s

pi

. (24)

For ωc = 0.001, ωL = 10−6 and ωmax = 1000 and ωH = 106 we have ε = 0.0741. Then,
from equation (11), the poles and the residues (for i = 1,2, . . . ,20) are:
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Figure 2: Proposed digital simulation of the fractional integrator s−m (m > 0)

pi = 10(0.5928i − 6.4446) (25)

hi(0.63) = (1.7550 e−4)


19
∏
j=1

(
1−100.5928(i − j −0.63)

)
20
∏
j=1
j ̸=i

(1−100.5928(i − j))

 (26)

hi(1.74) = (1.5823e−10)


19
∏
j=1

(
1−100.5928(i − j −1.74)

)
20
∏
j=1
j ̸=i

(1−100.5928(i − j))

 . (27)
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We note that for both fractional order integrators s−0.63 and s−1.74, the poles of their
rational function approximations are the same only the residues are different. In this
example, we emphasize that for any fractional order integrator s−m (m > 0) the poles of
its rational function approximation will be the ones of equation (25). Figs. 3 and 4 show
the Bode plots of the ideal analog fractional order integrators s−0.63 and s−1.74 and of
their rational function approximations of equations (23) and (24).

Figure 3: Bode plot of the fractional integrator s−0.63 and its rational function approxi-
mation

Figure 4: Bode plot of the fractional integrator s−1.74 and its rational function approxi-
mation
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Figure 5: Step responses of the fractional order integrators s−0.63 using MATLAB func-
tion fode sol() and the proposed approximation structure

Figure 6: Step responses of the fractional order integrators s−1.74 using MATLAB func-
tion fode sol() and the proposed approximation structure

From Figs 3 and 4, we can easily see that the Bode plots of the ideal ana-
log fractional order integrators s−0.63 and s−1.74 and their corresponding rational
function approximations are quite overlapping in the frequency band of interest
[ωL, ωH ] = [0.001rad/s, 100 0 rad/s]. Figs 5 and 6 show the step responses of the
fractional integrators s−0.63 and s−1.74 using the MATLAB function fode sol()
based on the Grunwald-Letnikov’s fractional differentiation definition for the numerical
solution of the linear fractional differential equation [24] and using the proposed
approximation structure. The equations used for the step responses are given as:
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Fractional order integrator s−0.63

• using MATLAB function fode sol() [24]:

solve the fractional differential equation d0.63y(t)
dt0.63 = u(t) to get the step response of

the fractional integrator s−0.63 as:

a= [1]; na= [0.63]; b= [1]; nb= [0]; t= 0 : 0.1 : 4001;
u= ones(size(t)),
y= fode sol(a,na,b,nb,u,t)

• using the proposed approximation structure:

For i = 1,2, . . . ,20, solve the 20 regular first order differential equations:

dvi(t)
dt = −10(0.5928i − 6.4446 ) vi(t)+

+ 10(0.5928i − 10.2003 )

19
∏
j=1
(1−100.5928(i − j −0.63))

20
∏

j=1
j ̸=i

(1−100.5928(i − j))
e(t)

y(t) =
20
∑

i=1
vi(t)

Fractional order integrator s−1.74

• using MATLAB function fode sol() [24]:

solve the fractional differential equation d1.74y(t)
dt1.74 = u(t) to get the step response of

the fractional integrator s−1.74 as:

a= [1]; na= [1.74]; b= [1]; nb= [0]; t= 0 : 0.1 : 4001;
u= ones(size(t)),
y= fode sol(a,na,b,nb,u,t)

• using the proposed approximation structure:

For i = 1,2, . . . ,20, solve the 20 regular first order differential equations:

dvi(t)
dt = −10(0.5928i − 6.4446 ) vi(t)+

+ 10(0.5928i − 16.2447 )

19
∏
j=1
(1−100.5928(i − j −1.74))

20
∏

j=1
j ̸=i

(1−100.5928(i − j))
e(t)

y(t) =
20
∑

i=1
vi(t)
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From Figs. 5 and 6, we can easily see that the step responses of fractional integrators
s−0.63 and s−1.74 using the proposed simulation structure and the MATLAB function
fode sol() are exactly the same.

3. Linear fractional order system: New structure

A linear single input single output (SISO) fractional order system is described by the
following linear fractional order differential equation [24]:

L

∑
i=0

aiDαiy(t) =
M

∑
j=0

b jDβ j e(t) (28)

where e(t) is the input, y(t) is the output, the derivative orders αi (0 ¬ i ¬ L) and βi
(0 ¬ j ¬ M − 1) are constant real positive numbers such that αL−1 < · · · < α1 < α0,
βM−1 < · · ·< β1 < β0, β0 6 α0, and αL = βM = 0; the model parameters ai (1¬ i¬ L)
and bi (0¬ j ¬M) are constant real numbers with a0 = 1. With zero initial conditions,
the fractional system transfer function is given as [24]:

G(s) =
Y (s)
E(s)

=

M
∑
j=0

b jsβ j

L
∑

i=0
aisαi

. (29)

From equation (29), we can write:

G(s) =
Y (s)
E(s)

=

M
∑
j=0

b jsβ j

sα0 +
L
∑

i=1
aisαi

. (30)

So, we will have: [
sα0 +

L

∑
i=1

aisαi

]
Y (s) =

[
M

∑
j=0

b jsβ j

]
E(s) (31)

sα0Y (s) =−

[
L

∑
i=1

aisαi

]
Y (s)+

[
M

∑
j=0

b jsβ j

]
E(s). (32)

Y (s) can then be obtained as:

Y (s) =−

[
L

∑
i=1

ai
1

sα0−αi

]
Y (s)+

[
M

∑
j=0

b j
1

sα0−β j

]
E(s). (33)
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From section 2.1, in a given frequency band of interest [ωL,ωH ] and a given integer
number N, the fractional order integrators 1

sα0−αi and 1
sα0−β j

, for i = 1,2, . . . ,L and for
j = 0,2, . . . ,M, are approximated as:

1
sα0−αi

∼=
N

∑
q=1

hq(α0 −αi)

(1+ s/pq)
(34)

1
sα0−β j

∼=
N

∑
q=1

hq(α0 −β j)

(1+ s/pq)
(35)

The poles pq and the residues hq(σ) (for q = 1,2, . . . ,N and σ = (α0 - αi) or σ =
(α0 - βj)) are given as:

pq = ωc10(8q−6) ε, hq(σ) =
1[

ωc10(4σ−2) ε
]σ

N−1
∏

p=1

(
1−108(q−p−σ) ε

)
N
∏

p=1
p ̸=q

(1−108(q−p) ε)

(36)

where ε = 1
(8N+2) [log10(ωmax/ωc)], ωc = γωL, (10−5 6 γ 6 1) and ωmax = θωH , ( 1 6

θ 6 105).
Then equation (33) can be rewritten as:

Y (s) =−

[
L

∑
i=1

ai

N

∑
q=1

hq(α0 −αi)

1+ s
pq

]
Y (s)+

[
M

∑
j=0

b j

N

∑
q=1

hq(α0 −β j)

1+ s
pq

]
E(s) (37)

Y (s) =−
N

∑
q=1

(
L

∑
i=1

aihq(α0 - αi)

)(
Y (s)

1+ s
pq

)
+

N

∑
q=1

(
M

∑
j=0

b jhq(α0 - βj)

)(
E(s)

1+ s
pq

)
(38)

Y (s) =
N

∑
q=1

(AqY (s))

(
1

1+ s
pq

)
+

N

∑
q=1

(BqE(s))

(
1

1+ s
pq

)
(39)

where the coefficients Aq and Bq, for q = 1,2, . . . ,N, are given by the following expres-
sions:

Aq = −
L

∑
i=1

aihq(α0 −αi)

Bq =
M

∑
j=0

b jhq(α0 −β j).

(40)
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3.1. Analog simulation

A linear SISO fractional order system is described by the linear fractional order
differential equation of equation (28) as:

L

∑
i=0

aiDαiy(t) =
M

∑
j=0

b jDβ j e(t). (41)

From equation (39), its solution is given by the following expression:

Y (s) =
N

∑
q=1

[AqY (s)+BqE(s)]

(
1

1+ s
pq

)
=

N

∑
q=1

Vq(s) (42)

where the variables Vq(s), for q = 1,2, . . . ,N, are defined as follows:

Vq(s) = (AqY (s)+BqE(s))

(
1

1+ s
pq

)
. (43)

So, in the time domain, each variable vq(t) (for q = 1,2, . . . ,N) is the solution of the
following first order differential equation:

dvq(t)
dt

=− pqvq(t)+ pq (Aqy(t)+Bqe(t)) . (44)

Hence, from equations (42) and (44), the analog simulation of the linear SISO fractional
order system described by the linear fractional order differential equation of equation
(41) is given by:

y(t) =
N

∑
q=1

vq(t)

dvq(t)
dt

=−pqvq(t)+ pq (Aqy(t)+Bqe(t)) , for q = 1, 2, . . . , N

(45)

Fig. 7 shows the proposed analog simulation using equation (45) of the linear SISO
fractional order system described by the linear fractional order differential equation of
equation (41). The right part of Fig. 7 of the proposed simulation structure representing
the second expression of equation (45) is a fixed structure made of first order sub-systems
which are completely independent of the fractional orders αi (0¬ i¬ L) and βi (0¬ j¬
M) of the linear fractional order differential equation of equation (41). Then, this right
part of the proposed analog simulation can be used for the simulation of any linear SISO
fractional order system described by the linear fractional order differential equation of
equation (41). The left part of Fig. 7 is an ensemble of functions depending only on the
derivative orders αi (0 ¬ i ¬ L) and βi (0 ¬ j ¬ M) and the model coefficients ai (for
0¬ i¬ L) and bi (0¬ j ¬M) of equation (41).
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Figure 7: Analog simulation structure of the linear SISO fractional order system

3.2. Numerical resolution of the linear fractional differential equation

A linear SISO fractional system is described by the linear fractional differential equa-
tion of equation (28) as:

L

∑
i=0

aiDαiy(t) =
M

∑
j=0

b jDβ j e(t). (46)

The analog solution of the above differential equation is given by equation (42) as:

Y (s) =
N

∑
q=1

Vq(s) (47)
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where the variables Vq(s), for q = 1,2, . . . ,N, are given from equation (43) by the ex-
pression:

Vq(s) = [ AqY (s)+BqE(s)]
1

1+ s
pq

. (48)

The Z transform of the analog transfer function 1
1+ s

pq
(for q = 1,2, . . . ,N) of equation

(48) with zero order hold (ZOH) is then obtained as follows [26]:

Z

{
(ZOH)

(
1

1+ s
pq

)}
= (1− z−1)Z

 1

s
(

1+ s
pq

)
=

(1−δq)z−1

1−δqz−1 (49)

where δq = exp(−T pq) (for i = q,2, . . . ,N) and T is the sampling period. So, from
equation (48) we can write that (for q = 1,2, . . . ,N):

Vq(z) = (AqY (z)+BqE(z))
(
(1−δq)z−1

1−δqz−1

)
. (50)

Rearranging equation (50), we will get (for q = 1,2, . . . ,N):

Vq(z) = δqz−1Vq(z)+(1−δq)
(
Aqz−1Y (z)+Bqz−1E(z)

)
. (51)

In the time domain, vq(k) (for q = 1,2, . . . ,N) is given as:

Vq(z) = δqz−1Vq(z)+(1−δq)
(
Aqz−1Y (z)+Bqz−1E(z)

)
. (52)

So, the numerical solution of the linear fractional order differential equation of equation
(46) is obtained from equations (47) and (52) as follows:

vq(k) = δqvq(k−1)+(1−δq) (Aqy(k−1)+Bqe(k−1)) , for q = 1, 2, . . . , N

y(k) =
N

∑
q=1

vq(k)

(53)

where, for q = 1,2, . . . ,N, Aq = −
L
∑

i=1
aihq(α0 −αi), Bq =

M
∑
j=0

b jhq(α0 −β j) and δq =

exp(−T pq). The parameters pq and hq(σ) (for q = 1,2, . . . ,N) and σ = (α0 - αi) or σ =
(α0 −β j) (for i = 1,2, . . . ,L and for j = 0,2, . . . ,M) are obtained for a given frequency
band of interest [ωL,ωH ] and a given integer number N as follows:

pq = ωc10(8q−6) ε, hq(σ) =
1[

ωc10(4σ−2) ε
]σ

N−1
∏

p=1

(
1−108(q−p−σ) ε

)
N
∏

p=1
p ̸=q

(1−108(q−p) ε)

(54)

where ε = 1
(8N+2)

[
log10

(
ωmax
ωc

)]
, ωc = γωL (10−5 6 γ 6 1) and ωmax = θωH ( 1 6 θ 6

105).
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3.3. Digital simulation

A linear SISO fractional order system is described by the linear fractional order
differential equation of equation (46) as:

L

∑
i=0

aiDαiy(t) =
M

∑
j=0

b jDβ j e(t) (55)

The numerical solution of the above differential equation can be obtained from equation
(47) as:

Y (z) =
N

∑
q=1

Vq(z) (56)

where the variables Vq(z), for q = 1,2, . . . ,N, are given from equation (50) by the ex-
pressions:

Vq(z) = (AqY (z)+BqE(z))
(
(1−δq)z−1

1−δqz−1

)
. (57)

Rearranging equation (57), we will get (for i = 1,2, . . . ,N):

Vq(z)
AqY (z)+BqE(z)

=
(1−δq)z−1

1−δqz−1 . (58)

The variables Xq(z), for q = 1,2, . . . ,N, are such that the above equation can be rewritten
as :

Vq(z)
Xq(z)

·
Xq(z)

(AqY (z)+BqE(z))
=

(1−δq)z−1

1−δqz−1 . (59)

Let Vq(z)
Xq(z)

= (1−δq)z−1 and Xq(z)

( AqY (z)+BqE(z))
= 1

1−δqz−1 , we will then have:

Vq(z) = (1−δq)z−1Xq(z),
(
1−δqz−1) Xq(z) = (AqY (z)+BqE(z)) . (60)

So, in the time domain, (for i = 1,2, . . . ,N), we will get:

vq(k) = (1−δq)xq(k−1), xq(k) = δqxq(k−1)+(Aqy(k)+Bqe(q)) . (61)

Hence, from equations (56) and (60), the digital simulation of the linear SISO frac-
tional order system described by the linear fractional order differential equation of equa-
tion (55) is given by:

y(k) =
N

∑
q=1

vq(k){
vq(k) = (1−δq)xq(k−1)
xq(k) = δqxq(k−1)+(Aqy(k)+Bqe(k))

for q = 1, 2, . . . , N

(62)



108 A. CHAREF, M. CHAREF, A. DJOUAMBI, A. VODA

Fig. 8 shows the proposed digital simulation using equation (62) of the linear SISO frac-
tional order system described by the differential equation of equation (55). This digital
simulation structure is also made of two parts as the analog one. The right part, a struc-
ture of parallel first order sub-systems representing the two last expressions of equation
(62), is completely independent of the fractional orders αi (0¬ i¬ L) and βi (0¬ j¬M)
of the linear fractional order differential equation of equation (55). Because it is fixed,
this part can be used for the digital simulation of any linear SISO fractional system de-
scribed by the linear fractional order differential equation of equation (55). The left part
of Fig. 8 is the same structure of the analog simulation of Fig. 7.

Figure 8: Digital simulation structure of the linear SISO fractional order system
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3.4. Illustrative examples

In the first example we will consider a linear SISO fractional order system described
by the following linear fractional order differential equation:

D
√

5y(t)+20 D
√

3y(t)+3 D0.85y(t)+2y(t) = 3 D1.36e(t)+8e(t). (63)

Using Laplace transform of the above linear fractional order differential equation with
zero initial conditions, we will get:(

s
√

5 +20s
√

3 +3s0.85 +2
)

Y (s) =
(
3s1.36 +8

)
E(s) (64)

Y (s) = −
(

20
1

s(
√

5−
√

3)
+3

1

s(
√

5−0.85)
+2

1

s(
√

5)

)
Y (s)

(65)

+

(
3

1

s(
√

5−1.36)
+8

1

s(
√

5)

)
E(s).

In the frequency band [ωL, ωH] = [0.001 rad/s, 10000 rad/s] and for N = 22. The ra-
tional function approximation of the fractional integrators 1

s(
√

5−
√

3) , 1
s(

√
5−0.85) , 1

s
√

5 and
1

s(
√

5−1.36) are given as:

1

s(
√

5−
√

3)
∼=

22

∑
q=1

hq

(√
5−

√
3
)

1+ s
pq

,
1

s(
√

5−0.85)
∼=

22

∑
q=1

hq

(√
5−0.85

)
1+ s

pq
(66)

1

s(
√

5)
∼=

22

∑
q=1

hq

(√
5
)

1+ s
pq

,
1

s(
√

5−1.36)
∼=

22

∑
q=1

hq

(√
5−1.36

)
1+ s

pq

.

We note that all the poles of the rational function approximation of the above four analog
fractional order integrators are the same.

For ωc = 0.0005ωL = 5.0 · 10−7 and ωmax = 100ωH = 106, ε = 0.0691, the poles
pq and residues hq

(√
5−

√
3
)

, hq

(√
5−0.85

)
, hq

(√
5
)

and hq

(√
5−1.36

)
(for 1¬

q¬ 22) are given as:
pq = 10(0.5529q − 6.7156)

hq

(√
5−

√
3
)
=
(
1.4972 · 104)

21
∏

p=1

(
1−100.5529(q− p−

√
5+

√
3)
)

22
∏

p=1
p ̸=q

(
1−100.5529(q− p)

)
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hq

(√
5−0.85

)
=
(
2.4783 · 108)

21
∏

p=1

(
1−100.5529(q−p−

√
5+0.85)

)
22
∏

p=1
p ̸=q

(
1−100.5529(q−p)

)

hq

(√
5
)
=
(
1.0386 · 1013)

21
∏

p=1

(
1−100.5529(q−p−

√
5)
)

22
∏

p=1
p̸=q

(
1−100.5529(q−p)

)

hq

(√
5−1.36

)
=
(
2.6857 · 105)

21
∏

p=1

(
1−100.5529(q−p−

√
5 +1.36)

)
22
∏

p=1
p ̸=q

(
1−100.5529(q−p)

)
Hence, the analog simulation of the linear SISO fractional order system described by the
linear fractional order differential equation of equation (63) is given by:

y(t) =
N

∑
q=1

vq(t)

dvq(t)
dt

=−pqvq(t)+ pq (Aqy(t)+Bqe(t)) , for q = 1, 2, . . . , 22

(67)

where, for 1¬ q¬ 22, pq is as above; Aq and Bq are given as:

Aq =−



20


(
1.4972 · 104)

21
∏

p=1

(
1−100.5529(q−p−

√
5+

√
3)
)

22
∏

p=1
p ̸=q

(
1−100.5529(q−p)

)
+

3


(
2.4783 · 108)

21
∏

p=1

(
1−100.5529(q−p−

√
5+0.85)

)
22
∏

p=1
p̸=q

(
1−100.5529(q−p)

)
 +

2


(
1.0386 · 1013)

21
∏

p=1

(
1−100.5529(q−p−

√
5)
)

22
∏

p=1
p̸=q

(
1−100.5529(q−p)

)




=
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=



[(
2.9944 · 105) 21

∏
p=1

(
1−100.5529(q−p−

√
5+

√
3)
) ]

+[(
4.9944 · 108) 21

∏
p=1

(
1−100.5529(q−p−

√
5+0.85)

)]
+[(

2.0772 · 1013) 21

∏
p=1

(
1−100.5529(q−p−

√
5)
)]


22
∏

p=1
p ̸=q

(
1−100.5529(q−p)

)

Bq =



3


(
2.6857 · 105)

21
∏

p=1

(
1−100.5529(q − p −

√
5 +1.36)

)
22
∏

p=1
p̸=q

(
1−100.5529(q − p)

)
 +

8


(
1.0386 · 1013)

21
∏

p=1

(
1−100.5529(q − p −

√
5)
)

22
∏

p=1
p ̸=q

(
1−100.5529(q− p)

)




=

=



[(
4.9944 · 108) 21

∏
p=1

(
1−100.5529(q − p −

√
5 + 1.36)

)]
+[(

8.0571 · 109) 21

∏
p=1

(
1−100.5529(q− p −

√
5)
) ]


22
∏

p=1
p̸=q

(
1−100.5529(q− p)

)
The numerical solution of the differential equation of equation (63) is given as follows:y(k) =

N

∑
q=1

vq(k)

vq(k) =− δqvq(k−1)+(1−δq) (Aqy(k−1)+Bqe(k−1)) , for q = 1, 2, . . . ,22
(68)

where, for a sampling period T = 0.002 s δq = exp(−T pq) = exp
(
−10(0.5529q−9.4146)

)
(for 1 ¬ q ¬ 22). Fig. 9 shows the step responses of the linear SISO fractional order
system described by the linear fractional order differential equation of equation (63)
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using the MATLAB function fode sol() [4] and using the proposed approximation
structure of equation (68).

Figure 9: Step responses of the fractional order system of eqn. (63) using the proposed
structure and the MATLAB function fode sol()

• using MATLAB function fode sol() [24]:

for e(t) = u(t), the step response of the linear fractional order differential equation
of equation (63) is obtained as:

a=[1 20 3 2]; na=[sqrt(5) sqrt(3) 0.85 0]; b=[3 8];
nb=[1.36 0]; t=0:0.002:80; u=ones (size(t))

y = fode sol(a,na,b,nb,u,t)

The digital simulation of the linear SISO fractional order system described by the
linear fractional order differential equation of equation (63) is given by:

{
vq(k) = (1−δq)xq(k−1)
xq(k) =−δqxq(k−1)+( Aqy(k)+Bqe(k))

, for q = 1, 2, . . . ,22

y(k) =
N

∑
q=1

vq(k)
(69)

where, for 1 ¬ q ¬ 22, δq, Aq and Bq are as above; and the sampling period
T = 0.002 s.
In the second example a more oscillatory linear SISO fractional order system
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is considered. It is described by the following linear fractional order differential
equation:

D2.45y(t)+10 D1.87y(t)+D0.58y(t)+10 y(t) = 10 e(t) (70)

whose transfer function is given as:

H(s) =
Y (s)
E(s)

=
10

s2.45 +10 s1.87 + s0.58 +10
. (71)

For N = 22 and for [ωL,ωH ] = [0.01rad/s 1000rad/s] the parameters ωc, ωmax and
ε are:

ωc = 0.005ωL = 5 · 10−5, ωmax = 100ωH = 106, ε = 0.0579

Then, for a sampling period T = 0.002 s, the numerical solution of the linear
fractional order differential equation of equation (70) is given as follows:

vq(k) =−δqvq(k−1)+(1−δq)(Aqy(k−1)+Bqe(k−1)) , for q = 1, 2, . . . , 22

y(k) =
N

∑
q=1

vq(k)

(72)
where, for 1¬ q¬ 22, δq, Aq and Bq are given as:

δq = exp(−T pq) , Aq =−
{

hq(0.58)+hq(1.87)+10hq(2.45)
}
, Bq = 10hq(2.45)

with
pq = 10(0.4630q−4.6482)

hq(0.58) =
(
3.0472 · 102)

21
∏

p=1

(
1−100.4630(q−p−0.58)

)
22
∏

p=1
p ̸=q

(
1−100.4630(q−p)

)

hq(1.87) =
(
2.8177 · 107)

21
∏

p=1

(
1−100.4630(q−p−1.87)

)
22
∏

p=1
p̸=q

(
1−100.4630(q−p)

)

hq(2.45) =
(
2.7008 · 109)

21
∏

p=1

(
1−100.4630(q−p−2.45)

)
22
∏

p=1
p̸=q

(
1−100.4630(q−p)

)
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Figure 10: Step responses of the fractional order system of eqn. (70) using the proposed
structure and the MATLAB function fode sol()

Fig. 10 shows the step responses of the linear SISO fractional order system of
equation (70) using the MATLAB function fode sol() [24] and using the pro-
posed approximation structure of equation (72).

• using MATLAB function fode sol() [24]:

for e(t) = u(t), the step response of the linear fractional order differential equation
of equation (70) is obtained as:

a=[1 10 1 10]; na=[2.45 1.87 0.58 0]; b=[1 0]; nb=[0];
t=0:0.002:60; u=ones (size(t))

y = fode sol(a,na,b,nb,u,t)

4. Conclusion

In this paper, an original structure of the fractional order integrator has been pre-
sented to facilitate the analog and the digital simulations of the fractional order inte-
grators and systems as well as the numerical resolution of the linear fractional order
differential equations. The proposed simulation structure of the fractional integrator s−m

is composed of two parts. The right part is a fixed structure made of parallel first order
regular systems which are completely independent of the fractional order m designed
only once for m = 0.5. So, this part can be used for the simulation of the fractional inte-
grator of any fractional order m > 0. The left part is a structure composed of an ensemble
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of functions depending on the fractional order m only. Then, the proposed fractional or-
der integrator structure has been extended to the analog and digital simulations as well as
the resolution of the linear fractional order systems described by the linear fractional or-

der differential equation
L
∑

i=0
aiDαiy(t) =

M
∑
j=0

b jDβ j e(t). The analog or digital simulation

structures obtained are also composed of two connected parts. The right part is exactly
the right part of the fractional order integrator. In this case it is also completely indepen-
dent of the fractional orders αi (0 ¬ i ¬ L) and βi (0 ¬ j ¬M) of the above differential
equation; so it can be used for the simulation of any linear SISO fractional order system
described by the linear fractional order differential equation. The left part is an ensemble
of functions depending on the derivative orders αi (0 ¬ i ¬ L) and βi (0 ¬ j ¬M) and
the model coefficients ai (for 1 ¬ i ¬ L) and bi (0 ¬ j ¬ M) of the above differential
equation.

Some illustrative examples have been presented to show the efficiency and the effec-
tiveness of the proposed simulations and resolution techniques. The step responses of the
fractional integrator and the fractional order system using the proposed method are com-
pared to those obtained using the Grunwald-Letnikov’s fractional derivative definition.
The comparison results were very satisfactory.

It is also worth mentioning that the proposed structures have practical significance to
circuit designers who would be interested in the hardware implementation of the linear
fractional order operators and systems in the fields of control system, signal process-
ing and identification. In the future, the use of the proposed fractional order integrator
structure for the simulation of variable order integrators and systems will be investigated.
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