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Pointwise observation of the state given by complex
time lag parabolic system

ADAM KOWALEWSKI

Various optimization problems for linear parabolic systems with multiple constant time
lags are considered. In this paper, we consider an optimal distributed control problem for a lin-
ear complex parabolic system in which different multiple constant time lags appear both in the
state equation and in the Neumann boundary condition. Sufficient conditions for the existence
of a unique solution of the parabolic time lag equation with the Neumann boundary condition
are proved. The time horizon 7 is fixed. Making use of the Lions scheme [13], necessary and
sufficient conditions of optimality for the Neumann problem with the quadratic performance
functional with pointwise observation of the state and constrained control are derived. The ex-
ample of application is also provided.
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1. Introduction

Various optimization problems associated with the optimal control of distributed
parabolic systems with lags appearing in the boundary conditions have been studied
recently in Refs. [1] - [11] and [12], [16], [17].

In this paper, we consider an optimal distributed control problem for a linear complex
parabolic system in which different multiple constant time lags appear both in the state
equation and the Neumann boundary condition.

Such complex systems constitute in a linear approximation, a universal mathematical
model for many diffusion processes.

Sufficient conditions for the existence of a unique solution of such time lag parabolic
equations with the Neumann boundary conditions involving multiple time lags are
proved.

In this paper, we restrict our considerations to the case of the distributed control for
the Neumann problem. Consequently, we formulate the following optimal control prob-
lem. We assume that the performance functional has the quadratic form with pointwise
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observation of the state. Moreover, the time horizon is fixed in our optimization problem.
Finally, we impose some constraints on the distributed control. Making use of the Lions
framework [13] necessary and sufficient conditions of optimality with the quadratic per-
formance functional with pointwise observation of the state and constrained control are
derived for the Neumann problem. The example of application is also provided.

2. Existence and uniqueness of solutions

Consider now the distributed-parameter system described by the following parabolic
lag equation

a m
ai)—i-A(t)y—l—iZly(x,t—hi)—v xeQ,re(0,7) (1)
y(x,t') =@p(x,t') xeQ,f €[-T,0) )
¥(x,0)=yo(x) xe€Q 3)
/
aaTi;zziy(x,t—ks)—i-u xel,te(0,T) (4)
ynr) =Wo(rt)  xel,t €[-1,0) 5)

where: Q C R" is a bounded, open set with boundary I" , which is a C* - manifold of
)
dimension n — 1. Locally, Q is totally on one side of I". % is a normal derivative at I,
A
directed towards the exterior of Q,

y=y(x,t;v), v=v(x,t1), u=u(x,t),
Q=Qx(0,T), 0=Qx[0,7],
Q0 =Qx[-Y,0), r=Ix(0,7),
To=Tx[-T,0),

h;, ks are specified positive numbers representing time lags such that 0 < hy <hy <... <
hyfori=1,....mand 0 < k; < kp < ... < k; for s =1,...,[ respectively, Dy, ¥, are
initial functions defined on Qy and ¥ respectively. Moreover, Y = max{/,,k; }.

The operator A(¢) has the form

Alt)y = — Z ai (a,-j(x,t)ay S )> ©)

ij=10Xi 0x;

and the functions a;;(x,?) satisfy the condition

n n
Y aij(xt)®®;>0) @ a>0, (7
i,j=1 i=1
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V(x,t) € 0, V®; €R

where: a;j(x,t) are real C* functions defined on O (closure of Q). The equations (1) - (5)
constitute a Neumann problem.

First we shall prove sufficient conditions for the existence of a unique solution of the
mixed initial-boundary value problem (1) - (5) for the case where v € L*(Q).

For this purpose, for any pair of real numbers r,s > 0, we introduce the Sobolev
space H™*(Q) ([14], Vol. 2, p.6) defined by

H™(Q)=H'0,T;H" (Q))NH*(0,T; H*(Q))

which is a Hilbert space normed by 8)
1

T 2
(J150) By 0+ 1 By

where: the spaces H'(Q) and H*(0,T;H°(Q)) are defined in Chapter 1 ( [14], Vol.1)
respectively.

Consequently, some properties and central theorems for the functions y € H**(Q)
are given in [7], [10] and [14].

The existence of a unique solution for the mixed initial-boundary value problem
(1) - (5) on the cylinder Q can be proved using a constructive method, i.e., first, solving
(1) - (5) on the subcylinder Q; and in turn on Q;, etc. until the procedure covers the
whole cylinder Q. In this way the solution in the previous step determines the next one.

For simplicity, we introduce the following notations:

Ej £ ((j— DA, jA) where A = min{h1,ki}, Q;=QXE,,

Zj:FXEj for j=1,...K
Using the results of Section 14 ( [13], pp. 182-185) we can prove the following result.

Lemma 1l Let

veL*(Q) 9)
fi€LX(Q;) (10)
where
fi(x,t) =v(x,1) Zyjlxt—
Yi-1( (= 1) € LX(Q) (11)
q; € H'2V4(E)) (12)
where

)
Z,y/ 16,7 —ks) +u(x,1).
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Then, there exists a unique solution y; € H 2l ;) for the mixed initial-boundary
value problem (1), (4), (11).

Proof: We observe that for j =1,

~

1
Z Vi1 |20 (x,t —kg) = Z Wo(x,t —k;).

s=1 s=1
Then the assumptions (10), (11) and (12) are fulfilled if we assume that &y € H 2,1 (Qo),
yo € L2(Q), u € H'/>1/4(L) and Wy € H'/>!/4(Z). These assumptions are sufficient to
ensure the existence of a unique solution y; € H>!(Q1). Next for j = 2 we have to verify
that f> € L*(Q2), y1(-,A) € L*(Q) and ¢ € H'/>1/4(%,). Tt is easy to notice that the
condition (10) follows from the fact that y; € H>'(Q;) and v € L*(Q). Really, from the
Theorem 3.1 ( [14], Vol.1, p.19) we can prove that y; € H>! (Q1) implies that the map-
ping t — y;(+,¢) is continuous from [0,A] — H'(Q) C L*(Q), hence y;(-,A) € L*(Q).
Then using the Trace Theorem ( [14], Vol. 2, p.9) we can verify that y; € H>! (Q1) im-
plies that y; — y; . is a linear, continuous mapping of H>!(Q;) — H'/%1/4(L). Assum-

1
ing that v € H'/%1/4(Z), the condition ¢, € H'/?1/4(%,) is fulfilled. Then, there exists
a unique solution y, € H*!(Q,). We shall now summarize the foregoing result for any

Qi,j=3....K.

Theorem 1 Let y, D, Wo,u and v be given with yo € L*(Q),®g € H>'(Qp),¥o €
H1/2=1/4(ZO), uc H1/2’1/4(Z) and v € L*(Q). Then, there exists a unique solution
y € H>'(Q) for the mixed initial-boundary value problem (1) — (5). Moreover, y(-, jA) €
L(Q)forj=1,...,K.

3. Problem formulation. Optimization theorems

We shall now formulate the optimal distributed control problem for the Neumann
problem. Let us denote by U = L?(Q) the space of controls. The time horizon T is fixed
in our problem.

Letx!,...,x be points of Q. We assume that the observation is {y(x/,#;v)}, 1 < j <
u - provided we can attach a meaning to this.

If we now assume that the coefficients of the operator A in the equation (1) are
sufficiently regular, then from the Theorem 1 it follows that

y(v) € H'(Q). (13)
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Hence, y(v) € L?(0,T;H*(Q)) and y(x/,¢) has meaning (and "t — y(x/,¢)” € L*(0,T))
if

H*(Q) c C°(Q) (14)
which is true if (and only if)
1 2
———<0 ie. n<3.
2 n

Hence we make the standing hypothesis that the dimension is n < 3.
Then the observation

Cy(v) = {y(/.1;v)} € (L*(0,T) (15)

The cost function is now given

1) =M (| CY(v) = za 720,10 +X2/(Nv)v dxdt (16)
0

Ide - {Zdla' .. 7Z,u}7

T
H .
I(v) =M\ Z/ | y(x/,25v) — z4;(t) yzdt+x2/(Nv)v dxdt (17)
j:10 0

where: A; > 0, A + Ay > 0; z4/(¢) are given elements in L?(0,T) and N is a positive,
linear operator on L?(Q) into L*(Q).
Finally, we assume the following constraint on controls v € U, , where

U,q i1s a closed, convex subset of U (18)

Let y(x,t;v) denote the solution of the mixed initial-boundary value problem (1)- (5) at
(x,1) corresponding to a given control v € U,y. We note from the Theorem 1 that for
any v € U,y the performance functional (17) is well-defined since y(v) € H>!(Q). The
solving of the formulated optimal control problem is equivalent to seeking a vy € U,y
such that I(vg) < I(v) Vv € Uyy. Then from the Theorem 1.3 ( [13], p. 10) it follows
that for A, > 0 a unique optimal control v exists; moreover, vy is characterized by the
following condition

I'(vo) - (v—vp) >0 Vv e Uy (19)

Using the form of the cost function given by (17) we can express (19) in the following
form

o T
MZ/ X! t5v0) — zaj (1) (& 15v) — y (3!, £3vp) ) dt +
0

Jj=1
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+A /Nvo(v —vp)dxdt > 0 Vv € Uy (20)
0

To simplify (20), we introduce the adjoint equation and for every v € U,, , we define the
adjoint variable p = p(v) = p(x,t;v) as the solution of the equation

9p(V) | 4 S 3 j
- = +A (t)p(v)+zi p(x,t+hiv) = Z’ Y t5v) —z4j(t)) @ 8(x — x7)
- ) @1)
xeQ,te(0,T-0)
d a : :
= ) A 0p) = M Y . 19) —25(0) 98— )
! 22)
xeQre(T-1,T)
p(x,T;v)=0 xeQ (23)
1
I0) 4y = Y plxi+ksv)  xe€T,r€(0,T—Y) (24)
anA* s=1
) ) ]
x)=0 xeTl,te(T—Y,T) (25)
M-
where
gt ® S(x x/) is the distribution,
‘P—>/ W(x/,1)dt, ¥ € D(Q) (26)
R < NN SRR
== 8 5 (o0

The existence of a unique solution for the problem (21) - (25) on the cylinder Q can be
proved using a constructive method. It is easy to notice that for given z; and v, problem
(21) - (25) can be solved backwards in time starting from t = T , i.e., first, solving
(21) - (25) on the subcylinder Qk and in turn on Qg , etc. until the procedure covers
the whole cylinder Q . For this purpose, we may apply Theorem 1 (with an obvious
change of variables) to problem (21) - (25) (with reversed sense of time, i.e.,t’ =T —1).

Lemma 2 Let the hypothesis of Theorem 1 be satisfied. Then, for given z4j(t) € L*(0,T)
and any v € L*(Q), there exists a unique solution p(v) € H>'(Q) for the problem
(21) - (25) defined by transposition

T

/ p(v) <a; +A‘P> dxdt:i / (v(x/ t;v0) —zaj(t)) (27 1) dt (27)
0

Jj=1 0
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Y € H21(Q), ‘P’Z:O, xeT, 1€ (0,T) and ¥(x,T)=0.

Remark 1 The right hand side of (27) is a continuous linear form on H>'(Q) if n < 3.

Consequently, after transformations the first component on the left-hand side of (20)
can be rewriten as

T
u

Z/ (x/,t;v0) zd](t))(y(x V) —y(x/ 13v0))dt = /p vo)(v—vo) dxdt  (28)
=1 5

Substituting (28) into (20) we obtain

/(p(vo) + ANvo)(v—vp) dxdt >0, Vv € Uy (29)
o

Theorem 2 For the problem (1) - (5) with the performance functional (17) with z4j(t) €
L?(0,T) and Ay > 0 and with constraints on controls (18), there exists a unique optimal
control vy which satisfies the maximum condition (29).

Consider now the particular case where U,y = L?(Q). Thus the maximum condition
(29) is satisfied when
vo=—A; "N~ p(vo) (30)

We must notice that the conditions of optimality derived above (Theorem 2) allow us to
obtain an analytical formula for the optimal control in particular cases only (e.g. there
are no constraints on controls). This results from the following: the determining of the
function p(vp) in the maximum condition from the adjoint equation is possible if and
only if we know yo which corresponds to the control vy. These mutual connections make
the practical use of the derived optimization formulas difficult. Therefore we resign from
the exact determining of the optimal control and we use approximation methods.

In the case of performance functional (17) with A; > 0 and A, = 0, the optimal con-
trol problem reduces to the minimizing of the functional on a closed and convex subset
in a Hilbert space. Then, the optimization problem is equivalent to a quadratic program-
ming one (Ref. [10]) which can be solved by the use of the well-known algorithms, e.g.
Gilbert’s (Ref. [10]).

The practical application of Gilbert’s algorithm to an optimal control problem for
a parabolic system with boundary condition involving a time lag is presented in [12].
Using Gilbert’s algorithm, a one-dimensional numerical example of the plasma control
process is solved.
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4. Example

Making use of the results of [13], we shall express the optimal control (30) in the
feedback form.
For this purpose we consider the following set of equations with € € (0,7):

8 y+Zy DAMINTIp=0  for t—h>¢
Jy (31)
g—i-A 1) y—i—ZCI)g x,t—hi)—k?u;lN*lp:O for t—h; <e
i=1
(x,1) € Qx (g,T)
I ¢
—g +A (l‘)p—i-zp(x,t-i-/’li) — 7\,1y:—7\.12d
i=1
for (x,1) € Qx (e, —Y) (32)
0
—a—” FAT(Op—My=—Mzs  for (x,1) €Qx (T —T,T)
with boundary conditions
!
3 y(x,t — k) +u(x,t) fort—k;>¢
ay (r,0) =4 <1 (33)
A Z‘I’gxt— )+ u(x,t) forr—ky <¢€
(x,t) €T x (g,T)
!
0 t+ks) f ) el x (e, T-Y
22 (1= Rtk for () €T =) (34)
" 0 for (x,1) eI'x (T —YX,T)
and with initial and final conditions
y(x,€) = ye(x) xeQ 39)
p(x,T)=0 x€Q

where: ye € H'(Q), & and W are given function defined on Q x [¢ — Y,¢)
and T x [¢ — Y,e) respectively, that is @, € H>'(Qx[e—T,e)) and
W, c H/2/4 (T x [e—-1T,¢)).

We shall consider problem (31) - (35) subject to (1) for t € (¢,T) and U,y = L*(Q).
The performance functional is given by

T T
:kl//\y(x,t;v)—zd B dxdt—i—?»z//(Nv)v dxdt (36)
€ Q £ Q
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Then the problem (31)-(36) with A, > 0 has a unique optimal control in the form (30).
Also it is easy to verify that (31) - (35) has a unique solution

{v.p} e H* (Qx (e.T)).

Proposition 1 Let {y, p} be solution of (31) - (35) with € = 0. We define Gg, the system
"state" at time €, by the triplet (y(-,€),®P¢, V¢ ), where

D (-1’ fort' € Ee=[-Y,0)N[e—_
@8(‘,t/) — 0( 9 ) or € € [ b ),\ [8 ’8) (37)
y('7t/)|9 fort' € [S_ng)_
Wo(-,t' fort’ € Ee=[-Y,0)N[e—Y,e
lpg(‘,t/) — 0(7 ) or G € [ ? ) [ Y ) (38)
y(')t/)’F fOI'l,G[S—Y’S)—
Then, for all triplets € < t in (0,T),
p(‘,t):P(t,8)08+r€(~,t) (39)
where P(t,€) and r¢(+,t) are determined by the following procedure
First we solve the set of equations
( 870L+A() ioc(xt—h)—HFlN*lB—O
ot PR N
for t—h; > ¢
(40)
da S —1p—1
§+A(t)a+ Y ®e(x,t—h)+A'NT'p=0
i=1
for t—h; <e
(x,1) € Qx (g,T)
op i
—7+A )B-FZB(X,I-F/’H) —Ao=0
for (x,1) € Qx (e, —Y) (41
8
B—i—A*()B—MOL:O for (x,1) e Qx (T —-Y,T)
with boundary conditions
l
Zoc(x,t—ks) fort—ky>¢
9= (42)
E)nA . !

Y We(xt—k)  fort—ks<e

s=1
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(x,1) eT x (g,7T)

9B

l
Y B(x.t+k) for (x,1) eTx (e,T )
oma- =!

(x,1) =
0 for (x,1) e 'x (T —Y,T)

and with initial and final conditions

{ a(x,e) =y(x,e) x€Q
then

Next we solve the set of equations

oK - o

§+A(I)K+;K(x,t—hi) +A, 'NT18=0
for t—h; > ¢

JK —1p-1

§+A(t)1<+7u2 N 30=0 forr—h<e

(x,1) € Qx (g,T)

29
—8—+A* 5+Z{8xt+h) —MK=—Mz4
for (x,1) € Qx (e, —Y)
_?+A*( 0—Mx=—-Nzg for (x,1) e Qx(T—-Y,T)

with boundary conditions

K Zth s)Fv(x,r) forr—ks>e
(x,t) forr—kg <€,

(x,t) eT x (g,7T)

l
3?18 (o) = S;S(x,wrks) for (x,t) €T x (e,T —Y)
"

o

for (x,t) eI'x (T —Y,T)

and with initial and final conditions

A

(x,e)=0 xe€Q
3(x,T)=0 xeQ

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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then
rs(x7t):6(x’t) (51)

Setting € =t in (39) and substituting the result into (30) we obtain

vo(-,1) = —A "NV (P(t,1), 0, +1,(-,1)), t€(0,7) (52)

Let us assume that N is the identity operator on L?>(Q). Then using of Schwartz’s
Kernel Theorem [15], it is easy to prove that the optimal feedback control (52) can be
expressed in the following form

vo(x,t) = =, ! /Ko(x,x’,t)y(x’,t)dx’—i-
Q

t
—|—//Kl(x,x’,t,t’)CID,(x’,t’)dx'dt’—i—
-TrQ

t

t
+ / / Ko, 1,0 YW, (X, £)dTdr 4y (x, 1) (53)
=Y T
where {Ko, K1, K>} is the kernel of P(z,1).

5. Conclusions

The results presented in the paper can be treated as a generalization of the results
concerning pointwise observation of state given by parabolic systems with the Neumann
boundary conditions involving multiple time delays obtained in [11] and by the parabolic
equations with the homogeneous Dirichlet boundary conditions obtained in [13] onto
the case of different multiple constant time lags appearing both in the parabolic state
equations and in the Neumann boundary conditions.

Sufficient conditions for the existence of a unique solution of such time lag parabolic
equations with the Neumann boundary conditions involving multiple constant time lags
are proved (Lemma 1 and Theorem 1). The optimal control is characterized by using
the adjoint equation (Lemma 2). The necessary and sufficient conditions of optimality
are derived for a linear quadratic problem (1)-(5), (17), (18) (Theorem 2). The optimal
control is obtained in the feedback form (Example).

We can also obtain estimates and a sufficient condition for the boundedness of solu-
tions for such parabolic time lag systems with specified forms of feedback control.

Finally, we can consider optimal control problems of time lag hyperbolic systems
with pointwise observation of the state.

The ideas mentioned above will be developed in forthcoming papers.
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