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Rational taxation in an open access fishery model

DMITRY B. ROKHLIN and ANATOLY USOV

We consider a model of fishery management, where n agents exploit a single population
with strictly concave continuously differentiable growth function of Verhulst type. If the agent
actions are coordinated and directed towards the maximization of the discounted cooperative
revenue, then the biomass stabilizes at the level, defined by the well known “golden rule”. We
show that for independent myopic harvesting agents such optimal (or ε-optimal) cooperative
behavior can be stimulated by the proportional tax, depending on the resource stock, and equal
to the marginal value function of the cooperative problem. To implement this taxation scheme
we prove that the mentioned value function is strictly concave and continuously differentiable,
although the instantaneous individual revenues may be neither concave nor differentiable.
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1. Introduction

An unregulated open access to marine resources, where many individual users are
involved in the fishery, may easily lead to the over-exploitation or even extinction of
fish populations. Moreover, it results in zero rent. These negative consequences of the
unregulated open access (the ”tragedy of commons”: [13]) were widely discussed in the
literature: see [11, 6, 8, 2]. Maybe the most evident reason for the occurrence of these
phenomena is the myopic behavior of competing harvesting agents, who are interested
in the maximization of instantaneous profit flows, and not in the conservation of the
population in the long run. In the present paper we consider the problem of rational
regulation of an open access fishery, using taxes as the only economical instrument.
Other known instruments include fishing quotas of different nature, total allowable catch,
limited entry, sole ownership, community rights, various economic restrictions, etc: see,
e.g, [8, 2].

We should also mention that there is a natural and popular approach to modeling
resource exploitation via the dynamic games. This approach is not touched in the present
paper, we only refer to [19] for a survey.
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Assume for a moment that n agents coordinate their efforts to maximize the aggre-
gated long-run discounted profit. The related aggregated agent, which can be consid-
ered as a sole owner of marine fishery resources, conserves the resource under optimal
strategy, unless the discounting rate is very large. How such an acceptable cooperative
behavior can be realized in practice?

We consider the following scheme. Suppose that some regulator (e.g., the coastal
states), being aware of the revenue function and maximal productivity of each agent, de-
clares the amount of proportional tax on catch. Roughly speaking, it turns out that if this
tax is equal to the marginal indirect utility (marginal value function) of the cooperative
optimization problem, then the myopic profit maximizing agents will follow an optimal
cooperative strategy, maximizing the aggregated long-run discounted profit. The idea of
using such taxes in harvesting management was often expressed in the bioeconomic lit-
erature: see [7], [20], [12, Chapter 10], [15, Chapter 7]. Our goal is to study this idea
more closely from the mathematical point of view.

The first theoretical question we encounter, trying to implement the mentioned tax-
ation scheme, concerns the differentiability of the value function v of the cooperative
problem. Assuming that the population growth function is strictly concave and contin-
uously differentiable, in Sections 2 and 3 we prove v inherits these properties, although
the instantaneous revenue functions may be non-concave.

The differentiability of v is proved by the tools from optimal control and convex
analysis. Our approach relies on the characterization of v as the unique solution of the
related Hamilton-Jacobi-Bellman equation. We neither use the general results like [22],
nor the related technique. At the same time, our results are not covered by [22]. Simulta-
neously we construct optimal strategies and prove that optimal trajectories are attracted
to the biomass level x̂, defined by the well known “golden rule”. This level depends on
the discounting rate, which is at regulator’s disposal.

If the agent revenue function are non-concave, then an optimal solution of the infi-
nite horizon cooperative problem may exist only in the class of relaxed (or randomized)
harvesting strategies. Such strategies can hardly be realized in practice, and certainly
cannot be stimulated by taxes. Nevertheless, in Section 4 we show that piecewise con-
stant strategies (known as the “pulse fishing”) of myopic agents, stimulated by the pro-
portional tax v′α on the fishing intensity α, are ε-optimal for the cooperative problem.
Moreover, the related trajectory is retained in any desired neighbourhood of x̂ for large
values of time. Finally, we introduce the notion of the critical tax v′(x̂) and prove that it
can only increase, when the agent community widens.
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2. Cooperative harvesting problem: the case of concave revenues

Let a population biomass X satisfy the differential equation

Xt = x+
t∫

0

b(Xs)ds−
n

∑
i=1

t∫
0

αi
s ds, (1)

where b is the growth rate of the population, and αi is the harvesting rate of i-th agent.
We assume that b is a differentiable strictly concave function defined on an open neigh-
bourhood of [0,1], and

b(x)> 0, x ∈ (0,1), b(0) = b(1) = 0.

The widely used Verhulst growth function b(x) = x(1− x) is a typical example. Agent
harvesting strategies αi are (Borel) measurable functions with values in the intervals
[0,αi], αi > 0. A harvesting strategy α = (α1, . . . ,αn) is called admissible if the solution
Xx,α of (1) stays in [0,1] forever: Xx,α

t ∈ [0,1], t ­ 0. Note that for given α the solution
Xx,α is unique, since b, being concave, is Lipschitz continuous. The set of admissible
strategies, corresponding to an initial condition x, is denoted by An(x).

Consider the cooperative objective functional

Jn(x,α) =
n

∑
i=1

∞∫
0

e−βt fi(αi
t)dt, β > 0

of the agent community. We always assume that the instantaneous revenue function fi :
[0,αi] 7→ R+ of i-th agent is at least continuous, and fi(0) = 0. Let

v(x) = sup
α∈An(x)

Jn(x,α), x ∈ [0,1] (2)

be the value function of the cooperative optimization problem.
When studying the properties of the value function it is convenient to reduce the

dimension of the control vector to 1. Recall that the function

(g1 ⊕·· ·⊕gn)(x) = inf{g1(x1)+ · · ·+gn(xn) : x1 + · · ·+ xn = x}

is called the infimal convolution of g1, . . . ,gn. Let us extend the functions fi to R by the
values fi(u) =−∞, u ̸∈ [0,αi] and put

F(q) = sup{ f1(α1)+ · · ·+ fn(αn) : α1 + · · ·+αn = q}
=−((− f1)⊕·· ·⊕ (− fn))(q). (3)

The function F is finite on [0,q], q=∑n
i=1 αi, and takes the value −∞ otherwise. From the

properties of an infimal convolution it follows that if fi are continuous (resp., concave),
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then F is also continuous (resp., concave): see, e.g., [28] (Corollary 2.1 and Theorem
3.1).

Let q : R+ 7→ [0,q] be a measurable function. Consider the equation

Xx,q
t = x+

t∫
0

b(Xx,q
s )ds−

t∫
0

qs ds (4)

instead of (1). If Xx,q
t ­ 0, then the strategy q is called admissible. The set of such strate-

gies is denoted by A (x). Using an appropriate measurable selection theorem (see [27,
Theorem 5.3.1]), we conclude that for any q ∈ A (x) there exists α ∈ An(x) such that
F(qt) = ∑n

i=1 fi(αi
t). It follows that the value function (2) admits the representation

v(x) = sup
q∈A (x)

J(x,q), J(x,q) =
∞∫

0

e−βtF(qt)dt.

Clearly, for any measurable control q : R+ 7→ [0,q] the trajectory Xx,q cannot leave
the interval [0,1] through the right boundary. Denote by

τx,q = inf{t ­ 0 : Xx,q
t = 0}

the time of population extinction. As usual, we put τx,α = +∞ if Xx,α > 0. Note that
qt = 0, t ­ τx,q for any admissible control q.

First, we prove directly that v inherits the concavity property of fi (see Lemma 2
below).

Lemma 1 Let Y be a continuous solution of the inequality

Yt ¬ x+
t∫

0

b(Ys)ds−
t∫

0

qs ds.

Then Yt ¬ Xx,q
t , t ¬ τ := inf{s­ 0 : Ys = 0}.

Proof We follow [5] (Chapter 1, Theorem 7). Assume that Yt1 > Xx,q
t1 , t1 ¬ τ. Let t0 =

max{t ∈ [0, t1] : Yt ¬ Xx,q
t }. We have

Yt0 = Xx,q
t0 , Yt > Xx,q

t , t ∈ (t0, t1]. (5)

The function Z = Y −Xx,q satisfies the inequality

0¬ Zt ¬
t∫

t0

(b(Ys)−b(Xx,q
s ))ds¬ K

t∫
t0

Zs ds, t ∈ [t0, t1],

where K is the Lipschitz constant of b. By the Gronwall inequality (see, e.g., [21, Theo-
rem 1.2.1]) we get a contradiction with (5): Zt = 0, t ∈ [t0, t1].
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Lemma 2 The function v is non-decreasing. If fi are concave, then v is concave.

Proof Let q ∈ A (x) and y > x. Then

Xx,q
t ¬ y+

t∫
0

b(Xx,q
s )ds−

t∫
t0

qs ds.

By Lemma 1 we have Xx,q
t ¬ Xy,q

t for t ¬ τx,q, and hence for all t ­ 0. It follows that
A (x)⊂ A (y) and v(x)¬ v(y).

Let 0 ¬ x1 < x2 ¬ 1, x = γ1x1 + γ2x2, γ1,γ2 > 0, γ1 + γ2 = 1. For qi ∈ A (xi) by the
concavity of b we have

γ1Xx1,q1

t + γ2Xx2,q2

t ¬ x+
t∫

0

b(γ1Xx1,q1

t + γ2Xx2,q2

t )dt −
t∫

0

(γ1q1
t + γ2q2

t )dt.

Put q = γ1q1 + γ2q2. Applying Lemma 1 to Y = γ1Xx1,q1
+ γ2Xx2,q2

and Xx,q we get the
inequality Y ¬ Xx,q. It follows that q ∈ A (x). By the concavity of F we obtain:

J(x,q)­
∞∫

0

e−βt (γ1F(q1
t )+ γ2F(q2

t )
)

dt = γ1J(x1,q1)+ γ2J(x2,q2).

It follows that v is concave: v(x)­ γ1v(x1)+ γ2v(x2).

Let us introduce the Hamiltonian

H(x,z) = b(x)z+ F̂(z),

F̂(z) = sup
q∈[0,q]

(F(q)−qz) = max
q∈[0,α1+···+αn]

max

{
n

∑
i=1

fi(αi)− zq :
n

∑
j=1

α j = q

}

=
n

∑
i=1

max
αi∈[0,αi]

( fi(αi)− zαi). (6)

Recall that a continuous function w : [0,1] 7→R is called a viscosity subsolution (resp., a
viscosity supersolution) of the Hamilton-Jacobi-Bellman (HJB) equation

βw(x)−H(x,w′(x)) = 0 (7)

on a set K ⊂ [0,1], if for any x ∈ K and any test function φ ∈C1(R) such that x is a local
maximum (resp., minimum) point of w−φ, relative to K, the inequality

βw(x)−H(x,φ′(x))¬ 0 (resp., ­ 0)



10 D.B. ROKHLIN, A. USOV

holds true. A function w ∈ C([0,1]) is called a constrained viscosity solution (see [26])
of (7) if u is a viscosity subsolution on [0,1] and a viscosity supersolution on (0,1).

By Lemma 2 the value function is continuous. Hence, by Theorem 2.1 of [26], we
conclude that v is the unique constrained viscosity solution of (7). However, in our case
it is possible to give a more simple characterization of v.

Lemma 3 Assume that fi are concave. Then v is the unique continuous function on [0,1],
with v(0) = 0, satisfying the HJB equation (7) on (0,1) in the viscosity sense.

Proof Since the equality v(0) = 0 follows from the definition of v, we need only to
prove that a continuous function w with w(0) = 0, satisfying the equation (7) on (0,1) in
the viscosity sense, is uniquely defined. To do this we simply show that w is a viscosity
subsolution of (7) on [0,1] and refer to the cited result of [26].

The inequality
0 = βw(0)¬ H(0,φ′(0)) = F̂(φ′(0))

is evident (for any φ ∈C1(R)). Furthermore, in the terminology of [9, Definitions 2 and
4], the point x = 1 is irrelevant and regular for the left-hand side of the HJB equation.
These properties follow from the fact that z 7→ F̂(z) is non-increasing and b(1) = 0. By
the result of [9] (Theorem 2), w automatically satisfies the equation (7) in the viscosity
sense on (0,1].

The subsequent study of the value function strongly relies on its characterization
given in Lemma 3. Let

∂w(x) = {γ ∈ R : w(y)−w(x)­ γ(y− x)},
∂+w(x) = {γ ∈ R : w(y)−w(x)¬ γ(y− x)}

be the sub- and superdifferential of a function w. Since H(x, p) is convex in p and satis-
fies the inequality

|H(x, p)−H(y, p)|= |(b(x)−b(y))p|¬ K|p||x− y|,

by [4, Chapter II, Theorem 5.6] we infer that

βv(x)−H(x,γ) = 0, γ ∈ ∂+v(x), x ∈ (0,1). (8)

As a concave function, v is differentiable on a set G ⊂ (0,1) with a countable com-
plement (0,1)\G. Moreover, v′ is continuous and non-increasing on G (see [23, Theorem
25.2]). Thus,

βv(x)−H(x,v′(x)) = 0, x ∈ G. (9)

Denote by δi
∗ the least maximum point of fi:

δi
∗ = min

(
arg max

u∈[0,αi]
fi(u)

)
.

Let us call a strategy α static if it does not depend on t.
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Assumption 1 The static strategy δ∗ = (δ1
∗, . . . ,δn

∗) is not admissible for any x ∈ [0,1].
Equivalently, one can assume that τx,δ∗ < ∞, or

max
x∈[0,1]

b(x)<
n

∑
i=1

δi
∗.

In what follows we suppose that the Assumption 1 is satisfied without further stipulation.
Denote by

v′+(x) = lim
y↓x

v(y)− v(x)
y− x

, v′−(x) = lim
y↑x

v(y)− v(x)
y− x

the right and left derivatives of v. It is well known that ∂+v(x) = [v′+(x),v
′
−(x)], x ∈ (0,1)

and the set-valued mapping x 7→ ∂+v(x) is non-increasing:

∂+v(x)­ ∂+v(y), x < y. (10)

For A,B ⊂ R we write A¬ B if ξ¬ η for all ξ ∈ A, η ∈ B.

Lemma 4 Assume that fi are concave. Then the function v′ is strictly decreasing on G,
and v is strictly concave and strictly increasing.

Proof To prove that v is strictly concave it is enough to show that x 7→ ∂+v(x) is strictly
decreasing:

∂+v(x)> ∂+v(y), x < y

(see [14, Chapter D, Proposition 6.1.3]). Assume that ∂+v(x)∩∂+v(y) ̸= Ø, x < y. Then
the interval (x,y) contains some points x1 < y1, x1,y1 ∈ G such that v′(x1) = v′(y1). From
(10) it follows that v′ is differentiable on (x1,y1) and equals to a constant. Differentiating
the HJB equation (9), we get

βv′(x) = b′(x)v′(x), x ∈ (x1,y1).

Since b is strictly concave, the equality b′(x)= β, x∈ (x1,y1) is impossible. Thus, v′(x)=
0, x ∈ (x1,y1) and

βv(x) = F̂(0) =
n

∑
i=1

f (δi
∗), x ∈ (x1,y1).

An optimal solution α∗ ∈ An(x) of the problem (2) exists (see, e.g., [10, Theorem
1]). If fi(αi,∗

t ) < fi(δi
∗) = maxu∈[0,qi] fi(u) on a set of positive measure for at least one

index i, then

v(x) = Jn(x,α∗)<
n

∑
i=1

∞∫
0

e−βt fi(δi
∗)dt =

1
β

n

∑
i=1

fi(δi
∗).
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If fi(αi,∗
t ) = fi(δi

∗) a.e., i = 1, . . . ,n, then αi,∗
t ­ δi

∗ a.e. by the definition of δ∗. But this is
impossible since the strategy δ∗ is not admissible for x and a fortiori so is α∗ (see Lemma
1).

The obtained contradiction implies that ∂+v is strictly decreasing. Hence, v is strictly
concave. In view of Lemma 2 this property implies that v is strictly increasing.

Denote by g∗(x) = supy∈R(xy−g(y)) the Young-Fenchel transform of a function g :
R 7→ (−∞,∞]. Recall (see [24, Proposition 11.3]) that for a continuous convex function
g : [a,b] 7→ R we have

∂g∗(x) = arg max
y∈[a,b]

(xy−g(y)). (11)

The next result establishes a connection between the differentiability of the value
function and the optimality of static strategies.

Lemma 5 Let fi be concave. If the value function v is not differentiable at x0 ∈ (0,1),
then the static strategy qt = b(x0) ∈ A (x0) is optimal, and x0 is uniquely defined by the
“golden rule": b′(x0) = β.

Proof Assume that v′−(x0)> v′+(x0), x0 ∈ (0,1). By (8) we have

βv(x0) = b(x0)γ+ F̂(γ), γ ∈ (v′+(x0),v′−(x0)). (12)

Since
F̂(z) = sup

q
{−zq− (−F(q)}= (−F)∗(−z), (13)

by (11), (12) we obtain

{F̂ ′(γ)}= {−b(x0)}=−arg max
q∈[0,q]

(F(q)− γq), γ ∈ (v′+(x0),v′−(x0)). (14)

Hence, F̂(γ) = F(b(x0))−b(x0)γ, γ ∈ (v′+(x0),v′−(x0)) and b(x0) ∈ A (x0) is optimal:

βv(x0) = F(b(x0)) = βJ(x0,b(x0)).

Now assume that the static strategy b(x0) is optimal. Let us apply the relations Pon-
tryagin’s maximum principle to the stationary solution (Xt ,qt) = (x0,b(x0)) of (4). Con-
sider the adjoint equation

ψ̇(t) =−b′(x0)ψ(t) (15)

and the basic relation of the Pontryagin maximum principle:

ψ0e−βtF(b(x0)) = max
q∈[0,q]

(
ψ0e−βtF(q)+(b(x0)−q)ψ(t)

)
. (16)

We have ψ(t) = Ae−b′(x0)t for some A ∈ R. If (x0,b(x0)) is an optimal solution, then
there exist ψ0 ∈ R+, A ∈ R such that (ψ0,A) ̸= 0 and the relations (15), (16) hold true:
see [3, Theorem 1].
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Let us rewrite (15), (16) as follows

ψ0F(b(x0)) = max
q∈[0,q]

(
ψ0F(q)+A(b(x0)−q)e(β−b′(x0))t

)
.

Assume that b′(x0) ̸= β. If ψ0 = 0, then we get a contradiction since b(x0)−q changes
sign on [0,q]. Thus, we may assume that ψ0 = 1:

F(b(x0)) = Ab(x0)e(β−b′(x0))t + max
q∈[0,q]

(
F(q)−Ae(β−b′(x0))tq

)
= H(x0,zt), zt = Ae(β−b′(x0))t . (17)

But the equality (17) is impossible, since either |zt | → ∞ and H(x0,zt)→+∞, t → ∞, or
|zt | → 0 and

H(x0,zt)→ H(x0,0) = F̂(0) =
n

∑
i=1

fi(δi
∗), t → ∞.

In the latter case by (3) and (17) we have

F(b(x0)) =
n

∑
i=1

fi(νi) =
n

∑
i=1

fi(δi
∗)

for some νi ∈ [0,αi] with ν1 + · · ·+νn = b(x0). From the definition of δi
∗ it then follows

that νi ­ δi
∗, i = 1, . . . ,n. This is a contradiction, since ∑n

i=1 δi
∗ ̸∈ A (x0), and ∑n

i=1 νi =
b(x0) should retain this property.

From the properties of b it follows that either b′(x)< β, x ∈ (0,1), or the equation

b′(x) = β, x ∈ (0,1) (18)

has a unique solution x̂ ∈ (0,1).

Theorem 1 Suppose that fi are concave. Then the value function v is strictly increasing,
strictly concave and continuously differentiable on (0,1), except maybe the point x̂. If F
is differentiable at b(x̂), then v is continuously differentiable.

Proof From Lemma 5 it follows that x̂ is the only possible discontinuity point of v. If v
is not differentiable at x̂, then the interval (v′+(x̂),v

′
−(x̂)) is non-empty. But if F is differ-

entiable at b(x̂), then (14) gives a contradiction: F ′(b(x̂)) = γ for all γ∈ (v′+(x0),v′−(x0)).

Note that the assumption, concerning the existence of F ′(b(x̂)) is not restrictive.
Firstly, F ′ can have only countably many discontinuity points. Thus, x̂ is not one of
these points for all β ∈ D, where (0,∞)\D is countable. Secondly, the formula

∂+F(q) =
n∩

i=1

∂+ fi(αi),
n

∑
i=1

αi = q,
n

∑
i=1

fi(αi) = F(q) (19)
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(see [14, Chapter D, Corollary 4.5.5]) shows that F ′(b(x̂)) exists if any of the functions
fi is differentiable at αi, satisfying (19).

The next result shows that the static strategy q = b(x̂) is indeed optimal.

Theorem 2 Assume that fi are concave. A static strategy b(x0) ∈ A (x0), x0 ∈ (0,1) is
optimal if and only if x0 coincides with the solution x̂ of (18).

Proof The necessity is proved in Lemma 5. It remains to prove that b(x̂) ∈ A (x̂) is
optimal. If v is not differentiable at x̂, the result follows from Lemma 4. Assume that v
is continuously differentiable.

The convex function F̂ is continuously differentiable on a co-countable set U ⊂ R.
Furthermore, v is twice differentiable a.e., and v′′ ¬ 0 a.e., since v′ is decreasing. Hence,
F̂(v′(x)) is differentiable on the co-countable set (v′)−1(U) = {x ∈ (0,1) : v′(x) ∈ U}.
Differentiating the HJB equation (9), by the chain rule we obtain

(β−b′(x))v′(x) = v′′(x)
(

b(x)+ F̂ ′(v′(x))
)

a.e.

The inequalities

β−b′(x)< 0, x ∈ (0, x̂); β−b′(x)> 0, x ∈ (x̂,1)

imply that v′′(x)< 0 a.e. and

b(x)+ F̂ ′(v′(x))> 0, a.e. on (0, x̂), b(x)+ F̂ ′(v′(x))< 0, a.e. on (x̂,1). (20)

Since v′ is continuous and strictly decreasing we get the inequalities

b(x̂)+ F̂ ′
+(v

′(x̂))­ 0­ b(x̂)+ F̂ ′
−(v

′(x̂)).

Using (11), (13), we obtain

b(x̂) ∈ −∂F̂(v′(x̂)) = arg max
q∈[0,q]

{F(q)− v′(x̂)q}. (21)

It follows that the static strategy qt = b(x̂) ∈ A (x̂) is optimal:

βv(x̂) = b(x̂)v′(x̂)+ F̂(v′(x̂)) = F(b(x̂)), v(x̂) = J(x̂,b(x̂)).

We turn to the analysis of optimal strategies q ∈ A (x) for x ̸= x̂. Put

q̂(z) =−∂F̂(z). (22)

On the co-countable set U , where F̂ is differentiable, the mapping (22) is single-valued.
By (21) we have

q̂(v′(x)) = arg max
q∈[0,q]

(F(q)−qv′(x)), v′(x) ∈U.



RATIONAL TAXATION IN AN OPEN ACCESS FISHERY MODEL 15

Note, that Hz(x,z) = b(x)− q̂(z), z ∈U . From (20) we know that

Hz(x,v′(x))> 0, a.e. on (0, x̂), Hz(x,v′(x))< 0, a.e. on (x̂,1).

We want to use q̂(v′(x)) as a feedback control, formally considering the equation

Ẋ = b(X)− q̂(v′(X)) = Hz(X ,v′(X)), X0 = x.

To do it in a rigorous way let us first introduce

τx =

x̂∫
x

du
Hz(u,v′(u))

.

This definition allows τx to be infinite. Let x < x̂ (resp., x > x̂). Then the mapping

Ψ(y) =

y∫
x

du
Hz(u,v′(u))

, Ψ : (x, x̂) 7→ (0,τx) (resp.,Ψ : (x̂,x) 7→ (0,τx))

is a bijection.

Lemma 6 Let ψ : [a,b] 7→ R be continuous and strictly monotonic. Then ψ−1 is abso-
lutely continuous if and only if ψ′ ̸= 0 a.e. on (a,b).

By Lemma 6, which proof can be found in [29] (Theorem 2), the equation

t =
Yt∫

x

du
Hz(u,v′(u))

(23)

uniquely defines a locally absolutely continuous function Yt , t ∈ (0,τx). Moreover, Y is
strictly increasing if x < x̂ and strictly decreasing if x > x̂. From (23) we get

Ẏt = Hz(Yt ,v′(Yt)) = b(Yt)− q̂(v′(Yt)) a.e. on (0,τx), Y0 = x. (24)

Theorem 3 Let fi be concave and x ̸= x̂. Put T = {t ∈ (0,τx) : v′(Yt) ∈U}, where Y is
defined by (23). Define the strategy

q∗t = q̂(v′(Yt)), t ∈ T .

On the countable set (0,τx)\T the values q∗t can be defined in an arbitrary way. If τx is
finite put

q∗t = b(x̂), t ­ τx.

The strategy q∗ ∈ A (x) is optimal.
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Proof The equality (24) means that Yt = Xx,q∗ on (0,τx). Furthermore, Xx,q∗ = x̂ on
[τx,∞) by the definition of q∗. Clearly, q∗ is admissible. To prove that q∗ is optimal it is
enough to show that

Wt =

t∫
0

e−βsF(q∗s )ds+ e−βtv(Xx,q∗
t )

is constant, since then

W0 = v(x) = lim
t→∞

Wt =

∞∫
0

e−βsF(q∗s )ds.

We have

Ẇt = e−βtF(q∗t )+ e−βt
(
−βv(Xx,q∗

t )+ v′(Xx,q∗
t )(b(Xx,q∗

t )−q∗t )
)

= e−βt(−βv(Xx,q∗
t )+H(Xx,q∗

t ,v′(Xx,q∗
t ))) = 0 a.e. on (0,τx).

For t > τx we have

Wt =

τ∫
0

e−βsF(q∗s )ds+
F(b(x̂))

β
(e−βτ − e−βt)+ e−βtv(x̂)

=

τ∫
0

e−βsF(q∗s )ds+
F(b(x̂))

β
e−βτ,

since v(x̂) = F(b(x̂))/β by the optimality of the static strategy b(x̂).

From Theorem 3 we see that if the solution x̂ of (18) exists, then it attracts any
optimal trajectory. Moreover, Xx,q∗ is strictly increasing (resp., decreasing) on (0,τx), if
x < x̂ (resp. x > x̂).

We also mention that the multivalued feedback control q̂(v′(x)) satisfies the inequal-
ities

b(x)> q̂(v′(x)), x ∈ (0, x̂); b(x)< q̂(v′(x)), x ∈ (x̂,1). (25)

Indeed, q̂(z) =−∂F(z) is a non-increasing multivalued mapping. On a co-countable set
U the mappings q̂(v′(x)) are single-valued, non-decreasing and satisfy the inequalities
(20). Thus, in any neighbourhood of a point x ̸= x̂ there exist x1 < x, x2 > x such that

q̂(v′(x1))¬ q̂(v′(x))¬ q̂(v′(x2)),

where q̂(v′(xi)) are single-valued and satisfy (20). It easily follows that

b(x)­ q̂(v′(x)), x ∈ (0, x̂); b(x)¬ q̂(v′(x)), x ∈ (x̂,1). (26)

Assume that b(x0)∈ q̂(v′(x0)), x0 ̸= x̂. Then from the HJB equation (9) it follows that q=
b(x0) ∈ A (x0) is an optimal strategy: βv(x0) = F(b(x0)), in contradiction with Lemma
5. Thus, the inequalities (26) are strict.



RATIONAL TAXATION IN AN OPEN ACCESS FISHERY MODEL 17

3. Cooperative harvesting problem: the case of non-concave revenues

Now we drop the assumption that fi are concave. Let us extend the class of harvest-
ing strategies. A family (µt(dx))t­0 of probability measures on [0,q] is called a relaxed
control if the function

t 7→
q∫

0

φ(y)µt(dy)

is measurable for any continuous function φ. A relaxed control µ induces the dynamics

Xt = x+
t∫

0

b(Xs)ds−
t∫

0

q∫
0

yµs(dy)ds.

The related value function is defined as follows

vr(x) = sup
µ∈A r(x)

Jr(x,µ), Jr(x,µ) =
∞∫

0

e−βt

q∫
0

F(y)µt(dy)dt, x ∈ [0,1], (27)

where A r = {µ : Xx,µ ­ 0} is the class of admissible relaxed controls.
Denote by F̃ the concave hull of F : F̃ =−(−F)∗∗. Let

ṽ(x) = sup
q∈A (x)

J̃(x,q), J̃(x,q) =
∞∫

0

e−βt F̃(qt)dt (28)

be the related value function. Note that by (3) and the properties of infimal convolution
( [16], Chapter 3, § 3.4, Theorem 1) we have

−F̃ = (−F)∗∗ = (− f1)
∗∗⊕·· ·⊕ (− fn)

∗∗ = (− f̃1)⊕·· ·⊕ (− f̃n),

where f̃i and f ∗∗ are the convex hull and the double Young-Fenchel transformation of f
respectively. Hence,

F̃(q) = sup{ f̃1(α1)+ · · ·+ f̃n(αn) : α1 + · · ·+αn = q}. (29)

Since F̃ ­ F it follows that ṽ­ v. By the Jensen inequality we have

Jr(x,µ)¬
∞∫

0

e−βt

q∫
0

F̃(y)µt(dy)dt ¬
∞∫

0

e−βt F̃(q̃t)dt,

where qt =
∫ q

0 yµt(dy) is an admissible control for the problem (4). Thus,

v(x)¬ vr(x)¬ ṽ(x).
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Lemma 7 For any p ∈ [0,q] there exists p1, p2 ∈ [0,q], κ ∈ (0,1) such that

p = κp1 +(1−κ)p2, F̃(p) = κF(p1)+(1−κ)F(p2).

The proof of a more general result can be found in [14] (Chapter E, Proposition 1.3.9(ii)).
Denote by q̃t the strategy, constructed in Theorem 3, where F is replaced by F̃ . We

claim that
F̃(q̃t) = F(q̃t), a.e. on (0,τx). (30)

By construction, q̃t is the unique maximum point of q 7→ F̃(q)−qv′(Yt) on [0,q] for all
t ∈ T̃ , where (0,τx)\T̃ is countable. If F̃(q̃t) ̸= F(q̃t), t ∈ T̃ then, by Lemma 7, F̃ is
affine in an open neighbourhood of q̃t , and

arg max
q∈[0,q]

(F̃(q)− v′(Yt)q}

contains this neighbourhood: a contradiction.
Furthermore, by Lemma 7 there exist p1, p2 ∈ [0,1], κ ∈ (0,1) such that

b(x̂) = κp1 +(1−κ)p2, F̃(b(x̂)) = κF(p1)+(1−κ)F(p2). (31)

Consider the static relaxed control

µs =

{
q̃s, s < τx,

κδp1 +(1−κ)δp2 , s­ τx,
(32)

where δa is the Dirac measure, concentrated at a. By (30), (31) we have

Jr(x,µ) =
τx∫

0

e−βtF(q̃t)dt +
∞∫

τx

e−βt(κF(p1)+(1−κ)F(p2))dt = J̃(x, q̃).

Thus, vr(x) = ṽ(x) and the strategy (32) is optimal for the relaxed problem (27).
To prove that vr(x) = v(x) let us construct an approximately optimal strategy

qε ∈ A (x) : J(x,qε)→ vr(x), ε → 0. (33)

We may assume that p1 ̸= p2 and p1 < b(x̂)< p2. Otherwise, the strategy (32) reduces to
an ordinary control µs = q̃sI{s<τx}+b(x̂)I{s­τx} and we conclude that v(x) = vr(x) = ṽ(x).

Define g by the equation

x̂∫
x̂−ε

(b(x̂)−b(x))ρ(x)dx =

x̂+g(ε)∫
x̂

(b(x)−b(x̂))ρ(x)dx, (34)

ρ(x) =
1

(b(x)− p1)(p2 −b(x))
.
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Note, that for sufficiently small ε > 0 we have ρ(x) > 0 on (x̂− ε,g(ε)) and integrands
in (34) are positive. Clearly, g(ε) ↓ 0, ε → 0. Put

τ1 =

x̂+g(ε)∫
x̂

dx
b(x)− p1

, τ2 =

x̂+g(ε)∫
x̂−ε

dx
p2 −b(x)

,

τ3 =

x̂∫
x̂−ε

dx
b(x)− p1

, τ = τ1 + τ2 + τ3.

For brevity, we omit the dependence of τi on ε. Put

qε
t =

∞

∑
j=0

(
p1I[ jτ, jτ+τ1)(t)+ p2I[ jτ+τ1, jτ+τ1+τ2)(t)+ p1I[ jτ+τ1+τ2,( j+1)τ)(t)

)
. (35)

The trajectory X x̂,qε
is periodic:

Ẋ x̂,qε

t = b(X x̂,qε

t )− p1, ( jτ, jτ+ τ1), X x̂,qε

jτ = x̂,

Ẋ x̂,qε

t = b(X x̂,qε

t )− p2, ( jτ+ τ1, jτ+ τ1 + τ2), X x̂,qε

jτ+τ1
= x̂+gε,

Ẋ x̂,qε

t = b(X x̂,qε

t )− p1, ( jτ+ τ1 + τ2,( j+1)τ)), X x̂,qε

jτ+τ1+τ2
= x̂− ε.

It sequentially visits the points x̂, x̂+gε, x̂−ε, x̂ and moves monotonically between them.
Furthermore,

( j+1)τ∫
jτ

e−βtF(qε
t )dt =

e−β jτ

β

(
(1− e−βτ1)F(p1)+(e−βτ1 − e−β(τ1+τ2))F(p2)

+(e−β(τ1+τ2)− e−βτ)F(p1)
)

Thus,

J(x̂,qε) =
1

β(1− e−βτ)

(
(1− e−βτ1)F(p1)+(e−βτ1 − e−β(τ1+τ2))F(p2)

+(e−β(τ1+τ2)− e−βτ)F(p1)
)
=

1
β

(
τ1 + τ3

τ
F(p1)+

τ2

τ
F(p2)

)
+o(1), ε → 0.

Since

τ1 =
g(ε)

b(x̂)− p1
(1+o(1)), τ2 =

g(ε)+ ε
p2 −b(x̂)

(1+o(1)), τ3 =
ε

b(x̂)− p1
(1+o(1)),

using (31), we get
τ1 + τ3

τ2
=

p2 −b(x̂)
b(x̂)− p1

=
κ

1−κ
,
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τ1 + τ3

τ
=

1
1+ τ2/(τ1 + τ3)

= κ,
τ2

τ
=

1
1+(τ1 + τ3)/τ2

= 1−κ.

Thus,

lim
ε→0

J(x̂,qε) =
1
β
(κF(p1)+(1−κ)F(p2)) =

F̃(b(x̂))
β

= v(x̂).

We see that the strategy (35) satisfies (33), and v(x) = vr(x) = v(x). The obtained
results are summarized below.

Theorem 4 The value functions (2), (27), (28) coincide: v = vr = ṽ. By Theorem 1,
applied to (28), v is strictly increasing, strictly concave and continuously differentiable
on (0,1), except maybe the point x̂. If F̃ is differentiable at b(x̂), then v is continuously
differentiable. The strategy (32) is optimal for the relaxed problem (27).

4. Rational taxation

Assume that a regulator imposes the proportional tax v′(x)α for the fishing intensity
α. Then the myopic agents take their optimal strategies from the sets

α̂i(x) = arg max
u∈[0,αi]

{ fi(u)− v′(x)u}.

The direct implementation of such feedback controls may cause technical problems,
since the related equation (1) can be unsolvable. Instead of continuous change of the tax
v′(Xt), a more realistic approach consists in its fixing for some periods of time: v′(Xτ j),
t ∈ [τ j,τ j+1). In this case agents also fix their strategies:

αi
τi
∈ arg max

u∈[0,αi]
{ fi(u)− v′(Xτ j)u}, t ∈ [τ j,τ j+1).

This scheme results in “step-by-step positional control” (see [18]), defined recursively
by the formulas:

Xx,α
0 = x,

αi
t = αi

τ j
∈ arg max

u∈[0,αi]
{ fi(u)− v′(Xx,α

τ j )u}, t ∈ [τ j,τ j+1), (36)

Xx,α
t = Xx,α

τ j +

t∫
τ j

b(Xx,α
s )ds−

n

∑
i=1

αi
τ j
· (t − τ j), t ∈ [τ j,τ j+1),

0 = τ0 < .. .τ j < .. . , τ j → ∞, j → ∞, (37)

bypassing at the same time the mentioned technical problems.
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Theorem 5 Let F̃ ′(x̂) exist. Then for any ε > 0, δ > 0 there exists a sequence (37) such
that the strategy (36) is approximately optimal: Jn(x,α)­ v(x)−ε and stabilizing in the
following sense:

|Xx,α
t − x̂|< δ, t ­ t(x,ε,δ).

Proof First note that

α̂i(z) := arg max
u∈[0,αi]

( fi(u)− zu)⊂ α̃i(z) := arg max
u∈[0,αi]

( f̃i(u)− zu).

Indeed, if u∗ ∈ α̂i(z), then −z ∈ ∂(− fi)(u∗) and u∗ ∈ ∂(− fi)
∗(−z): see [14, Chapter E,

Proposition 1.4.3]. But, by (11),

∂(− fi)
∗(−z) = arg max

u∈[0,αi]
(−zu− (− fi)

∗∗(u)) = arg max
u∈[0,αi]

( f̃i(u)− zu) = α̃i(z).

Furthermore, from the representation (29) we get

max
q∈[0,q]

{F̃(q)− zq}=
n

∑
i=1

max
αi∈[0,αi]

{ f̃i(αi)− zαi}

(see also (6)). Thus,

q̃(z) := arg max
q∈[0,q]

(F̃(q)− zq) =
n

∑
i=1

α̃i(z)⊃
n

∑
i=1

α̂i(z). (38)

From (25) it then follows that

b(x)>
n

∑
i=1

α̂i(v′(x)), x ∈ (0, x̂),

(39)

b(x)<
n

∑
i=1

α̂i(v′(x)), x ∈ (x̂,1).

The subsequent argumentation follows the introductory section of [17]. For any x0 ∈
(0,1) and any αi

0 ∈ α̂i(v′(x0)) we have

βv(x0) =

(
b(x0)−

n

∑
i=1

αi
0

)
v′(x0)+

n

∑
i=1

fi(αi
0).

Put,

ψ(x,α) =−βv(x)+

(
b(x)−

n

∑
i=1

αi

)
v′(x)+

n

∑
i=1

fi(αi)

and define the time moment
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τ1 = inf{t ­ 0 : ψ(Xx0,α0
t ,α0)<−βε or Xx0,α0

t > x̂+δ}, x0 ∈ (0, x̂), (40)

τ1 = inf{t ­ 0 : ψ(Xx0,α0
t ,α0)<−βε or Xx0,α0

t < x̂−δ}, x0 ∈ (x̂,1), (41)

τ1 = inf{t ­ 0 : ψ(Xx0,α0
t ,α0)<−βε or Xx0,α0

t ̸∈ (x̂−δ, x̂+δ)}, x0 = x̂. (42)

For t ∈ [0,τ1] in each of the cases (40), (41), (42) we have respectively

Xx0,α0
t ∈ [x0, x̂+δ], Xx0,α0

t ∈ [x̂−δ,x0], Xx0,α0
t ∈ [x̂−δ, x̂+δ].

Assume that xk−1, αk−1, τk are defined. Put

xk = Xxk−1,αk−1
τk , αi

k ∈ α̂i(v′(xk)),

τk+1 = inf{t ­ τk : ψ(Xxk,αk
t ,αk)<−βε or Xxk,αk

t > x̂+δ}, xk ∈ (0, x̂), (43)

τk+1 = inf{t ­ τk : ψ(Xxk,αk
t ,αk)<−βε or Xxk,αk

t < x̂−δ}, xk ∈ (x̂,1), (44)

τk+1 = inf{t ­ τk : ψ(Xxk,αk
t ,αk)<−βε or Xxk,αk

t ̸∈ (x̂−δ, x̂+δ)}, xk = x̂. (45)

The function x 7→ ψ(x,α) is uniformly continuous on any interval [a,b]⊂ (0,1) uni-
formly in α ∈ [0,q]. Thus, there exists δ′ such that if

|ψ(x,α)−ψ(y,α)|­ βε, [x,y]⊂ [a,b],

then |x− y|­ δ′. Assume that ψ(Xxk,αk
τk+1 ,αk) =−βε. Since ψ(xk,αk) = 0, we get

δ′ ¬ |Xxk,αk
τk+1 − xk|¬

τk+1∫
τk

b(Xxk,αk
t )dt +

τk+1∫
τk

n

∑
i=1

αi
k dt ¬ (b+q)(τk+1 − τk),

where b = maxx∈[0,1] b(x). Furthermore, if ψ(Xxk,αk
τk+1 )>−βε and τk+1 < ∞, then in any of

three cases (43), (44), (45) we have

δ¬ |Xxk,αk
τk+1 − xk|¬ (b+q)(τk+1 − τk).

Thus, the differences τk+1−τk are uniformly bounded from below by a positive constant,
and the strategy α = ∑∞

k=0 αkI[τk,τk+1)(t) is well defined for all t ­ 0. Note, that Xx0,α
t

belongs to one of the sets [x0, x̂+δ], [x̂−δ,x0], [x̂−δ, x̂+δ] for all t ­ 0.
By the Berge maximum theorem (see [1, Theorem 17.31]) the set-valued mapping α̂

is upper hemicontinuous, hence its graph is closed (see [1, Theorem 17.10]). From (39)
it then follows that there is a finite gap between b(x) and ∑n

i=1 α̂i(v′(x)) on (0, x̂− δ)∪
(x̂+ δ,1). Thus, |Ẋα,x0 | is uniformly bounded from below by a positive constant, when
Xα,x0 ∈ (0, x̂−δ)∪(x̂+δ,1). This property implies that Xα,x0 reaches the neighbourhood
[x̂−δ, x̂+δ] in finite time t(x,ε,δ). After reaching this neighbourhood, Xα,x0 remains in
it forever by the construction of α.
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It remains to prove that α is ε-optimal. We have

−βv(Xxk,αk
t )+

(
b(Xxk,αk

t )−
n

∑
i=1

αi
k

)
v′(Xxk,αk

t )+
n

∑
i=1

fi(αi
k)­−βε, t ∈ (τk,τk+1).

After the multiplication on e−βt an integration we get

e−βτk+1v(Xxk,αk
τk+1 )− e−βτk v(Xxk,αk

τk )+

τk+1∫
τk

e−βt
n

∑
i=1

fi(αi
k)dt ­ ε(e−βτk+1 − e−βτk).

Summing up and passing to the limit we obtain the desired inequality:

∞∫
0

e−βt
n

∑
i=1

fi(αi
t)dt ­ v(x0)− ε.

As an example, consider the problem with n identical agents and assume that their
common profit function is linear: fi(u) = f (u) = u, u ∈ [0,α]. The HJB equation (9)
takes the form

βv(x) = b(x)v′(x)+n max
u∈[0,α]

(u− v′(x)u).

From (21) it follows that v′(x̂) = 1. Thus,

v′(x)> 1, x < x̂, v′(x)< 1, x > x̂ (46)

and v satisfies the equations

βv(x) = b(x)v′(x), x < x̂; βv(x) = (b(x)−nα)v′(x)+nα, x > x̂.

Solving these equations, by the uniqueness result, given in Lemma 3, we infer that

v(x) =
b(x̂)

β
exp

−
x̂∫

x

β
b(y)

dy

 , x ∈ (0, x̂],

v(x) =
1
β
(b(x̂)−nα)exp

 x∫
x̂

β
b(y)−αn

dy

+
1
β

nα, x ∈ [x̂,1].

For the biomass quantities x below the critical level x̂ the tax v′(x) does not depend on n:

v′(x) =
b(x̂)
b(x)

exp

−
x̂∫

x

β
b(y)

dy

 , x ∈ (0, x̂].
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For larger values of x we have

v′(x) =
nα−b(x̂)
nα−b(x)

exp

−
x∫

x̂

β
nα−b(y)

dy

 , x ∈ [x̂,1].

In particular, v′(x)→ f ′(0) = 1, n → ∞.
Note, that a tax, stimulating an optimal cooperative behavior is by no means unique.

For instance, any tax, satisfying (46), can serve this purpose. So, the most interesting
quantity is the “critical tax”

v′(x̂) = F̃ ′(b(x̂)). (47)

The equality (47) follows from (21). Consider F̃ as the value function of the elemen-
tary problem (29), where the artificial agents with concave revenues f̃i cooperatively
distribute some given harvesting intensity q. Formula (47) shows that v′(x̂) is simply the
shadow price of the critical growth growth rate b(x̂) within this problem.

We are interested in the dependence of the critical tax v′(x̂) on the size of agent
community. Consider again n identical agents with the revenue functions fi = f . If f is
linear, the critical tax, as we have seen, does not depend on n. Assume now that f is
differentiable and strictly concave. Then by (21) and (38) we get

b(x̂) ∈
n

∑
i=1

arg max
u∈[0,α]

{ f (u)− v′(x̂)u}

Taking optimal values of u to be equal, we conclude that v′(x̂) = f ′(b(x̂)/n). Thus, v′(x̂)
is increasing in n, and v′(x̂)→ f ′(0), n → ∞. Our final result shows that this situation is
typical: the critical tax can only increase, when the agent community widens.

Theorem 6 Denote by Fn, Fn+m and vn, vn+m the cooperative instantaneous revenue
functions (3) and the value functions (2), corresponding to the agent communities

{ fi}n
i=1 ⊂ { fi}n+m

i=1 .

Assume that F̃ ′
n(b(x̂)), F̃ ′

n+m(b(x̂)) exist. Then

v′n(x̂) = F̃ ′
n(b(x̂))¬ v′n+m(x̂) = F̃ ′

n+m(b(x̂)).

Proof It is enough to consider the case m = 1. By the associativity of the infimal convo-
lution we have

(−F̃n+1)(q) = (−F̃n)⊕ (− f̃n+1)(q).

The formula for the subdifferential of an infimal convolution, given in [14, Chapter D,
Corollary 4.5.5], implies that

∂(−F̃n+1)(q)⊆
∪
u

∂(−F̃n)(u)∩∂(− f̃n+1)(q−u)⊆
∪

u∈[0,q]
∂(−F̃n)(u).
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But since the set-valued mapping u 7→ ∂(−F̃n+1)(u) is non-decreasing, we have

∂(−F̃n+1)(q)¬ ∂(−F̃n)(q), q ∈ [0,q].

Thus, F̃ ′
n+1(b(x̂))­ F̃ ′

n(b(x̂)).

A resembling result for discrete time problem was proved in [25, Theorem 3].
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