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State estimation in a decentralized discrete time LQG
control for a multisensor system

ZDZISLAW DUDA

In the paper a state filtration in a decentralized discrete time Linear Quadratic Gaussian
problem formulated for a multisensor system is considered. Local optimal control laws depend
on global state estimates and are calculated by each node. In a classical centralized information
pattern the global state estimators use measurements data from all nodes. In a decentralized
system the global state estimates are computed at each node using local state estimates based
on local measurements and values of previous controls, from other nodes.

In the paper, contrary to this, the controls are not transmitted between nodes. It leads to
nonconventional filtration because the controls from other nodes are treated as random variables
for each node. The cost for the additional reduced transmission is an increased filter computation
at each node.
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1. Introduction

Multisensor systems find applications in many areas such as aerospace, robotics, im-
age processing, military surveillance, medical diagnosis. The advantage of using these
systems over systems with a single sensor results from e.g. improved reliability, robust-
ness, extended coverage, improved resolution e.t.c. In the systems a state estimation
problem is one of the critical concerns.

Theoretically, state estimates can be determined by using a conventional Kalman
filter in a centralized structure where all process measurements are sent to a central
station.

The centralized architecture produces an optimal estimate in a minimum mean
square error (MMSE) sense, but it may imply low survivability and requires high pro-
cessing and communication loads.

Due to limited communication bandwith or reliability constraints fusion algorithms
and appropriate architectures (from hierarchical to fully decentralized) are proposed.
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In these architecture each node carries out Kalman filtering upon its own measure-
ments and then transmits the local processed data to a fusion center [4, 5, 10] (hierar-
chical structure) or to other nodes [9, 8] (fully decentralized structure). In fusion nodes
a global state estimate is calculated. It may be equivalent to the optimal centralized esti-
mate [4, 5, 10] or suboptimal [1, 2, 3].

In majority papers autonomous systems [1, 2, 3, 6, 12] are considered. A control, if
introduced, is a known input [5] or depends on local state estimate [7], only.

In [11] a decentralized Linear-Quadratic-Gaussian (LQG) control problem involving
M nodes is considered. Local controls depend on global state estimates. At each node
local state estimates are computed using measurement data obtained at that node and
values of previous controls from other nodes. The local control law at each node is a
linear combination of local state estimates and previous controls transmitted from other
nodes.

In this paper a Linear-Quadratic-Gaussian (LQG) problem [11] is considered. Con-
trary to [11], controls are not transmitted between nodes. It leads to nonconventional
local filtration because controls from other nodes should be treated as random variables
for each node. The cost for this additional reduced transmission is increased filter com-
putation at each node.

2. Problem formulation

Consider a linear multisensor system described by the equations

xn+1 = Axn +
M

∑
j=1

B ju j
n +wn (1)

y j
n =C jxn + r j

n, j = 1, ...,M (2)

where xn is a state vector, u j
n is a control vector at node j, y j

n is a measurement vector
at node j ; A, B j, C j are the system and observation models, wn, r j

n are the state and
measurement noises, respectively. It is assumed that x0 ∼ N(x̄0,X0), wn ∼ N(0,Wn), r j

n ∼
N(0,R j

n) and xn ∈ Rk, wn ∈ Rk, y j
n ∈ Rp j

, r j
n ∈ Rp j

; A ∈ Rk×k, C j ∈ Rp j×k. Additionally,
wn, r j

m, j = 1, ...,M are gaussian white noise processes independent of each other and of
the gaussian initial state x0.

The optimal control problem is to find

Io = min
{a j

n (⃗yn),n=0,...,N, j=1,...,M}
E[

1
2

N

∑
n=0

(xT
n Qnxn +

M

∑
j=1

u jT
n H ju j

n)u j
n=a j

n (⃗yn)
] (3)

subject to the stochastic system (1) where Qn and H j are positive semidefinite and posi-
tive definite, respectively, symmetric matrices and y⃗n = {y0, ...,yn}, yi = [y1T

i , ...,yMT
i ]T

is the measurement available history.
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It is the control problem formulated in a classical information pattern, because con-
trol laws are functions of all measurement data.

The solution to the control problem is known [11]. Control laws a j
n(⃗yn), j = 1, ...,M,

depend on global state estimates based on measurements obtained from all nodes. In [11]
a decentralized system is proposed. The global state estimate is obtained as a linear
combination of local state estimates based on local measurement information and values
of previous controls from all nodes.

The problem formulated in the paper is to compute local state estimates using mea-
surements only at that node. It leads to a decentralized system with an additional reduced
data transmission.

3. Solution to the centralized LQG control problem

The solution to the LQG problem [11] has the form

u jo
n = S j

nx̂n|n (4)

where the global state estimate x̂n|n is defined as

x̂n|n = E(xn |⃗yn) (5)

The quantity yn is a stacked measurement vector resulting from the eqn. (2) and written
in the form

yn =Cxn + rn (6)

where yn = [y1T
n , ...,yMT

n ]T , C = [C1T , ...,CMT ]T , rn = [r1T
n , ...,rMT

n ]T , Rn = ErnrT
n =

diag{R1
n, ...,R

M
n }.

The control gain S j
n is

S j
n =−(H j +B jT Λn+1B j)−1B jT Λn+1A (7)

where Λn is propagated backwards in time as

Λn = AT Λn+1A−
M

∑
j=1

S jT
n (H j +B jT Λn+1B j)S j

n +Qn (8)

The global state estimate x̂n|n is propagated as

x̂n+1|n+1 = x̂n+1|n +Kn+1(yn+1 −Cx̂n+1|n) (9)

where

x̂n+1|n = E(xn+1 |⃗yn) = Ax̂n|n +
M

∑
j=1

B ju j
n (10)
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The Kalman gain Kn+1 is given as

Kn+1 = Pn+1|nCT (CPn+1|nCT +Rn+1)
−1 (11)

where Pn+1|n = E(xn+1 − x̂n+1|n)(xn+1 − x̂n+1|n)
T has the form

Pn+1|n = APn|nAT +Wn, P0|−1 = X0 (12)

The covariance matrix Pn+1|n+1 = E(xn+1 − x̂n+1|n+1)(xn+1 − x̂n+1|n+1)
T is propagated

as

Pn+1|n+1 = (1−Kn+1C)Pn+1|n (13)

or in the information form

P−1
n+1|n+1 = P−1

n+1|n +
M

∑
j=1

C jT (R j
n+1)

−1C j (14)

where 1 is the identity matrix.
Using (11) and (13) gives

Kn+1 = Pn+1|n+1CT R−1
n+1 (15)

Then the propagation of the estimate x̂n|n described by (9) can be expressed in the form

x̂n+1|n+1 = x̂n+1|n +Pn+1|n+1

M

∑
j=1

C jT (R j
n+1)

−1(y j
n+1 −C jx̂n+1|n) (16)

The eqn. (4)-(16) form the solution to the LQG problem.
Let us notice that the state estimate (16) with (10) depends on measurements and

controls from all nodes. In decentralized systems state estimates and consequently con-
trols should be calculated by each node using measurements available only at that node.

4. Solution to the decentralized LQG problem

In [11] a solution to the decentralized LQG problem is presented. The control laws
have the form (4).

The state estimate x̂n|n is divided into two parts

x̂n|n = x̂D
n|n + xC

n (17)

where

xC
n+1 = AxC

n +
M

∑
j=1

B ju j
n, xC

0 = x̄0 (18)
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and

x̂D
n+1|n+1 =

M

∑
j=1

[Pn+1|n+1(P
j

n+1|n+1)
−1x̂D j

n+1|n+1 +h j
n+1] (19)

At each node an additional vector h j
n is calculated as

h j
n+1 = Fn+1h j

n +G j
n+1x̂D j

n+1|n, h j
0 = 0 (20)

where

x̂D j
n+1|n = Ax̂D j

n|n, Fn = Pn|nP−1
n|n−1A

(21)
G j

n+1 = Pn+1|n+1[(Pn+1|n)
−1APn|n(P

j
n|n)

−1A−1 − (P j
n+1|n)

−1]

and P j
n|n = E(xD

n − x̂D j
n|n)(x

D
n − x̂D j

n|n)
T and P j

n|n−1 = E(xD
n − x̂D j

n|n−1)(x
D
n − x̂D j

n|n−1)
T .

The state estimate x̂D j
n|n determined by each node has the form

x̂D j
n+1|n+1 = Ax̂D j

n|n +P j
n+1|n+1C jT (R j

n)
−1(y j

n+1 −C jxC
n+1 −C jAx̂D j

n|n), x̂D j
0|0 = 0 (22)

where a covariance matrix P j
n+1|n+1 has a classical form.

Using (7), (17) and (19) in (4) the j− th local optimal control law becomes

u jo
n =−(H j +B jT Λn+1B j)−1B jT Λn+1{

M

∑
l=1

[Pn|n(P
l
n|n)

−1x̂Dl
n|n +hl

n]+ xC
n} (23)

Let us notice that in order to determine the value of the optimal control u jo
n at the j− th

node, the p j dimensional vectors αl j
n defined as

αl j
n = B jT Λn+1[Pn|n(P

l
n|n)

−1x̂Dl
n|n +hl

n], l = 1, ...,M, l ̸= j (24)

should be transmitted from other nodes to the node j. Moreover the controls ul
n−1 from

other nodes must be transmitted too, so that to form (18), (22) and finally (23).
At each node the vector h j

n must be calculated. Since h j
n depends on measurements,

it should be calculated on-line. The operations in (19) and (20) can be done in parallel.

5. New approach to filtration in the decentralized LQG problem

Let us consider the eqn. (1) in which the control is described by the eqn. (4) i.e.

xn+1 = Axn +Bnx̂n|n +wn (25)

where Bn = ∑M
j=1 B jS j

n.
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The objective of the local filtration at the j− th node is to compute local estimates
using measurements available at that node.

The system (25) can be written in the form

xn+1 = Anxn −Bnx̃n|n +wn (26)

where An = A+Bn and x̃n|n = xn − x̂n|n.
Let a local estimate at the j− th node has the form

x̂ j
n = E(xn |⃗y j

n) (27)

where y⃗ j
n = {y j

0, ...,y
j
n}.

Then the estimate x̂ j
n+1|n+1 is propagated as

x̂ j
n+1|n+1 = x̂ j

n+1|n +K j
n+1(y

j
n+1 −C jx̂ j

n+1|n) (28)

The term x̂ j
n+1|n in (28) becomes

x̂ j
n+1|n = E(xn+1 |⃗y j

n) = Anx̂ j
n|n −BnE(x̃n|n |⃗y j

n) (29)

We find that

E(x̃n|n |⃗y
j
n) = E[(xn − x̂n|n)|⃗y j

n] = E(xn |⃗y j
n)−E(x̂n|n |⃗y j

n) =

= E(xn |⃗y j
n)−E{[E(xn |⃗yn)]|⃗y j

n}= E(xn |⃗y j
n)−E(xn |⃗y j

n) = 0 (30)

Thus the last term in (29) is equal to zero and x̂ j
n+1|n in (28) has the form

x̂ j
n+1|n = Anx̂ j

n|n (31)

The Kalman gain K j
n+1 is

K j
n+1 = P j

n+1|nC jT (C jP j
n+1|nC jT +R j

n+1)
−1 (32)

The covariance matrix P j
n+1|n is defined as

P j
n+1|n = E(x̃ j

n+1|nx̃ jT
n+1|n) (33)

where x̃ j
n+1|n = xn+1 − x̂ j

n+1|n.
From (26) and (31) we have

x̃ j
n+1|n = Anxn −Bnx̃n|n +wn −Anx̂ j

n|n = Anx̃ j
n|n −Bnx̃n|n +wn (34)
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where x̃ j
n|n = xn − x̂ j

n|n.

Hence P j
n+1|n in (32) has the form

P j
n+1|n = E(Anx̃ j

n|n −Bnx̃n|n +wn)(Anx̃ j
n|n −Bnx̃n|n +wn)

T =

= AnP j
n|nAT

n −AnP j∗
n|nBT

n −BnP∗ j
n|nAT

n +BnPn|nBT
n +Wn (35)

where

P j
n|n = E(x̃ j

n|nx̃ jT
n|n), P j∗

n|n = E(x̃ j
n|nx̃T

n|n), P∗ j
n|n = E(x̃n|nx̃ jT

n|n) = (P j∗
n|n)

T (36)

should be determined.
The covariance matrix P j

n+1|n+1 = E(x̃ j
n+1|n+1x̃ jT

n+1|n+1) in (35) can be found by a
classical way and has the form

P j
n+1|n+1 = (1−K j

n+1C j)P j
n+1|n (37)

or in an information form

(P j
n+1|n+1)

−1 = (P j
n+1|n)

−1 +C jT (R j
n+1)

−1C j (38)

Using (32) and (37) gives

K j
n+1 = P j

n+1|n+1C jT (R j
n+1)

−1 (39)

By subtracting both sides of (28) from the identity xn+1 = xn+1 we obtain

x̃ j
n+1|n+1 = (1−K j

n+1C j)x̃ j
n+1|n −K j

n+1r j
n+1 (40)

and similarly to (9)

x̃n+1|n+1 = (1−Kn+1C)x̃n+1|n −Kn+1rn+1 (41)

The covariance matrix P j∗
n+1|n+1 = E(x̃ j

n+1|n+1x̃T
n+1|n+1) in (35) may be expressed in

the form

P j∗
n+1|n+1 = E[(1−K j

n+1C j)x̃ j
n+1|n −K j

n+1r j
n+1][(1−Kn+1C)x̃n+1|n −Kn+1rn+1]

T =

= (1−K j
n+1C j)P j∗

n+1|n(1−Kn+1C)T +K j
n+1R j∗

n+1KT
n+1 (42)

where P j∗
n+1|n = E(x̃ j

n+1|nx̃T
n+1|n) and R j∗

n+1 = [R j1
n+1, . . . ,R

jl
n+1, . . . ,R

jM
n+1].

The matrices R jl
n+1 are defined as R jl

n+1 = E(r j
n+1rlT

n+1) = 0 for j ̸= l and R j j
n+1 =

E(r j
n+1r jT

n+1) = R j
n+1
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Using (13), (37) and (15), (39) in (42) gives

P j∗
n+1|n+1 =

(43)

P j
n+1|n+1(P

j
n+1|n)

−1P j∗
n+1|nP−1

n+1|nPn+1|n+1 +P j
n+1|n+1C jT (R j

n+1)
−1

C j︷ ︸︸ ︷
R j∗

n+1R−1
n+1C Pn+1|n+1

In order to determine P j∗
n+1|n = E(x̃ j

n+1|nx̃T
n+1|n) in (43) we have from (1) and (10)

x̃n+1|n = Ax̃n|n +wn (44)

and from (34)

P j∗
n+1|n = E[Anx̃ j

n|n −Bnx̃n|n +wn][Ax̃n|n +wn]
T =

= AnP j∗
n|nAT −BnPn|nAT +Wn (45)

Equations (28), (31), (32), (35), (37), (43) and (45) form the solution to the local filtration
problem at the jth node.

Inserting (39) to (28) gives

x̂ j
n+1|n+1 − x̂ j

n+1|n = P j
n+1|n+1C jT (R j

n+1)
−1(y j

n+1 −C jx̂ j
n+1|n) (46)

Multiplying the both sides of the eqn. (46) by (P j
n+1|n+1)

−1 we have that

(P j
n+1|n+1)

−1(x̂ j
n+1|n+1 − x̂ j

n+1|n) =C jT (R j
n+1)

−1(y j
n+1 −C jx̂ j

n+1|n) (47)

Thus

C jT (R j
n+1)

−1y j
n+1 =

(48)

(P j
n+1|n+1)

−1x̂ j
n+1|n+1 − [

(P j
n+1|n)

−1(38)︷ ︸︸ ︷
(P j

n+1|n+1)
−1 −C jT (R j

n+1)
−1C j]x̂ j

n+1|n

Then the propagation of the estimate x̂n|n described by (16) can be expressed in the form

x̂n+1|n+1 = [1−Pn+1|n+1

M

∑
j=1

C jT (R j
n+1)

−1C j]x̂n+1|n +

(49)

+Pn+1|n+1

M

∑
j=1

(P j
n+1|n+1)

−1x̂ j
n+1|n+1 −Pn+1|n+1

M

∑
j=1

(P j
n+1|n)

−1x̂ j
n+1|n

According to the eqn. (26) the term x̂n+1|n in (49) becomes

x̂n+1|n = E(xn+1 |⃗yn) = Anx̂n|n −BnE(x̃n|n |⃗yn) = Anx̂n|n (50)
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Let, similarly to [11]

x̂n+1|n+1 =
M

∑
j=1

[Pn+1|n+1(P
j

n+1|n+1)
−1x̂ j

n+1|n+1 +h j
n+1] (51)

where

h j
n+1 = Fn+1h j

n +G j
n+1x̂ j

n+1|n (52)

When we substitute (50) and next (51) into the eqn. (49) , we find

x̂n+1|n+1︷ ︸︸ ︷
M

∑
j=1

[Pn+1|n+1(P
j

n+1|n+1)
−1x̂ j

n+1|n+1 +h j
n+1] = (53)

= [1−Pn+1|n+1

M

∑
j=1

C jT (R j
n+1)

−1C j]An

x̂n|n︷ ︸︸ ︷
M

∑
j=1

[Pn|n(P
j

n|n)
−1x̂ j

n|n +h j
n]+

+Pn+1|n+1

M

∑
j=1

(P j
n+1|n+1)

−1x̂ j
n+1|n+1 −Pn+1|n+1

M

∑
j=1

(P j
n+1|n)

−1x̂ j
n+1|n

Thus

h j
n+1 = Pn+1|n+1

P−1
n+1|n(14)︷ ︸︸ ︷

[(Pn+1|n+1)
−1 −

M

∑
j=1

C jT (R j
n+1)

−1C j]Anh j
n ++Pn+1|n+1{[(Pn+1|n+1)

−1

−
M

∑
j=1

C jT (R j
n+1)

−1C j]AnPn|n(P
j

n|n)
−1A−1

n − (P j
n+1|n)

−1}x̂ j
n+1|n =

Fn+1︷ ︸︸ ︷
Pn+1|n+1(Pn+1|n)

−1An h j
n + (54)

+

G j
n+1︷ ︸︸ ︷

Pn+1|n+1[(Pn+1|n)
−1AnPn|n(P

j
n|n)

−1A−1
n − (P j

n+1|n)
−1] x̂ j

n+1|n

Using (51) and (7) in (4) gives

u jo
n =−(H j +B jT Λn+1B j)−1B jT Λn+1{

M

∑
l=1

[Pn|n(P
l
n|n)

−1x̂l
n|n +hl

n]} (55)
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Let us notice that in order to determine the value of the optimal control u jo
n at the

j− th node the p j dimensional vectors αl j
n defined as

αl j
n = B jT Λn+1[Pn|n(P

l
n|n)

−1x̂l
n|n +hl

n], l = 1, ...,M, l ̸= j (56)

should be transmitted from other nodes to the j− th node .
The control laws (23) and (55) have very similar forms and properties discussed

in [11].
The main difference is that the latter does not depend on controls from other nodes.

Thus contrary to (23) controls need not be transmitted from node to node. However, the
cost for this additional reduced transmission is increased filter computation at each node.

6. Conclusions

In the paper the decentralized filtration in LQG control problem is presented. It is
shown that the state estimates calculated at each node are updated with current measure-
ment obtained only at that node. Additionally, at each node the vector dependent on past
data must be determined. But, the controls need not be transmitted from node to node.

The local state estimation is nonclassical in this sense that it requires some additional
calculations to obtain error covariance matrix P j

n|n. Fortunately, these calculations do not
depend on measurement information and can be done off-line.

The control laws are linear combinations of data calculated at each node. To calculate
controls at the jth node only the transmission of the vectors αl j

n from other nodes is
needed.

References

[1] K.C. CHANG, R.H. SAHA and Y. BAR-SHALOM: On optimal track to track fu-
sion. IEEE Trans. on Aerospace and Electronic Systems, 33(4), (1997), 1271-1276.

[2] K.C. CHANG, Z. TIAN and S. MORI: Performance evaluation for MAP state
estimate fusion. IEEE Trans. on Aerospace and Electronic Systems, 40(2), (2004),
706-714.

[3] CHEN H.M., T. KIRUBARAJAN AND Y. BAR-SHALOM: Performance limits on
track to track fusion versus centralized estimation, IEEE Trans. on Aerospace and
Electronic Systems, 39(2), pp. 386-400, (2003).

[4] Z. DUAN and X.R. LI: Lossless Linear transformation of sensor data for dis-
tributed estimation fusion. IEEE Trans. on Signal Processing, 59(1), (2011), 362-
372.



STATE ESTIMATION IN A DECENTRALIZED DISCRETE TIME LQG CONTROL
FOR A MULTISENSOR SYSTEM 39

[5] H.HASHMIPOUR, S. ROY and A. LAUB: Decentralized structures for parallel
Kalman filtering. IEEE Trans. on Automatic Control, 33(1), (1988), 88-93.

[6] M.E. LIGGINS, C.Y. CHONG, I. KADAR, M. ALFORD, V. VANNICOLA and S.
THOMOPOULOS: Distributed fusion architectures and algorithms for target track-
ing, Proc. of the IEEE, 85(1), (1997), 95-107.

[7] A.G.O. MUTAMBARA and H.F. DURRANT-WHYTE: Estimation and control for a
modular wheeled mobile robot. IEEE Trans. on Control Systems Technology, 8(1),
(2000) 35-46.

[8] M.S. SCHLOSSER and K. KROSCHEL: Performance analysis of decentralized
Kalman filters under communication constraints. J. of Advances in Information
Fusion, 2(2), (2007), 65-75.

[9] J. SIJS, M. LAZAR, P.P.J. DEN BOSCH and Z. PAPP: An overview of non-
centralized Kalman filters. Proc. of the 17th IEEE Int. Conf. on Control Appli-
cations, USA, (2008).

[10] E.B. SONG, Y.M. ZHU, J. ZHOU and Z.S. YOU: Optimal Kalman filtering fusion
with cross-correlated sensor noises. Automatica, 43 (2007), 1450-1456.

[11] J.L. SPEYER: Computation and transmission requirements for a decentralized
Linear-Quadratic-Gaussian control problem. IEEE Trans. on Automatoc Control,
24(2), (1979), 266-269.

[12] Y. ZHU, Z. YOU, J. ZHAO, K. ZHANG and X.R. LI: The optimality for the dis-
tributed Kalman filtering fusion with feedback. Automatica, 37(2), (2001), 1489-
1493.




