www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

10.1515/acsc-2017-0011

Archives of Control Sciences
Volume 27(LXIII), 2017
No. 2, pages 183—195

Parallel patterns determination in solving cyclic flow
shop problem with setups

WOJICIECH BOZEJKO, ZENON CHACZKO, MARIUSZ UCHRONSKI and MIECZY SEAW WODECKI

The subject of this work is the new idea of blocks for the cyclic flow shop problem with
setup times, using multiple patterns with different sizes determined for each machine consti-
tuting optimal schedule of cities for the traveling salesman problem (TSP). We propose to take
advantage of the Intel Xeon Phi parallel computing environment during so-called "blocks’ de-
termination basing on patterns, in effect significantly improving the quality of obtained results.

Key words: cyclic scheduling, parallel algorithm, metaheuristics

1. Introduction

In recent years there has been an observed growth in interest in cyclic problems of
tasks scheduling, both in the circle of theorists dealing with discrete optimization prob-
lems and in the population of industry practitioners. Cyclic production is, in fact, a very
effective mode of production in modern flexible manufacturing systems. In the avail-
able literature there are many studies on different aspects of cyclic control in companies
that produce goods on a mass scale. There are examples of the application of cyclic
scheduling in various spheres of industry, transport and logistics (e.g. Pinto et al. [12],
Pinedo [11], Mendez et al. [9], Gertsbakh and Serafini [6], Kats and Levner [8]). Unfor-
tunately, the existing models and calculation tools allow one to determine the optimal
(minimizing cycle time) control of production systems executing only a small number
of tasks.

In this work we considered a cyclic flow shop problem with setup times. Strong NP-
hardness of many simplest versions of the cyclic scheduling problem (Smutnicki [14]), in
particular of the considered problem, limits the scope of application of exact algorithms

W. Bozejko (corresponding author), and M. Uchronski are with Department of Automatics, Mecha-
tronics and Control Systems, Faculty of Electronics, Wroctaw University of Technology, Janiszewskiego
11-17, 50-372 Wroctaw, Poland. E-mails: {wojciech.bozejko, mariusz.uchronski} @pwr.edu.pl. Z. Chaczko
is with Faculty of Engineering and Information Technology (FEIT), University of Technology, Syd-
ney(UTS), Australia, NSW, Sydney, e-mail: zenon.chaczko@uts.edu.au and M. Wodecki is with Institute
of Computer Science, University of Wroctaw, Joliot-Curie 15, 50-383 Wroctaw, Poland, e-mail: mieczys-
law.wodecki@uwr.edu.pl

Received 14.12.2016. Revised 30.04.2017.

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

184 W. BOZEJKO, Z. CHACZKO, M. UCHRONSKI, M. WODECKI

in instances with low number of tasks, but in the context of minimizing the design cycle
time and the use of exact algorithms, it seems to be fully justified (Brucker et al. [5]).
However, due to the NP-hardness, to determine satisfactory solutions there are common
fast approximate algorithms used, based on local search techniques , such as: simulated
annealing (in parallel version Bozejko et al. [2]) or tabu search (Bozejko et al. [3]).
Methods of this type are usually based on a two-level decomposition of the problem:
determination of the optimum order of tasks (upper level) and multiple determination of
the minimum criteria for a given sequence of tasks (lower level).

While for classic, non-cyclic scheduling problems, a solution to the lower level prob-
lem can be obtained in a time-efficient manner by analyzing a specific graph, in case of
such a posed problem the solution to lower level is relatively time-consuming because it
generally requires solving oflinear programming problem. Therefore, any special proper-
ties, including these allowing for more efficient calculation of the cycle time, the search
of schedule and limiting the cardinality of locally searched neighborhood or acceleration
of the speed of the viewing are very desirable.

In the presented paper, we are proposing the use of new eliminating properties, in-
cluding the so-called patterns to reduce the number of solutions viewed when generating
neighborhood with local search algorithms, such as the tabu search with prohibitions or
simulated annealing. Determination of the patterns may be performed either sequentially,
or in parallel, using a multiprocessing computations environment. Relevant properties
were formulated using the PRAM model machine which is standard for the theoretical
verification of the computational complexity of parallel algorithms.

The reminder of hte paper is organized as follows. Section 2 presents a problem
description. Its mathematical model is proposed in the section 3. Section 4 contains pro-
posed solution methid in which we define adn use blocks of tasks. Results of computa-
tional experiments are discussed in section 5. Conclusions and comments are presented
in the Section 6.

2. Problem description

The problem of cyclic production considered in this work may be formulated as

follows: there is a set of n tasks given J = {1,2,...,n}, to be performed cyclically (re-
peatedly) on machines from the set M = {1,2,...,m}. Any task should be performed
in sequence on each of m machines 1,2,...,m (technological line). Task j € 7 is a se-
quence m operations Oy j,03 j,..., Oy, ;. Operation Oy ; corresponds to the activity of

execution of task j on machine k, in time py ; (k= 1,2,...,m, j=1,2,...,n). After the
completion, and before the start of the next operation a machine setup is performed. Let
sf j (ke M, i+ ji,j€ J)be the setup time between operation Oy ; and Oy .

A set of tasks in a single cycle is called a MPS (minimal part set). MPSs are pro-
cessed cyclically, one by one.

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

PARALLEL PATTERNS DETERMINATION
IN SOLVING CYCLIC FLOW SHOP PROBLEM WITH SETUPS 185

One should determine the order of tasks (the same for each machine), which mini-
mizes cycle time, i.e. the moment of commencement of tasks execution from the set J
in the next cycle. In applying this, the following constraints must be met:

(a) each operation can only be performed by one machine,

(b) no machine can perform more than one operation at the same time,

(c) the order of the technological line of operations execution must be preserved,
(d) execution of any operation cannot be interrupted before its completion,

(e) each machine, between sequentially performed operations, requires setups,

(f) each operation is executed sequentially (in successive MPSs) after the cycle time
is completed.

The considered problem boils down to determining the starting moments of the tasks
execution on machines that meet the constraints (a) - (f), so that the cycle time (the time
after which the task is performed in a subsequent MPS) is minimised.

We assume that in each of the MPS, on each machine, the tasks are executed in the
same order. Therefore, in a cyclic schedule, the order of tasks execution on machines
can be represented by a permutation of the tasks in the first MPS. On this basis we
can determine the beginning moments of tasks execution on machines in the first MPS.
Increasing them by multiples of the cycle time, we obtain the beginning moments of
tasks execution in any of MPSs (commencement of execution of any of the operation
in the consecutive MPS should be increased by the cycle time). Let @ be the set of all
permutations of the elements from a set of tasks 7. Therefore, the considered in the work
problem comes down to the determination of permutation of tasks (element from the set
&) minimizing the length of cycle time. In short the problem will be denoted by CFS
(Cyclic Flow Shop).

3. Mathematical model

Let [S¥],ux, be a matrix of beginning moments of tasks execution of k-th MPS (for
the established order € ®), where Sf{ ; denotes the beginning time moment of execution
of task j on i machine. We assume that tasks in the following MPSs are performed
cyclically. This means that there is a fixed 7'(n) (period) such that

k+1 k . .
Si‘;;(j) = Sin(j) +T(m), i=1,....om, j=1,...n, k=1,2,.... (D

Period T'(m) depends of course on permutation ® and is called cycle time of the

system. The minimum value 7 (), for a fixed &, will be called minimum cycle time and
denoted by 7*(m). Since the order of tasks execution in any MPS is the same, it is enough

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

186 W. BOZEJKO, Z. CHACZKO, M. UCHRONSKI, M. WODECKI

to designate a sequence of tasks 7 for one (the first) MPS and make its shift by k- T'(7),
k=1,2,... on timeline. For a fixed order of execution of tasks w € ®, optimum value of
cycle time 7*(m) can be determined by solving the corresponding linear programming
task (see Bozejko et al. [1]). For any order of tasks execution in the first MPS, solving
the above linear programming task, there can be the minimum time cycle in polynomial
time determined. In case of an exact algorithm’s (exhaustive search) solution to CFS
problem should be therefore done for each of n! permutations — elements of the set .
For real-life instances sizes it will be impossible due to computations time, so in the next
chapter we propose an approximate method for solving the CFS problem .

4. Solution method

In many heuristic algorithms solving NP-hard problems, there are neighborhoods
viewed, i.e. subsets of solution space. In case where solutions to the problem are per-
mutations, usually the neighborhoods are generated by insert- or swap-type moves and
their compositions [4]. They consist of changing positions of elements in the permuta-
tion. The number of elements of such neighborhood is at least n(n — 1) /2, where n is the
number of tasks. In practical applications (with large n), neighborhood viewing is the
most time consuming part of the algorithm. It follows from the descriptions in the litera-
ture concerning computational experiments that the number of iterations of the algorithm
has a direct impact on the quality of designated solutions. Hence, there is the search of
methods accelerating action of a single iteration of the algorithm. One of them relies in
the reduction of the number of elements of the neighborhood, their parallel generation
and viewing. In the case of tasks scheduling problems on multiple machines with the
minimization of tasks execution time (C,y) *block eliminating properties’ are success-
fully used [7]. Similar properties are to be applied in the algorithm solving the problem
of determining minimum cycle time, more specifically - a minimum time of running of
a single machine. They allow its users to eliminate elements from the neighborhood that
do not directly provide animprovement on the best solution found so far.

The work [3] describes a method solving the CFS problem and a sequential algorithm
of search with prohibitions. In a further part of the chapter there is a summary of the main
elements of the method presented.

For a set permutation T € ® and machine k € M

n—1

T(m) = Y (Prn(i) + Sn(iy m(ir1)) T Potn) Sy z(1) @)

1

I
—_

is the time of execution of tasks in the order m, with setups performed between task m(n),
and m(1) (i.e. the last task in the given MPS, and the first in the next). It is easy to prove
that the minimum cycle time

T*(n) =max{Ti(n): i=1,2,...,m}. 3)

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

PARALLEL PATTERNS DETERMINATION
IN SOLVING CYCLIC FLOW SHOP PROBLEM WITH SETUPS 187

Property 1 ([3]). The necessary condition reducing the value of the minimum cycle time
T*(B) is shortening of the running time of k-th machine, i.e. reducing of Ty(B), where

T*(B) = Tx(B).

Designation of the minimum running time of k-th machine, i.e. the value min{7;(9) :
d € @} can be reduced to following traveling salesman problem.
Let H, = (V,E; p,s) be a complete graph, where

e aset of vertices: ¥V =1,
e asctofedges: £={(vu): v#u, vuec vV},

e weights of vertices: p(v) = px.,, vE V,

e weight of edges: s(e) = sffj, e=(i,j) € E.
Property 2 ([3]) The running time of k-th machine Tj.(T) is equal to the length (i.e. sum
of the weights of vertices and edges) of Hamiltonian cycle (n(1),m(2),...,n(n),n(1)) in
graph Hy.

Property 3 ([3]) Minimum running time of k-th machine is equal to the length of the
salesman path in the graph Hy, i.e. the minimum (due to the length) Hamiltonian cycle.

Let 7} be the optimal salesman path way in a graph Hy (k= 1,2,...,m), which is
also an optimal (i.e. minimal due to the execution time) order of the tasks from the set J
on k-th machine. This permutation will be called a pattern for k-th machine.

In order to reduce the running time of k-th machine 7;(7) from & there will be per-
mutations generated, taking into account the existence of the individual elements in the
pattern. Patterns also allow to eliminate the elements of the neighborhood which do not
give an improvement of the current value of cycle time in local search algorithms.

4.1. Tasks blocks

Let
B=(n(a),n(a+1),...,n(D)), 4

be a sequence of occurring immediately after another tasks in permutation © € ®, 7}
pattern for k-th machine and u,v (u # v, 1 < u,v < n) a pair of numbers such that:

WI: nt(a) =n"(u),n(a+1)=n"(u+1),...,n(b—1) =n*(v—1),
n(b) =m*(v), or

W2: n(b) =n"(u),n(b—1)=n"(u+1),...,mla+1) =n*(v—1),
n(a) =1 (v)

W3: B is the maximum subsequence due to the inclusion, i.e. it can be enlarged neither
by an element w(a — 1), nor by m(b+ 1), satisfying the constraints W1 or W2).

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

188 W. BOZEJKO, Z. CHACZKO, M. UCHRONSKI, M. WODECKI

If the sequence of tasks (4) satisfies the conditions W1 and W3 or W2 and W3, then
it is called a block on k-th machine (k € M).

Below there is presented a sequential algorithm for determining all of the blocks in
the permutation.

Algorithm 1. Alg_SeqBlock
= (n(l),n(1),...,m(n)) - permutation;
n* = (n*(1),n*(1),...,m*(n)) - pattern of permutation 7;
t - number of blocks;
(b1,ba,...,b;) - vector of blocks starting positions in T;
t+1;i+1;
while (i <n) do
by < i ¢ < (%)~ (n(i));
while (n(i) =*(g)) do
g—q-+1li—i+1;
i+—i+1;

The computational complexity of the algorithm is O(n).

Determination of the pattern (the optimal salesman path in the graph Hj) is an NP-
hard problem. Therefore, there will be approximate algorithms used, e.g. 2-opt. For each
machine the pattern will be determined before starting the proper algorithm.

4.2. Parallel determination of blocks

To speed up the running of the algorithm for determining the minimum cycle time,
we present a method of parallelization of the most time-consuming procedures of deter-
mining blocks performed in each iteration.

Property 4 Determination of blocks for cyclic flow shop problem with setups can be
done in time O(logn) on mn-processor CREW PRAM machine.

The method of determining the blocks is presented in the Algorithm 2.

Algorithm 2. Alg _pblocks

Input: permutations: © = (n(1),n(1),...,7(n))

and w* = (n*(1),7*(1),...,7"(n))

Output: vector of blocks starting positions (by,by,...,bx), kK — number of blocks and
vector of blocks ending positions (ej, ez, ..., ex)

Sample input:
n=(8,10,7,4,5,6,3,1,9,2)
n*=(9,3,1,6,10,7,4,5,2,8)
k=2,b=(2,7),e=(5,8)

www.czasopisma.pan.pl P N www.journals.pan.pl
N
~—

PARALLEL PATTERNS DETERMINATION
IN SOLVING CYCLIC FLOW SHOP PROBLEM WITH SETUPS

189

B, =(10,7,4,5), B, = (3,1)

Step 1. parfor r € {1,2,...,p} do
n(0) :=n(n+1):=7n"(0) :=n"(n+1) :=—1;
() 710) == (") "(n+1) = —1;
if (preceding position in 7 is identical as in ¥, i.e.
n(r—1)=7n*((n*) "' (n(r)) — 1)) then

Bplr] :=1;
else
By[r] :=0;

if (next position in 7 is identical as in T, i.e.
n(r+1) =n*((x*)"}(n(r)) + 1)) then

B.[r] =1,
else
B,[r] :==0;

Step 2. parfor r € {1,2,...,p} do
if ((Bp[r] =0) and (By[r+1] = 1)) then

Bplr]:=1;
else
Byplr] :=0;

for sample input:
B, =(0,1,0,0,0,0,1,0,0,0)

Step 3. parfor r € {1,2,...,p} do
if (B.[r] =0) and (B,[r—1] = 1)) then

B.[r] :=1;
else
B.[r] :=0;

for sample input:
B, =(0,0,0,0,1,0,0,1,0,0)

Step 4. Determine the prefix sum of P elements from table By, i.e.

Vrel12,..p Pl = Y Bylil.
i=1
for sample input:
B, = (07 1,0,0,0,0, 1a0>070)

P=(0,1,1,1,1,1,2,2,2,2)

Step 5. parfor r € {1,2,...,p} do
if (By[r] = 1) then
b[P[r]] :=r;
if (B.[r] = 1) then
elP[r]] :=r;

www.czasopisma.pan.pl N www.journals.pan.pl
N

190 W. BOZEJKO, Z. CHACZKO, M. UCHRONSKI, M. WODECKI

for sample input:

B. = (0,0,0,0,1,0,0,1,0,0)

B, =(0,1,0,0,0,0,1,0,0,0)

=(0,1,1,1,1,1,2,2,2,2)
b=(2,7), e=(5,8)

Fig. 1 shows the implementation of Algorithm 2 in the form of pblocks procedure
of block determination with n processors using OpenMP parallelization library. This
algorithm was then run on the Xeon Phi coprocessor. The input data are: the size of
permutations in which blocks n, blocks #tn, a permutation pi and permutation — a pat-
tern pi_ptr are determined. Tables b_b and b_e, after the completion of the procedure,

contain the beginning and ending positions of the following blocks.

int pblocks(int n, int *pi, int *pi_ptr,

int *b_b, int *b_e) {

int *pi_ptr_ = new int[n+2];

int *b = new int[n+1];

int *b_ = new int[n+1];

int *bk = new int[n+1];

int *p = new int[n+2];

int *p_ = new int[n+2];

pi_ptr[0] = pi_ptr[n+l] = -

zeros_pi(n, pi_ptr_);

pi_ptr_[0] = pi_ptr_[n+l1] = -1;

#pragma omp parallel for

for(int i=1; i<=n; ++i)
pi_ptr_[pi_ptr[i]] =

#pragma omp parallel for

for(int i=1; i<=n; ++i)

{
if(pi[i-1]==pi_ptr[pi_ptr_[pi[i]] - 1])
b[i] = 1; else b[i] = ©;
if(pi[i+1]==pi_ptr[pi_ptr_[pi[i]] + 11)
bk[i] = 1; else bk[i] = ©;
p[i] = p_[i] = 0;

}
p[1] = b[1]; p[@] =
#pragma omp parallel for
for(int i=1; i<=n; ++i)
if(b[i] == 0 and b[i+1] == 1)
b[i] = 1; else b[i] = ©;
#pragma omp parallel for
for(int i=n; i>=1; --i)
if(bk[i] == @ and bk[i-1] == 1)

bk[i] = 1; else bk[i] = ©;
for(int i=2; i<=n; ++i)
p[il = p[i-1] + b[i];
int nblocks = 0;
#pragma omp parallel for
for(int i=1; i<=n; ++i)
l1c(b[] == 1)
b[p[i]] =
1F(bk[] ==1)
e[p[i]] =
#pragma omp parallel for
for(int i=1; i<=n; ++i)
{
#pragma omp critical
if(b_b[i] != @ or b_e[i] != @)
nblocks++;
}
#pragma omp parallel for
for(int i=1; i<=nblocks; ++i)
if(b_b[i] == @ and b_e[i] != @)

b_b[i] = 1;
if(b_e[i] == @ and b_b[i] != @)
b_e[i] = n;

delete[] pi_ptr_; delete[] b; delete[] b_;
delete[] p; delete[] p_;
return nblocks;

Figure 1: Function of the parallel block determination.

5. Computational experiments

A parallel procedure for the blocks determination has been implemented in C++
using OpenMP library. The data for computational experiments (permutations of tasks)

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

PARALLEL PATTERNS DETERMINATION
IN SOLVING CYCLIC FLOW SHOP PROBLEM WITH SETUPS 191

were generated randomly. The number of elements of permutations changed in range
from 10°, to 107. Computational experiments were carried out in a computing environ-
ment with shared memory - the coprocessor Intel Xeon Phi 3120 (space 6GB, 1.1 GHz)
enabling the use of 228 cores.

The aim of the first phase of the experiments was to demonstrate the effectiveness of
the (sequential) mechanism of blocks based on patterns. For this purpose, a procedure
for blocks determining was placed in the classic tabu search (TS), algorithm with prohi-
bitions with tabu list determined of length 7. There were two versions of the algorithm
run - with and without blocks, for a predefined number of 1000 iterations. There was Per-
centage Relative Deviation (PRD), studied to solve the reference solution obtained with
the use of NEH algorithm (Nawaz i in. [10]) for test data from work [13]. The results
reported in Table 1, indicate that with nearly a twofold shorter time of the algorithm
running, the obtained results were much better (32.8% improvement over the NEH) as
compared to the version of the algorithm running without the block mechanism (29.0%
improvement over the NEH).

Table 1: Comparison of PRD to NEH for TS algorithm with and without the blocks -
1,000 iterations.

nxm t[s] tgls] PRD PRDg
20x5 22 0.8 -30.0 -32.7
20x 10 3.0 09 -295 -316
20 x20 4.7 1.2 -29.8 -30.7

50 x5 35.7 17.7 -325 -34.1
50 x 10 48.4 220 -29.6 -345
50 x 20 73.9 283 -283 -31.8
100 x 5 292.1 181.8 -30.7 -36.7
100x10 3919 203.8 -28.1 -33.6
100x20 604.7 2664 -279 -31.6
200x 10 32122 1791.1 -26.7 -32.9
200 x20 5255.5 24977 -262 @ -31.1
Average 9022 455.6 -29.0 -32.8

The second phase of the experiment consisted of measuring the acceleration of the
procedure for the parallel determining of the blocks. The results of computational ex-
periments for the co-processor Intel Xeon Phi 3120 were shown in Tables 2 and 3 and
presented in Fig. 2 and 3. For a different number of tasks in permutation the acceler-
ation initially increases quite rapidly, reaches a maximum, and then decreases slowly.
The number of processors for which the maximum acceleration is reached depends on
the size of the problem. Using the notion of scalability of parallel algorithms one can
say that for 5000 - 103 tasks in a permutation parallel method for block determination is

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

192 W. BOZEJKO, Z. CHACZKO, M. UCHRONSKI, M. WODECKI

characterized for p = 1,2,...,32 with a strong scalability, since with an increase in the
number of processors the speedup increases (Fig. 3).

Table 2: Speedup of pblocks procedure.

AD p=2 p=4 p=6 p=238 p=10
1 0.003 0.001 0.001 0.001 0.001

2 0.008 0.004 0.003 0.004 0.003
5 0.018 0.008 0.008 0.007 0.007
10 0.037 0.016 0.017 0.017 0.015
20 0.078 0.033 0.036 0.043 0.033
50 0.308 0.154 0.165 0.143 0.147
100 0.632 0441 0.458 0.443 0.400
200 0.961 0915 0.986 1.047 0.980
500 1.229 1.578 1.889 2.061 2.171
1000 1.309 1.943 2.498 2.773 3.024
2000 1302 2.255 2.994 3.490 3.810
5000 1.366 2.478 3.431 4.160 4.8330
10000 1.398 2.584 3.612 4.461 5.266

WA =n-103, coprocessor Intel Xeon Phi 3120A

Table 3: Speedup of pblocks procedure.

AV p=16 p=32 p=64 p=128
1 0.001 0.001 0.001 0.001
2 0.003 0.002 0.002 0.001
5 0.007 0.006 0.006 0.004
10 0.015 0.013 0.012 0.008
20 0.033 0.029 0.023 0.019
50 0.129 0.129 0.100 0.073
100 0.400 0.347 0.261 0.195
200 0.988 0.884 0.697 0.507
500 2.234 2.222 1.799 1.285
1000 3.360 3.552 2.967 2.278
2000 4.679 5.307 4.961 3.853
5000 6.306 8.270 8.154 7.043
10000 7.091 9.766 10.775 9.679
Wr=n- 103, coprocessor Intel Xeon Phi 3120A

www.czasopisma.pan.pl P N www.journals.pan.pl

T

PARALLEL PATTERNS DETERMINATION

IN SOLVING CYCLIC FLOW SHOP PROBLEM WITH SETUPS 193
12 T T T T T T
n=10+103 ——
n=100 « 103 --x---
S n=1000 « 103 ke
........................... ..., 110000+ 107
10 | e —— g
8 i
w‘"’
E
g

0 20 40 60 80 100 120 140
processors

Figure 2: Dependency of speedup on the number of processors — Intel Xeon Phi 3120A.

12 T T T T T T T T T

speedup
(2]

0 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 3: Dependency of speedup on the number of tasks — Intel Xeon Phi 3120A.

6. Conclusions and comments

This paper presents a new concept of blocks for a cyclic flow shop problem with
machine setups, using multiple patterns of different sizes. Patterns represent the optimal

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

194 W. BOZEJKO, Z. CHACZKO, M. UCHRONSKI, M. WODECKI

order of visiting cities in a traveling salesman problem, ensuring block properties in the
problem. The use of the block properties enables for a significant reduction in the number
of viewed neighbors in metaheuristic algorithms based on viewing the neighborhoods.
Future work in the work’s field could be focused on the extension of the pattern approach
(which creates blocks in a solution) by researching a distance measure based on the
pattern-based neighborhood.

References

[1] Bozejko W., Uchrofiski M., Wodecki M. (2016). Parallel metaheuristics for the
cyclic flow shop scheduling problem. Computers & Industrial Engineering, 95,
156-163.

[2] Bozejko, W., Pempera, J., Wodecki, M. (2015). Parallel Simulated Annealing Algo-
rithm for Cyclic Flexible Job Shop Scheduling Problem. Lecture Notes in Artificial
Intelligence No. 9120, Springer, 603-612.

[3] Bozejko, W., Uchronski, M., Wodecki, M. (2015). Block approach to the cyclic
flow shop scheduling. Computers & Industrial Engineering, 81, 158—166.

[4] Bozejko, W., Wodecki, M. (2007). On the theoretical properties of swap multi-
moves. Operations Research Letters, 35(2), 227-231.

[5] Brucker, P, Burke, E. K., Groenemeyer, S. (2012). A branch and bound algorithm
for the cyclic job-shop problem with transportation. Computers & Operations Re-
search, 39, 12, 3200-3214.

[6] Gertsbakh, 1., Serafini, P. (1991). Periodic transportation schedules with flexible
departure times. European Journal of Operational Research, 50, 298-309.

[7] Grabowski, J., Wodecki, M. (2004). A very fast tabu search algorithm for the per-
mutation flow shop problem with makespan criterion. Computers & Operations
Research, 31, 1891-1909.

[8] Kats, V., Levner, E. (2010). A fast algorithm for a cyclic scheduling problem with
interval data. In Proceedings of the annual operations research society of Israel
(ORSIS-2010) conference, February 2010, Nir Etzion, Israel.

[9] Mendez, C. A., Cerda, J., Grossmann, L. E., Harjunkoski, I., Fahl, M. (2006). State-
ofthe-art review of optimization methods for short-term scheduling of batch pro-
cesses. Computers and Chemical Engineering, 30, 913-946.

[10] Nawaz, M., Enscore, Jr, E.E., Ham, I. (1983). A heuristic algorithm for the m—
machine, n—job flow—shop sequencing problem. OMEGA International Journal of
Management Science, 11, 91-95.

www.czasopisma.pan.pl P N www.journals.pan.pl
N
~—

PARALLEL PATTERNS DETERMINATION
IN SOLVING CYCLIC FLOW SHOP PROBLEM WITH SETUPS 195

[11]

[12]

[13]

[14]

Pinedo, M. (2005). Planning and scheduling in manufacturing and services. New
York: Springer.

Pinnto, T., Barbosa-Povoa, A. P. F. D., Novais, A. Q. (2005). Optimal design and
retrofit of batch plants with a periodic mode of operation. Computers and Chemical
Engineering, 29, 1293-1303.

Ruiz, R., Stiitzle, T. (2008). An Iterated Greedy heuristic for the sequence depen-
dent setup times flowshop problem with makespan and weighted tardiness objec-
tives. European Journal of Operational Research, 187(3), 1143-1159.

Smutnicki, C., New features of the cyclic job shop scheduling problem. In Pro-
ceedings of 20th International Conference on Methods and Models in Automation
and Robotics MMAR 2015, IEEE Press, 1000—1005.

