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A new 3-D jerk chaotic system with two cubic
nonlinearities and its adaptive backstepping control

SUNDARAPANDIAN VAIDYANATHAN

This paper presents a new seven-term 3-D jerk chaotic system with two cubic nonlinear-
ities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative
properties of the jerk system are described. The novel jerk chaotic system has a unique equilib-
rium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel
jerk chaotic system are obtained as L1 = 0.2974, L2 = 0 and L3 = −3.8974. Since the sum of
the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic
system is dissipative. The Kaplan-Yorke dimension of the new jerk chaotic system is found as
DKY = 2.0763. Next, an adaptive backstepping controller is designed to globally stabilize the
new jerk chaotic system with unknown parameters. Moreover, an adaptive backstepping con-
troller is also designed to achieve global chaos synchronization of the identical jerk chaotic sys-
tems with unknown parameters. The backstepping control method is a recursive procedure that
links the choice of a Lyapunov function with the design of a controller and guarantees global
asymptotic stability of strict feedback systems. MATLAB simulations are shown to illustrate all
the main results derived in this work.

Key words: chaos, chaotic systems, jerk systems, chaos control, adaptive control, back-
stepping control, synchronization.

1. Introduction

Modeling and applications of chaotic systems are active research areas in the lit-
erature [1, 2, 3]. The first famous chaotic system was discovered by Lorenz, when he
was designing a weather model in 1963 [4]. Some well-known chaotic systems are Chen
system [5], Lü system [6], Cai system [7], Tigan system [8], Sprott systems [9], etc.

Some well-known paradigms of 3-D chaotic systems are Arneodo system [10],
Hénon-Heiles system [12], Lü-Chen system [13], Liu system [14], etc. Many new
chaotic systems have been also discovered like Li system [15], Sundarapandian sys-
tems [16, 17], Vaidyanathan systems [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33], Pehlivan system [34], Tacha system [35], Jafari system [36], Sampath sys-
tem [37], Pham systems [38, 39, 40, 41, 42, 43, 44], Volos system [45], Akif system [46],
etc.
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Chaos theory has applications in several fields of science and engineering such
as oscillators [47, 48, 49, 50, 51, 52, 53, 54, 55], dynamos [56, 57, 58, 59], Toka-
mak systems [60, 61], chemical reactions [62, 63, 64, 65, 66, 67, 68, 69, 70, 71],
neural networks [72, 73, 74, 75, 76, 77], neurology [78, 79, 80, 81, 82, 83], biol-
ogy [84, 85, 86, 87, 88, 89, 90, 91, 92], electrical circuits [93, 94, 95], induction mo-
tors [96], cryptosystems [97, 98], memristors [99, 100, 101], random bit generator [102],
etc.

In classical mechanics, a jerk system is expressed by an explicit third order differen-
tial equation describing the time evolution of a single scalar variable x according to the
dynamics

d3x
dt3 = f

(
d2x
dt2 ,

dx
dt

,x
)

(1)

A particularly simple example of a jerk system is the famous Coullet system [103]
given by

d3x
dt3 +a

d2x
dt2 +

dx
dt

= g(x) (2)

where g(x) is a nonlinear function such as g(x) = b(x2 − 1). The Coullet system (2)
exhibits chaos for a = 0.6 and b = 0.58.

A classical example of a cubic dissipative jerk chaotic flow was found by Sprott
[104]. In this research work, we modify the dynamics of the jerk system in [104] by
introducing two linear terms and taking different set values for the system parameters.
Thus, we obtain a novel chaotic jerk system with two cubic nonlinearities.

In most of the synchronization approaches, the master-slave or drive-response for-
malism is used. If a particular chaotic system is called the master or drive system and
another chaotic system is called the slave or response system, then the idea of syn-
chronization is to use the output of the master system to control the response of the
slave system so that the slave system tracks the output of the master system asymptoti-
cally [105, 106, 107, 108].

In the chaos literature, an impressive variety of techniques have been proposed for
chaos synchronization such as active control method [109, 110, 111, 112, 113, 114, 115],
adaptive control method [116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127],
backstepping control method [128, 129, 130, 131, 132, 133, 134, 135], sliding mode
control method [136, 137, 138, 139, 140, 141, 142, 143, 144], etc.

All the main adaptive backstepping control results in this paper are proved using Lya-
punov stability theory [145]. MATLAB simulations are depicted to illustrate the phase
portraits of the novel jerk chaotic system, adaptive stabilization and synchronization re-
sults for the novel 3-D jerk chaotic system.

This research paper is organized as follows. Section 2 contains the dynamics and
phase portraits of the novel chaotic jerk system. Section 3 details the qualitative prop-
erties of the novel chaotic jerk system. In Section 4, we apply adaptive backstepping
control method to design an adaptive feedback control law that stabilizes the states of
the novel jerk system.
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In Section 5, we apply adaptive backstepping control method to design an adap-
tive feedback control law that achieves complete and exponential synchronization of the
states of identical novel chaotic jerk systems. Finally, Section 6 contains a summary of
the main results obtained in this work.

2. A new jerk chaotic system

A classical example of a cubic dissipative jerk chaotic flow was found by Sprott [104]
and described by the third-order differential equation

...x =−aẍ+ xẋ2 − x3 (with a = 3.6) (3)

In system form, Sprott’s differential equation (3) corresponds to the jerk system
ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax3 + x1x2
2 − x3

1

(4)

where a = 3.6 yields a chaotic attractor.
Using Wolf’s algorithm [146], the Lyapunov exponents of the Sprott system (4) for

a = 3.6 are numerically obtained as

L1 = 0.1360, L2 = 0, L3 =−3.7367 (5)

From (5), we see that the Maximal Lyapunov Exponent (MLE) of the Sprott system
(4) is L1 = 0.1360. Since L1 > 0, the Sprott system (4) is chaotic.

The Kaplan-Yorke dimension of a chaotic system of order n is defined as

DKY = j+
L1 +L2 + · · ·+L j

|L j+1|
(6)

where L1 ­ L2 ­ · · · ­ Ln are the n Lyapunov exponents of the chaotic system and j is
the largest integer for which L1 +L2 + · · ·+L j ­ 0. Thus, the Kaplan-Yorke dimension
of the Sprott jerk system (4) is calculated as

DKY = 2+
L1 +L2

|L3|
= 2.0364 (7)

In this work, we propose a new jerk chaotic system, which is obtained by adding two
linear systems −bx and cẋ, where b,c > 0, to the Sprott’s jerk function in the ODE (3).
Thus, our new jerk chaotic flow is described by the third order ODE

...x =−aẍ+ xẋ2 − x3 −bx+ cẋ (8)
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In system form, the third order ODE (8) corresponds to the jerk system
ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax3 −bx1 + cx2 + x1x2
2 − x3

1

(9)

where a,b and c are positive parameters.
In this paper, we shall show that the system (9) is chaotic when the parameters a and

b take the values
a = 3.6, b = 1.3, c = 0.1 (10)

Using Wolf’s algorithm [146], the Lyapunov exponents of the novel system (9) for
the parameter values (10) are numerically obtained as

L1 = 0.2974, L2 = 0, L3 =−3.8974 (11)

From (11), we see that the Maximal Lyapunov Exponent (MLE) of the novel system
(9) is L1 = 0.2974. Since L1 > 0, the novel system (9) is chaotic. Moreover, we also
note that the MLE of the novel jerk system (9) is greater than the MLE of the Sprott jerk
system (4). Also, the Kaplan-Yorke dimension of the novel jerk system (9) is calculated
as

DKY = 2+
L1 +L2

|L3|
= 2.0763, (12)

which is greater than the Kaplan-Yorke dimension of the Sprott jerk system (4).
For numerical simulations, we take the initial conditions of the system (9) as

x1(0) = 0.5, x2(0) = 0.5, x3(0) = 0.5 (13)

The initial conditions in (13) have been chosen arbitrarily for the sake of simulations.
For other initial conditions in R3 also, the system (9) is chaotic with a similar strange
attractor.

Figure 1 depicts the chaotic attractor of the novel jerk system (9) in 3-D view. Figures
2-4 depict the 2-D projection of the strange chaotic attractor of the novel jerk chaotic
system (9) on (x1,x2),(x2,x3) and (x3,x1) planes, is shown, respectively.
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Figure 1: Strange attractor of the 3-D novel jerk chaotic System
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Figure 2: 2-D projection of the novel jerk chaotic system on the (x1,x2) plane
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Figure 3: 2-D projection of the novel jerk chaotic system on the (x2,x3) plane
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Figure 4: 2-D projection of the novel jerk chaotic system on the (x1,x3) plane
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3. Analysis of the 3-D novel jerk chaotic system

3.1. Dissipativity

In vector notation, the new jerk system (9) can be expressed as

ẋ = f (x) =

 f1(x1,x2,x3)

f2(x1,x2,x3)

f3(x1,x2,x3)

 , (14)

where 
f1(x1,x2,x3) = x2

f2(x1,x2,x3) = x3

f3(x1,x2,x3) = −ax3 −bx1 + cx2 + x1x2
2 − x3

1

(15)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt(Ω), where
Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t). By Liouville’s
theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f )dx1 dx2 dx3 (16)

The divergence of the novel jerk system (14) is found as:

∇ · f =
∂ f1

∂x1
+

∂ f2

∂x2
+

∂ f3

∂x3
=−a < 0 (17)

Inserting the value of ∇ · f from (17) into (16), we get

V̇ (t) =
∫

Ω(t)

(−a)dx1 dx2 dx3 =−aV (t) (18)

Integrating the first order linear differential equation (18), we get

V (t) = exp(−at)V (0) (19)

From Eq. (19), it is clear that V (t)→ 0 exponentially as t → ∞. This shows that the novel
3-D jerk chaotic system (9) is dissipative. Hence, the system limit sets are ultimately
confined into a specific limit set of zero volume, and the asymptotic motion of the novel
jerk chaotic system (9) settles onto a strange attractor of the system.

3.2. Equilibrium Points

The equilibrium points of the 3-D novel jerk chaotic system (9) are obtained by
solving the equations

f1(x1,x2,x3) = x2 = 0
f2(x1,x2,x3) = x3 = 0
f3(x1,x2,x3) = −ax3 −bx1 + cx2 + x1x2

2 − x3
1 = 0

(20)
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We take the parameter values as in the chaotic case (10), i.e.

a = 3.6, b = 1.3, c = 0.1 (21)

Thus, the equilibrium points of the system (9) are characterized by the equations

x2 = 0, x3 = 0, x1(x2
1 +b) = 0 (22)

Solving the system (22), we get the equilibrium points of the system (9) as

E0 =

 0
0
0

 (23)

The Jacobian matrix of the novel jerk chaotic system (9) at E0 is obtained as

J0 = J(E0) =

 0 1 0
0 0 1
−b c −a

=

 0 1 0
0 0 1

−1.3 0.1 −3.6

 (24)

We find that J0 has the eigenvalues

λ1 =−3.7208, λ2,3 = 0.0604±0.5880 i (25)

This shows that the equilibrium E0 is a saddle-focus point, which is unstable.

3.3. Lyapunov exponents and Kaplan-Yorke dimension

We take the parameter values of the novel jerk system (9) as

a = 3.6, b = 1.3, c = 0.1 (26)

Then the Lyapunov exponents are numerically obtained using Wolf’s algorithm [146] as

L1 = 0.2974, L2 = 0, L3 =−3.8974 (27)

Thus, the maximal Lyapunov exponent (MLE) of the novel jerk system (9) is L1 =
0.2974 > 0, which shows that the system (9) has chaotic behavior.

Since L1 +L2 +L3 = −3.6 = −a < 0, it follows that the novel jerk chaotic system
(9) is dissipative. Also, the Kaplan-Yorke dimension of the novel jerk chaotic system (9)
is obtained as

DKY = 2+
L1 +L2

|L3|
= 2.0763, (28)

which is fractional.
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4. Adaptive control of the 3-D novel jerk chaotic system

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel jerk chaotic system with unknown
parameters. Thus, we consider the 3-D novel jerk chaotic system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax3 −bx1 + cx2 + x1x2
2 − x3

1 +u

(29)

where a,b,c are unknown constant parameters, and u is a backstepping control law to be
determined using estimates of the unknown system parameters.

The parameter estimation errors are defined as:
ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

(30)

Differentiating (30) with respect to t, we obtain the following equations:
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

(31)

Next, we shall state and prove the main result of this section.

Theorem 1 The 3-D novel jerk chaotic system (29), with unknown parameters a,b and
c, is globally and exponentially stabilized by the adaptive feedback control law,

u(t) =−[3− b̂(t)]x1 − [5+ ĉ(t)]x2 − [3− â(t)]x3 − x1x2
2 + x3

1 − kz3 (32)

where k > 0 is a gain constant,

z3 = 2x1 +2x2 + x3, (33)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by
˙̂a(t) = −z3x3

˙̂b(t) = −z3x1

˙̂c(t) = z3x2

(34)
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Proof We prove this result via Lyapunov stability theory [145].
First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (35)

where
z1 = x1 (36)

Differentiating V1 along the dynamics (29), we get

V̇1 = z1ż1 = x1x2 =−z2
1 + z1(x1 + x2) (37)

Now, we define
z2 = x1 + x2 (38)

Using (38), we can simplify the equation (37) as

V̇1 =−z2
1 + z1z2 (39)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(40)

Differentiating V2 along the dynamics (29), we get

V̇2 =−z2
1 − z2

2 + z2(2x1 +2x2 + x3) (41)

Now, we define
z3 = 2x1 +2x2 + x3 (42)

Using (42), we can simplify the equation (41) as

V̇2 =−z2
1 − z2

2 + z2z3 (43)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,ea,eb,ec) =V2(z1,z2)+
1
2

z2
3 +

1
2
(e2

a + e2
b + e2

c) (44)

which is a positive definite function on R6. Differentiating V along the dynamics (29),
we get

V̇ =−z2
1 − z2

2 − z2
3 + z3(z3 + z2 + ż3)− ea ˙̂a− eb

˙̂b− ec ˙̂c (45)

Eq. (45) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 + z3S− ea ˙̂a− eb

˙̂b− ec ˙̂c (46)
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where
S = z3 + z2 + ż3 = z3 + z2 +2ẋ1 +2ẋ2 + ẋ3 (47)

A simple calculation gives

S = (3−b)x1 +(5+ c)x2 +(3−a)x3 + x1x2
2 − x3

1 +u (48)

Substituting the adaptive control law (32) into (48), we obtain

S =−[b− b̂(t)]x1 +[c− ĉ(t)]x2 − [a− â(t)]x3 − kz3 (49)

Using the definitions (31), we can simplify (49) as

S =−ebx1 + ecx2 − eax3 − kz3 (50)

Substituting the value of S from (50) into (46), we obtain

V̇ =−z2
1 − z2

2 − (1+ k)z2
3 + ea

(
−z3x3 − ˙̂a

)
+ eb

(
−z3x1 − ˙̂b

)
+ ec

(
z3x2 − ˙̂c

)
(51)

Substituting the update law (34) into (51), we get

V̇ =−z2
1 − z2

2 − (1+ k)z2
3, (52)

which is a negative semi-definite function on R6. From (52), it follows that the vec-
tor z(t) = (z1(t),z2(t),z3(t)) and the parameter estimation error (ea(t),eb(t),ec(t))) are
globally bounded, i.e.[

z1(t) z2(t) z3(t) ea(t) eb(t) ec(t)
]
∈ Lin f ty (53)

Also, it follows from (52) that

V̇ ¬−z2
1 − z2

2 − z2
3 =−∥z∥2 (54)

That is,
∥z∥2 ¬−V̇ (55)

Integrating the inequality (55) from 0 to t, we get

t∫
0

|z(τ)|2 dτ¬V (0)−V (t) (56)

From (56), it follows that z(t) ∈ L2. From Eq. (29), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [145], we conclude that z(t)→ 0 exponentially as t → ∞
for all initial conditions z(0) ∈ R3. Hence, it is immediate that x(t)→ 0 exponentially as
t → ∞ for all initial conditions x(0) ∈ R3. This completes the proof.
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For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (29) and (34),
when the adaptive control law (32) is applied.

The parameter values of the novel jerk chaotic system (29) are taken as in the chaotic
case (10), i.e.

a = 3.6, b = 1.3, c = 0.1 (57)

The positive gain constant k is taken as k = 10. As initial conditions of the novel jerk
chaotic system (29), we take

x1(0) = 7.5, x2(0) = 12.1, x3(0) = 15.4 (58)

Also, as initial conditions of the parameter estimates, we take

â(0) = 3.1, b̂(0) = 6.8, ĉ(0) = 9.2 (59)

In Figure 5, the exponential convergence of the controlled states is depicted, when the
adaptive control law (32) and parameter update law (34) are implemented.
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Figure 5: Time-history of the controlled states x1(t),x2(t),x3(t)

5. Adaptive synchronization of the identical 3-D novel jerk chaotic systems

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical 3-D novel jerk chaotic
systems with unknown parameters.
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As the master system, we consider the 3-D novel jerk chaotic system given by
ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax3 −bx1 + cx2 + x1x2
2 − x3

1

(60)

where x1,x2,x3 are the states of the system, and a,b,c are unknown constant parameters.
As the slave system, we consider the 3-D novel jerk chaotic system given by

ẏ1 = y2

ẏ2 = y3

ẏ3 = −ay3 −by1 + cy2 + y1y2
2 − y3

1 +u

(61)

where y1,y2,y3 are the states of the system, and u is a backstepping control to be deter-
mined using estimates of the unknown system parameters.

We define the synchronization errors between the states of the master system (60)
and the slave system (61) as 

e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3

(62)

Then the error dynamics is easily obtained as
ė1 = e2

ė2 = e3

ė3 = −ae3 −be1 + ce2 + y1y2
2 − x1x2

2 − y3
1 + x3

1 +u

(63)

The parameter estimation errors are defined as:
ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

(64)

Differentiating (64) with respect to t, we obtain the following equations:
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

(65)

Next, we shall state and prove the main result of this section.
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Theorem 2 The identical 3-D novel jerk chaotic systems (60) and (61) with unknown
parameters a,b and c are globally and exponentially synchronized by the adaptive con-
trol law  u(t) = −[3− b̂(t)]e1 − [5+ ĉ(t)]e2 − [3− â(t)]e3

−y1y2
2 + x1x2

2 + y3
1 − x3

1 − kz3
(66)

where k > 0 is a gain constant,

z3 = 2e1 +2e2 + e3, (67)

and the update law for the parameter estimates â(t), b̂(t) is given by
˙̂a(t) = −z3e3

˙̂b(t) = −z3e1

˙̂c(t) = z3e2

(68)

Proof We prove this result via backstepping control method and Lyapunov stability
theory.

First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (69)

where
z1 = e1 (70)

Differentiating V1 along the error dynamics (63), we get

V̇1 = z1ż1 = e1e2 =−z2
1 + z1(e1 + e2) (71)

Now, we define
z2 = e1 + e2 (72)

Using (72), we can simplify the equation (71) as

V̇1 =−z2
1 + z1z2 (73)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(74)

Differentiating V2 along the error dynamics (63), we get

V̇2 =−z2
1 − z2

2 + z2(2e1 +2e2 + e3) (75)
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Now, we define
z3 = 2e1 +2e2 + e3 (76)

Using (76), we can simplify the equation (75) as

V̇2 =−z2
1 − z2

2 + z2z3 (77)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,ea,eb,ec,ep) =V2(z1,z2)+
1
2

z2
3 +

1
2
(
e2

a + e2
b + e2

c
)

(78)

which is a positive definite function on R6. Differentiating V along the error dynamics
(63), we get

V̇ =−z2
1 − z2

2 − z2
3 + z3(z3 + z2 + ż3)− ea ˙̂a− eb

˙̂b− ec ˙̂c (79)

Eq. (79) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 + z3S− ea ˙̂a− eb

˙̂b− ec ˙̂c (80)

where
S = z3 + z2 + ż3 = z3 + z2 +2ė1 +2ė2 + ė3 (81)

A simple calculation gives

S = (3−b)e1 +(5+ c)e2 +(3−a)e3 + y1y2
2 − x1x2

2 − y3
1 + x3

1 +u (82)

Substituting the adaptive control law (66) into (48), we obtain

S =−[b− b̂(t)]e1 +[c− ĉ(t)]e2 − [a− â(t)]e3 − kz3 (83)

Using the definitions (65), we can simplify (83) as

S =−ebe1 + ece2 − eae3 − kz3 (84)

Substituting the value of S from (84) into (80), we obtain{
V̇ = −z1 − z2 − (1+ k)z2

3 + ea[−z3e3 − ˙̂a]+ eb[−z3e1 − ˙̂b]

+ec[z3e2 − ˙̂c]
(85)

Substituting the update law (68) into (85), we get

V̇ =−z2
1 − z2

2 − (1+ k)z2
3, (86)

which is a negative semi-definite function on R6. From (86), it follows that the vec-
tor z(t) = (z1(t),z2(t),z3(t)) and the parameter estimation error (ea(t),eb(t),ec(t)) are
globally bounded, i.e.[

z1(t) z2(t) z3(t) ea(t) eb(t) ec(t)
]
∈ Lin f ty (87)
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Also, it follows from (86) that

V̇ ¬−z2
1 − z2

2 − z2
3 =−∥z∥2 (88)

That is,
∥z∥2 ¬−V̇ (89)

Integrating the inequality (89) from 0 to t, we get

t∫
0

|z(τ)|2 dτ¬V (0)−V (t) (90)

From (90), it follows that z(t) ∈ L2. From Eq. (63), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that z(t) → 0 exponentially as t → ∞ for
all initial conditions z(0) ∈ R3. Hence, it is immediate that e(t) → 0 exponentially as
t → ∞ for all initial conditions e(0) ∈ R3. This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (60) and (61).

The parameter values of the novel jerk chaotic systems are taken as in the chaotic
case, (10), i.e.

a = 3.6, b = 1.3, c = 0.1 (91)

The positive gain constant is taken as k = 10. As initial conditions of the master chaotic
system (60), we take

x1(0) =−5.8, x2(0) = 3.7, x3(0) =−4.9 (92)

As initial conditions of the slave chaotic system (61), we take

y1(0) = 4.5, y2(0) = 8.4, y3(0) =−8.5 (93)

Also, as initial conditions of the parameter estimates, we take

â(0) = 11.2, b̂(0) = 6.1, ĉ(0) = 12.6 (94)

In Figs. 6-8, the complete synchronization of the identical 3-D jerk chaotic systems
(60) and (61) is shown, when the adaptive control law (66) and the parameter update law
(68) are implemented.

Also, in Fig. 9, the time-history of the synchronization errors e1(t),e2(t),e3(t), is
shown.
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Figure 6: Synchronization of the states x1(t) and y1(t)

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

Time (sec)

x 2, y
2

x
2

y
2

Figure 7: Synchronization of the states x2(t) and y2(t)



426 SUNDARAPANDIAN VAIDYANATHAN

0 1 2 3 4 5 6 7 8 9 10
−40

−30

−20

−10

0

10

20

30

Time (sec)

x 3, y
3

x
3

y
3

Figure 8: Synchronization of the states x3(t) and y3(t)
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Figure 9: Time-history of the synchronization errors e1(t),e2(t),e3(t)
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6. Conclusions

In this paper, we announced a seven-term novel 3-D jerk chaotic system with two
cubic nonlinearities. The phase portraits of the novel jerk chaotic system were displayed
and the qualitative properties were discussed. Next, an adaptive backstepping controller
was designed to globally stabilize the novel jerk chaotic system with unknown parame-
ters. Moreover, an adaptive backstepping controller was also designed to achieve global
chaos synchronization of the identical jerk chaotic systems with unknown parameters.
MATLAB simulations were depicted to illustrate the phase portraits of the novel jerk
chaotic system and also the adaptive backstepping control results.
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