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Dual hesitant pythagorean fuzzy Hamacher aggregation
operators in multiple attribute decision making

GUIWU WEI and MAO LU

In this paper, we investigate the multiple attribute decision making (MADM) problem
based on the Hamacher aggregation operators with dual Pythagorean hesitant fuzzy informa-
tion. Then, motivated by the ideal of Hamacher operation, we have developed some Hamacher
aggregation operators for aggregating dual hesitant Pythagorean fuzzy information. The promi-
nent characteristic of these proposed operators are studied. Then, we have utilized these opera-
tors to develop some approaches to solve the dual hesitant Pythagorean fuzzy multiple attribute
decision making problems. Finally, a practical example for supplier selection in supply chain
management is given to verify the developed approach and to demonstrate its practicality and
effectiveness.

Key words: multiple attribute decision making (MADM); dual Pythagorean hesitant fuzzy
values; dual hesitant Pythagorean fuzzy Hamacher hybrid average (DHPFHHA) operator; dual
hesitant Pythagorean fuzzy Hamacher hybrid geometric (DHPFHHG) operator; power aggre-
gation operators.

1. Introduction

Atanassov [1,2] introduced the concept of intuitionistic fuzzy set (IFS) character-
ized by a membership function and a non-membership function, which is a general-
ization of the concept of fuzzy set [3] whose basic component is only a membership
function. Xu [4] developed the intuitionistic fuzzy weighted averaging (IFWA) operator,
intuitionistic fuzzy ordered weighted averaging (IFOWA) operator and the intuitionistic
fuzzy hybrid aggregation (IFHA) operator. Xu [5] developed some geometric aggre-
gation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator,
the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator, and the intu-
itionistic fuzzy hybrid geometric (IFHG) operator and gave an application of the IFHG
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operator to multiple attribute group decision making with intuitionistic fuzzy informa-
tion. Xu and Yager [6] investigated the dynamic intuitionistic fuzzy multiple attribute
decision making problems and developed some aggregation operators such as the dy-
namic intuitionistic fuzzy weighted averaging (DIFWA) operator and uncertain dynamic
intuitionistic fuzzy weighted averaging (UDIFWA) operator to aggregate dynamic or un-
certain dynamic intuitionistic fuzzy information. Wei [7] proposed some dynamic geo-
metric aggregation operators such as the dynamic intuitionistic fuzzy weighted geomet-
ric (DIFWG) operator and uncertain dynamic intuitionistic fuzzy weighted geometric
(UDIFWG) operator to aggregate dynamic or uncertain dynamic intuitionistic fuzzy in-
formation. Wei [8] proposed two new aggregation operators: induced intuitionistic fuzzy
ordered weighted geometric (I-IFOWG) operator and induced interval-valued intuition-
istic fuzzy ordered weighted geometric (I-IIFOWG) operator. Wei and Zhao [9] devel-
oped two new aggregation operators: induced intuitionistic fuzzy correlated averaging
(I-IFCA) operator and induced intuitionistic fuzzy correlated geometric (I-IFCG) op-
erator. Yu et al. [10] proposed some intuitionistic fuzzy aggregation operators such as
the intuitionistic fuzzy prioritized weighted average (IFPWA) operator, the intuitionistic
fuzzy prioritized weighted geometric (IFPWG) operator. Xu [11] developed a series of
operators for aggregating intuitionistic fuzzy numbers and established various properties
of these power aggregation operators. Xu and Chen [12] proposed an aggregation tech-
nique called the intuitionistic fuzzy Bonferroni mean for aggregating intuitionistic fuzzy
information. Xu and Xia [13] studied the induced generalized aggregation operators un-
der intuitionistic fuzzy environments. The intuitionistic fuzzy set has received more and
more attention since its appearance[14-28].

More recently, Pythagorean fuzzy set (PFS) [29-30] has emerged as an effective tool
for depicting uncertainty of the MADM problems. The PFS is also characterized by the
membership degree and the non-membership degree, whose sum of squares is less than
or equal to 1, the PFS is more general than the IFS. In some cases, the PFS can solve the
problems that the IFS cannot, for example, if a DM gives the membership degree and
the non-membership degree as 0.8 and 0.6, respectively, then it is only valid for the PFS.
In other words, all the intuitionistic fuzzy degrees are a part of the Pythagorean fuzzy
degrees, which indicates that the PFS is more powerful to handle the uncertain problems.
Zhang and Xu[31]provided the detailed mathematical expression for PFS and introduced
the concept of Pythagorean fuzzy number (PFN). Meanwhile, they also developed a
Pythagorean fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal So-
lution) for handling the MCDM problem within PFNs. Peng and Yang [32] proposed the
division and subtraction operations for PFNs, and also developed a Pythagorean fuzzy
superiority and inferiority ranking method to solve multicriteria group decision making
problem with PFNs. Afterwards, Beliakov and James [33] focused on how the notion
of "averaging" should be treated in the case of PFNs and how to ensure that the aver-
aging aggregation functions produce outputs consistent with the case of ordinary fuzzy
numbers. Reformat and Yager [34] applied the PFNs in handling the collaborative-based
recommender system.
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In this paper, we introduce dual hesitant Pythagorean fuzzy set (DHPFS), which is a
new extension of PFS and dual hesitant fuzzy set(DHFs) [35]. It’s clear that the DHPFSs
consist of two parts, that is, the membership degrees function and the non-membership
degrees function, supporting a more exemplary and flexible access to assign values for
each element in the domain, and we have to handle two kinds of degrees in this situation.
For example, in a multiple attribute decision-making problem, some decision makers
consider as possible values for the membership degree of into the set a few different
values 0.4, 0.5, and 0.6, and for the non-membership degrees 0.1, 0.2 and 0.3 replacing
just one number or a tuple. So, the certainty and uncertainty on the possible values are
somehow limited, respectively, which can reflect the original information given by the
decision makers as much as possible. Utilizing DHPFSs can take much more information
into account, the more values we obtain from the decision makers, the greater epistemic
certainty we have, and thus, compared to the existing sets, DHPFS can be regarded as
a more comprehensive set, which supports a more flexible approach when the decision
makers provide their judgments.

Hamacher t-conorm and t-norm, which are the generalization of algebraic and Ein-
stein t-conorm and t-norm [36], are more general and more flexible. There is important
significance to research aggregation operators based on Hamacher operations and their
application to MADM problems. However, all the above approaches are unsuitable to
aggregate these dual hesitant Pythagorean fuzzy numbers on the basis of the Hamacher
operations [37]. Thus, based on the Hamacher operations, how to aggregate these dual
hesitant Pythagorean fuzzy numbers is an interesting topic. To solve this issue, in this
paper, we shall develop some dual hesitant Pythagorean fuzzy Hamacher aggregation
operators on the basis of the traditional Hamacher operations [37-42]. In order to do so,
the remainder of this paper is set out as follows. In the next section, we introduce some
basic concepts related to Pythagorean fuzzy set, dual hesitant Pythagorean fuzzy set and
their operational laws. In Section 3, we shall propose some dual hesitant Pythagorean
fuzzy Hamacher aggregation operators. In Section 4, we shall propose some dual hesi-
tant Pythagorean fuzzy Hamacher power aggregation operators. In Section 5, based on
these operators, we shall propose some models for multiple attribute decision making
problems with dual hesitant Pythagorean fuzzy information. In Section 6, we present a
numerical example for supplier selection in supply chain management with dual hesitant
Pythagorean fuzzy information in order to illustrate the method proposed in this paper.
Section 7 concludes the paper with some remarks.

2. Preliminaries

2.1. Pythagorean fuzzy set

The basic concepts of PFSs [29-30] are briefly reviewed in this section. Afterwards,
novel score and accuracy functions for PFNs are proposed. Furthermore, a new compar-
ison method for PFNs is developed.
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Definition 1 [29-30] Let X be a fix set. A PFS is an object having the form

P = {⟨x,(µP (x) ,νP (x))⟩ |x ∈ X } (1)

where µP : X → [0,1] the function defines the degree of membership and the function νP :
X → [0,1] defines the degree of non-membership of the element x ∈ X to P, respectively,
and, for every x ∈ X, it holds that

(µp (x))
2 +(νp (x))

2 6 1. (2)

Definition 2 [31] Let ã1 = (µ1,ν1), ã2 = (µ2,ν2), and ã = (µ,ν) be three Pythagorean
fuzzy numbers, and some basic operations on them are defined as follows:

(1) ã1 ⊕ ã2 =

(√
(µ1)

2 +(µ2)
2 − (µ1)

2(µ2)
2,ν1ν2

)
;

(2) ã1 ⊗ ã2 =

(
µ1µ2,

√
(ν1)

2 +(ν2)
2 − (ν1)

2(ν2)
2
)

;

(3) λã =

(√
1− (1−µ2)λ,νλ

)
,λ > 0;

(4) (ã)λ =

(
µλ
√

1− (1−ν2)λ
)
,λ > 0;

(5) ãc = (ν,µ) .

2.2. Dual hesitant Pythagorean fuzzy set

In this section, we introduce dual hesitant Pythagorean fuzzy set (DHPFS), which
is a new extension of PFS and dual hesitant fuzzy set [35]. It is clear that the DHPFSs
consist of two parts, that is, the membership hesitancy function and the non-membership
hesitancy function, supporting a more exemplary and flexible access to assign values
for each element in the domain, and we have to handle two kinds of hesitancy in this
situation.

Definition 3 Let X be a fixed set, then a dual hesitant Pythagorean fuzzy set (DHPFS)
on X is described as:

D = (⟨x,hP (x) ,gP (x)⟩ |x ∈ X ) (3)

in which hp(x) and gp(x) are two sets of some values in [0,1], denoting the possible
membership degrees and non-membership degrees of the element x ∈ X to the set D
respectively, with the conditions:

γ2 +η2 6 1

where γ ∈ hP (x) , η ∈ gP (x), for all x ∈ X. For convenience, the pair d (x) =
(hP (x) ,gP (x)) is called a dual hesitant Pythagorean fuzzy number (DHPFN) denoted
by d = (h,g), with the conditions: γ ∈ h, η ∈ g, 0 6 γ, η 6 1, 0 6 γ2 +η2 6 1.
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To compare the DHPFNs, in the following, we shall give the following comparison
laws:

Definition 4 Let d = (h,g) be a DHPFNs, s(d) = 1
2

(
1+ 1

#h ∑γ∈h γ2 − 1
#g ∑η∈g η2

)
the

score function of d, and p(d) = 1
#h ∑γ∈h γ2 + 1

#g ∑η∈g η2 the accuracy function of d,
where #h and #g are the numbers of the elements in h and g respectively, then, let
di = (hi,gi) (i = 1,2) be any two DHPFNs, we have the following comparison laws:

• If s(d1)> s(d2), then d1 is superior to d2, denoted by d1 ≻ d2;

• If s(d1) = s(d2), then

(1) If p(d1) = p(d2), then d1 is equivalent to d2, denoted by d1 ∼ d2;

(2) If p(d1)> p(d2), then d1 is superior to d2, denoted by d1 ≻ d2.

Example 1 Let d1 = { { 0.3,0.4} ,{ 0.6} } , d2 = { { 0.4,0.5} ,{ 0.3,0.4)} by Definition
4, we can get:

s(d1) =
1
2

(
1+

1
2
(
0.32 +0.42)−0.62

)
= 0.3825

s(d2) =
1
2

(
1+

1
2
(
0.42 +0.52)− 1

2
(
0.32 +0.42))= 0.5400

Thus, s(d2)> s(d1), so d2 ≻ d1. Then, we define some new operations on the DHPFNs
d, d1 and d2:

(1) dλ = ∪γ∈h,η∈g

{{
γλ} ,{√1− (1−η2)λ

}}
,λ > 0;

(2) λd = ∪γ∈h,η∈g

{{√
1− (1− γ2)λ

}
,
{

ηλ}} ,λ > 0;

(3) d1 ⊕d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{√
(γ1)

2 +(γ2)
2 − (γ1)

2(γ2)
2
}
,{η1η2}

}
;

(4) d1 ⊗d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{
{γ1γ2} ,

{√
(η1)

2 +(η2)
2 − (η1)

2(η2)
2
}}

.

2.3. Hamacher operations of dual hesitant Pythagorean fuzzy set

Based on the traditional Hamacher operations [36], in the following, we shall define
the Hamacher operations on the DHPFNs d, d1 and d2.

(1) dλ = ∪γ∈h,η∈g

{{
√γ(γ1)

λ√
(1+(γ−1)(1−(γ1)

2))
λ
+(γ−1)(γ1)

2λ

}
,
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(1+(γ−1)(η1)

2)
λ−(1−(η1)

2)
λ

(1+(γ−1)(η1)
2)

λ
+(γ−1)(1−(η1)

2)
λ

}}
, λ > 0;

(2) λd = ∪γ∈h,η∈g

{{√
(1+(γ−1)(γ1)

2)
λ−(1−(γ1)

2)
λ

(1+(γ−1)(γ1)
2)

λ
+(γ−1)(1−(γ1)

2)
λ

}
,

{
√γ(η1)

λ√
(1+(γ−1)(1−(η1)

2))
λ
+(γ−1)(η1)

2λ

}}
, λ > 0

(3) d1 ⊕d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{√
(γ1)

2+(γ2)
2−(γ1)

2(γ2)
2−(1−γ)(γ1)

2(γ2)
2

1−(1−γ)(γ1)
2(γ2)

2

}
,{

η1η2√
γ+(1−γ)((η1)

2+(η2)
2−(η1)

2(η2)
2)

}}
, λ > 0

(4) d1 ⊗d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{
γ1γ2√

γ+(1−γ)((γ1)
2+(γ2)

2−(γ1)
2(γ2)

2)

}
,

{√
(η1)

2+(η2)
2−(η1)

2(η2)
2−(1−γ)(η1)

2(η2)
2

1−(1−γ)(η1)
2(η2)

2

}}
, λ > 0

3. Dual hesitant Pythagorean fuzzy Hamacher aggregation operators

3.1. Dual hesitant Pythagorean fuzzy Hamacher arithmetic aggregation operators

In the following, we shall propose some dual hesitant Pythagorean fuzzy Hamacher
arithmetic aggregation operator based on the Hamacher operations of DHPFNs.

Definition 5 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the dual
hesitant Pythagorean fuzzy Hamacher weighted average (DHPFHWA) operator as fol-
lows:

DHPFHWAω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
ω jd̃ j

)
(4)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), and ω j > 0,

n
∑
j=1

ω j = 1.

Based on the operations of the dual hesitant Pythagorean fuzzy values described and
mathematical induction method, we can drive the Theorem 1.



DUAL HESITANT PYTHAGOREAN FUZZY HAMACHER AGGREGATION OPERATORS
IN MULTIPLE ATTRIBUTE DECISION MAKING 371

Theorem 1 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then their aggregated
value by using the DHPFHWA operator is also a DHPFN, and

DHPFHWAω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
ω jd̃ j

)

= ∪γ j∈h j,η j∈g j



√√√√√√√

n
∏
j=1

(
1+(γ−1)(γ j)

2
)ω j

−
n
∏
j=1

(
1− (γ j)

2
)ω j

n
∏
j=1

(
1+(γ−1)(γ j)

2
)ω j

+(γ−1)
n
∏
j=1

(
1− (γ j)

2
)ω j

 ,


√γ

n
∏
j=1

(η j)
ω j√

n
∏
j=1

(
1+(γ−1)

(
1− (η j)

2
))ω j

+(γ−1)
n
∏
j=1

(η j)
2ω j





(5)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), and ω j > 0,

n
∑
j=1

ω j = 1, γ > 0.

Now, we can discuss some special cases of the DHPFHWA operator with respect to
the parameter γ.

• When γ = 1, DHPFHWA operator reduces to the dual hesitant Pythagorean fuzzy
weighted average (DHPFWA) operator as follows:

DHPFWAω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
ω jd̃ j

)
= ∪γ j∈h j,η j∈g j

{{√
1−

n

∏
j=1

(
1− (γ j)

2
)ω j

}
,

{
n

∏
j=1

(η j)
ω j

}} (6)
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• When γ = 2, DHPFHWA operator reduces to the dual hesitant Pythagorean fuzzy
Einstein weighted average (DHPFEWA) operator as follows:

DHPFEWAω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
ω jd̃ j

)

= ∪γ j∈h j,η j∈g j



√√√√√√√

n
∏
j=1

(
1+(γ j)

2
)ω j

−
n
∏
j=1

(
1− (γ j)

2
)ω j

n
∏
j=1

(
1+(γ j)

2
)ω j

+
n
∏
j=1

(
1− (γ j)

2
)ω j

 ,


√

2
n
∏
j=1

(η j)
ω j√

n
∏
j=1

(
2− (η j)

2
)ω j

+
n
∏
j=1

(η j)
2ω j





(7)

Definition 6 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the dual
hesitant Pythagorean fuzzy Hamacher ordered weighted average (DHPFHOWA) opera-
tor as follows:

DHPFHOWAw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w jd̃σ( j)

)

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)



√√√√√√√

n
∏
j=1

(
1+(γ−1)

(
γσ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
γσ( j)

)2
)w j

n
∏
j=1

(
1+(γ−1)

(
γσ( j)

)2
)w j

+(γ−1)
n
∏
j=1

(
1−
(
γσ( j)

)2
)w j

 ,


√γ

n
∏
j=1

(
γσ( j)

)w j

√
n
∏
j=1

(
1+(γ−1)

(
1−
(
γσ( j)

)2
))w j

+(γ−1)
n
∏
j=1

(
γσ( j)

)2w j




(8)

where (σ(1) ,σ(2) , · · · ,σ(n)) is a permutation of 1,2, · · · ,n, such that d̃σ( j−1) > d̃σ( j)

for all j = 2, · · · ,n, and w = (w1,w2, · · · ,wn)
T is the aggregation-associated weight vec-

tor such that w j ∈ [0,1] and
n
∑
j=1

w j = 1, γ > 0.

Now, we can discuss some special cases of the DHPFHOWA operator with respect
to the parameter γ.
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• When γ= 1, DHPFHOWA operator reduces to the dual hesitant Pythagorean fuzzy
ordered weighted average (DHFOWA) operator as follows:

DHPFOWAw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w jd̃σ( j)

)
= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)

{{√
1−

n

∏
j=1

(
1−
(
γσ( j)

)2
)w j

}
,

√
2

n
∏
j=1

γ j
ω j√

n
∏
j=1

(
2− (γ j)

2
)ω j

+
n
∏
j=1

(γ j)
2ω j





(9)

• When γ= 2, DHPFHOWA operator reduces to the dual hesitant Pythagorean fuzzy
Einstein ordered weighted average (DHPFEOWA) operator as follows:

DHPFEOWAw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w jd̃σ( j)

)

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)



√√√√√√√

n
∏
j=1

(
1+
(
γσ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
γσ( j)

)2
)w j

n
∏
j=1

(
1+
(
γσ( j)

)2
)w j

+
n
∏
j=1

(
1−
(
γσ( j)

)2
)w j

 ,


√

2
n
∏
j=1

(
ησ( j)

)ω j

√
n
∏
j=1

(
2−
(
ησ( j)

)2
)ω j

+
n
∏
j=1

(
ησ( j)

)2ω j




(10)

From Definitions 5 and 6, we know that the DHPFHWA operator weights the dual
hesitant Pythagorean fuzzy argument itself, while the DHPFHOWA operator weights the
ordered positions of the dual hesitant Pythagorean fuzzy arguments instead of weight-
ing the arguments themselves. Therefore, weights represent different aspects in both
the DHPFHWA and DHPFHOWA operators. However, both the operators consider only
one of them. To solve this drawback, in the following we shall propose a dual hesitant
Pythagorean fuzzy Hamacher hybrid average (DHPFHHA) operator.



374 GUIWU WEI, MAO LU

Definition 7 A dual hesitant Pythagorean fuzzy Hamacher hybrid average (DHPFHHA)
operator is defined as follows:

DHPFHHAw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w j

˙̃dσ( j)

)

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)



√√√√√√√

n
∏
j=1

(
1+(γ−1)

(
γ̇σ( j)

)2
)ω j

−
n
∏
j=1

(
1−
(
γ̇σ( j)

)2
)ω j

n
∏
j=1

(
1+(γ−1)

(
γ̇σ( j)

)2
)ω j

+(γ−1)
n
∏
j=1

(
1−
(
γ̇σ( j)

)2
)ω j

 ,


√γ

n
∏
j=1

(
η̇σ( j)

)ω j

√
n
∏
j=1

(
1+(γ−1)

(
1−
(
η̇σ( j)

)2
))ω j

+(γ−1)
n
∏
j=1

(
η̇σ( j)

)2ω j




(11)

where w = (w1,w2, · · · ,wn) is the associated weighting vector, with w j ∈ [0,1],
n
∑
j=1

w j =

1, and ḣσ( j) is the j-th largest element of the dual hesitant Pythagorean fuzzy arguments
˙̃d
( ˙̃d = nω jd̃ j, j = 1,2, · · · ,n

)
, ω= (ω1,ω2, · · · ,ωn) is the weighting vector of dual hes-

itant Pythagorean fuzzy arguments d̃ j ( j = 1,2, · · · ,n), with ωi ∈ [0,1],
n
∑

i=1
ωi = 1, and

n is the balancing coefficient, γ > 0. Especially, if w =
(
1
/

n,1
/

n, · · · ,1
/

n
)T , then DH-

PFHA is reduced to the dual hesitant Pythagorean fuzzy weighted average (DHPFWA)
operator; if , then DHPFHA is reduced to the dual hesitant Pythagorean fuzzy ordered
weighted average (DHPFOWA) operator.

From Definition 7, we know that:

(1) The DHPFHHA operator first weights the given arguments, and then reorders the
weighted arguments in descending order and weights these ordered arguments by
the DHPFHHA weights, and finally aggregates all the weighted arguments into a
collective one.

(2) The DHPFHHA operator generalizes both the DHPFHWA and DHPFHOWA op-
erators, and reflects the importance degrees of both the given arguments and their
ordered positions.

Now, we can discuss some special cases of the DHPFHHA operator with respect to
the parameter γ.
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• When γ = 1, DHPFHHA operator reduces to the hesitant Pythagorean fuzzy hy-
brid average (DHPFHA)operator as follows:

DHPFHAw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w j

˙̃dσ( j)

)
= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)

{{√
1−

n

∏
j=1

(
1−
(
γ̇σ( j)

)2
)w j

}
,

{
n

∏
j=1

(
η̇σ( j)

)w j

}} (12)

• When γ = 2, DHPFHHA operator reduces to the dual hesitant Pythagorean fuzzy
Einstein hybrid average (HPFEHA) operator as follows:

DHPFEHAw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w j

˙̃dσ( j)

)

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)



√√√√√√√

n
∏
j=1

(
1+
(
γ̇σ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
γ̇σ( j)

)2
)w j

n
∏
j=1

(
1+
(
γ̇σ( j)

)2
)w j

+
n
∏
j=1

(
1−
(
γ̇σ( j)

)2
)w j

 ,


√

2
n
∏
j=1

(
η̇σ( j)

)ω j

√
n
∏
j=1

(
2−
(
η̇σ( j)

)2
)ω j

+
n
∏
j=1

(
η̇σ( j)

)2ω j




(13)

3.2. Dual hesitant Pythagorean fuzzy Hamacher Geometric Aggregation Operators

Based on the dual hesitant Pythagorean fuzzy Hamacher arithmetic aggregation op-
erators and the geometric mean, here we define some dual hesitant Pythagorean fuzzy
Hamacher geometric aggregation operators:

Definition 8 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the dual
hesitant Pythagorean fuzzy Hamacher weighted geometric (DHPFHWG) operator as
follows:

DHPFHWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j
(14)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), and ω j > 0,

n
∑
j=1

ω j = 1, γ > 0.

Based on the operations of the dual hesitant Pythagorean fuzzy values described and
mathematical induction methods, we can drive the Theorem 2.
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Theorem 2 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then their aggregated
value by using the DHPFHWG operator is also a DHPFN, and

DHPFHWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j

= ∪γ j∈h j,η j∈g j




√γ

n
∏
j=1

γ j
ω j√

n
∏
j=1

(
1+(γ−1)

(
1− (γ j)

2
))ω j

+(γ−1)
n
∏
j=1

(γ j)
2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(γ−1)(η j)

2
)ω j

−
n
∏
j=1

(
1− (η j)

2
)ω j

n
∏
j=1

(
1+(γ−1)(η j)

2
)ω j

+(γ−1)
n
∏
j=1

(
1− (η j)

2
)ω j




(15)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), and ω j > 0,

n
∑
j=1

ω j = 1, γ > 0.

Now, we can discuss some special cases of the DHPFHWG operator with respect to
the parameter γ.

• When γ = 1, DHPFHWG operator reduces to the dual hesitant Pythagorean fuzzy
weighted geometric (DHPFWG) operator as follows:

DHPFWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j

= ∪γ j∈h j,η j∈g j

{{
n

∏
j=1

(γ j)
ω j

}
,

{√
1−

n

∏
j=1

(
1− (η j)

2
)ω j

}} (16)
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• When γ = 2, DHPFHWG operator reduces to the dual hesitant Pythagorean fuzzy
Einstein weighted geometric (DHPFEWG) operator as follows:

DHPFEWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j

= ∪γ j∈h j,η j∈g j




√

2
n
∏
j=1

γ j
ω j√

n
∏
j=1

(
2− (γ j)

2
)ω j

+
n
∏
j=1

(γ j)
2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(η j)

2
)ω j

−
n
∏
j=1

(
1− (η j)

2
)ω j

n
∏
j=1

(
1+(η j)

2
)ω j

+
n
∏
j=1

(
1− (η j)

2
)ω j




(17)

Definition 9 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define
the dual hesitant Pythagorean fuzzy Hamacher ordered weighted geometric (DH-
PFHOWG?operator as follows:

DHPFHOWGw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃σ( j)

)w j

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)




√γ

n
∏
j=1

(
γσ( j)

)ω j

√
n
∏
j=1

(
1+(γ−1)

(
1−
(
γσ( j)

)2
))ω j

+(γ−1)
n
∏
j=1

(
γσ( j)

)2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(γ−1)

(
ησ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
ησ( j)

)2
)w j

n
∏
j=1

(
1+(γ−1)

(
ησ( j)

)2
)w j

+(γ−1)
n
∏
j=1

(
1−
(
ησ( j)

)2
)w j




(18)
where (σ(1) ,σ(2) , · · · ,σ(n)) is a permutation of (1,2, · · · ,n), such that d̃σ( j−1) > d̃σ( j)

for all j = 2, · · · ,n, and w = (w1,w2, · · · ,wn)
T is the aggregation-associated weight vec-

tor such that w j ∈ [0,1] and
n
∑
j=1

w j = 1, γ > 0.

Now, we can discuss some special cases of the DHPFHOWG operator with respect
to the parameter γ.
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• When γ = 1, DHPFHOWG operator reduces to the dual hesitant Pythagorean
fuzzy ordered weighted geometric (DHPFOWG) operator as follows:

DHPFOWGw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃σ( j)

)w j

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)

{{
n

∏
j=1

(
γσ( j)

)w j

}
,

{√
1−

n

∏
j=1

(
1−
(
ησ( j)

)2
)w j

}} (19)

• When γ = 2, DHPFHOWG operator reduces to the dual hesitant Pythagorean
fuzzy Einstein ordered weighted geometric (DHPFEOWG) operator as follows:

DHPFEOWGw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃σ( j)

)w j

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)




√

2
n
∏
j=1

(
γσ( j)

)ω j

√
n
∏
j=1

(
2−
(
γσ( j)

)2
)ω j

+
n
∏
j=1

(
γσ( j)

)2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+
(
ησ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
ησ( j)

)2
)w j

n
∏
j=1

(
1+
(
ησ( j)

)2
)w j

+
n
∏
j=1

(
1−
(
ησ( j)

)2
)w j




(20)

From Definitions 8 and 9, we know that the DHPFHWG operator weights the dual
hesitant Pythagorean fuzzy argument itself, while the DHPFHOWG operator weights the
ordered positions of the dual hesitant Pythagorean fuzzy arguments instead of weighting
the arguments themselves. Therefore, weights represent different aspects in both the
DHPFHWG and DHPFHOWG operators. However, both the operators consider only
one of them. To solve this drawback, in the following we shall propose a dual hesitant
Pythagorean fuzzy Hamacher hybrid geometric (DHPFHHG) operator.
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Definition 10 A dual hesitant Pythagorean fuzzy Hamacher hybrid geometric (DH-
PFHHG) operator is defined as follows:

DHPFHHGw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

( ˙̃dσ( j)

)w j

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)




√γ

n
∏
j=1

(
γ̇σ( j)

)ω j

√
n
∏
j=1

(
1+(γ−1)

(
1−
(
γ̇σ( j)

)2
))ω j

+(γ−1)
n
∏
j=1

(
γ̇σ( j)

)2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(γ−1)

(
η̇σ( j)

)2
)ω j

−
n
∏
j=1

(
1−
(
η̇σ( j)

)2
)ω j

n
∏
j=1

(
1+(γ−1)

(
η̇σ( j)

)2
)ω j

+(γ−1)
n
∏
j=1

(
1−
(
η̇σ( j)

)2
)ω j




(21)

where w = (w1,w2, · · · ,wn) is the associated weighting vector, with w j ∈ [0,1],
n
∑
j=1

w j =

1, and ḣσ( j) is the j-th largest element of the dual hesitant Pythagorean fuzzy arguments
˙̃d
( ˙̃d =

(
d̃ j

)nω j
, j = 1,2, · · · ,n

)
, ω = (ω1,ω2, · · · ,ωn) is the weighting vector of dual

hesitant Pythagorean fuzzy arguments d̃ j ( j = 1,2, · · · ,n), with ω j ∈ [0,1],
n
∑
j=1

ω j = 1,

and n is the balancing coefficient, γ > 0. Especially, if w =
(
1
/

n,1
/

n, · · · ,1
/

n
)T , then

DHPFHHG is reduced to the dual hesitant Pythagorean fuzzy weighted geometric (DH-
PFHWG) operator; if ω =

(
1
/

n,1
/

n, · · · ,1
/

n
)
, then DHPFHHG is reduced to the dual

hesitant Pythagorean fuzzy ordered weighted geometric (DHPFHOWG) operator.

From Definition 10, we know that:

• When γ = 1, DHPFHHG operator reduces to the dual hesitant Pythagorean fuzzy
hybrid geometric (DHPFHG) operator as follows:

DHPFHGw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

( ˙̃dσ( j)

)w j

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)

{{
n

∏
j=1

(
γ̇σ( j)

)w j

}
,

{√
1−

n

∏
j=1

(
1−
(
η̇σ( j)

)2
)w j

}} (22)
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• When γ = 2, DHPFHHG operator reduces to the dual hesitant Pythagorean fuzzy
Einstein hybrid geometric (DHPFEHG) operator as follows:

DHPFEHGw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

( ˙̃dσ( j)

)w j

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)




√

2
n
∏
j=1

(
γ̇σ( j)

)ω j

√
n
∏
j=1

(
2−
(
γ̇σ( j)

)2
)ω j

+
n
∏
j=1

(
γ̇σ( j)

)2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+
(
η̇σ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
η̇σ( j)

)2
)w j

n
∏
j=1

(
1+
(
η̇σ( j)

)2
)w j

+
n
∏
j=1

(
1−
(
η̇σ( j)

)2
)w j




(23)

4. Dual hesitant Pythagorean fuzzy Hamacher power operators

4.1. Dual hesitant Pythagorean fuzzy Hamacher power Hamacher power weighted
average (DHPFHPWA) operator

Yager [43] developed a nonlinear weighted average aggregation operator called
power average (PA) operator, which can be defined as follows:

PA(a1,a2, · · · ,an) =

n
∑

i=1
(1+T (ai))ai

n
∑

i=1
(1+T (ai))

(24)

where T (ai) =
n
∑
j=1
j ̸=i

Sup(ai,a j), and Sup(a,b) is the support for a from b, which satisfies

the following three properties:

(1) Sup(a,b) ∈ [0,1];

(2) Sup(a,b) = Sup(b,a);

(2) Sup(a,b)> Sup(x,y).

In this section, we shall propose the dual hesitant Pythagorean fuzzy Hamacher
power weighted average (DHPFHPWA) operator based on the power average [43] oper-
ators and Hamacher operations [36].
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Definition 11 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the dual
hesitant Pythagorean fuzzy Hamacher power weighted average (DHPFHPWA) operator
as follows:

DHPFHPWA
(

d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

 ω j

(
1+T

(
d̃ j

))
d̃ j

n
∑
j=1

ω j

(
1+T

(
d̃ j

))
= ∪γ j∈h j,η j∈g j





√√√√√√√√√√
n
∏
j=1

(
1+(γ−1)(γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) −

n
∏
j=1

(
1− (γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))

n
∏
j=1

(
1+(γ−1)(γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +(γ−1)

n
∏
j=1

(
1− (γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))


,


√γ

n
∏
j=1

(η j)

ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))√√√√ n
∏
j=1

(
1+(γ−1)

(
1− (η j)

2
)) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +(γ−1)

n
∏
j=1

(η j)

2ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))




(25)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), γ > 0, and

T
(

d̃ j

)
=

n

∑
i=1
i̸= j

ωiSup
(

d̃ j, d̃i

)
(26)

and Sup
(

d̃ j, d̃i

)
is the support for d̃ j from d̃i, with the conditions:

• Sup
(

d̃i, d̃ j

)
∈ [0,1];

• Sup
(

d̃i, d̃ j

)
= Sup

(
d̃i, d̃ j

)
;

• Sup
(

d̃i, d̃ j

)
> Sup

(
d̃s, d̃t

)
, if dis

(
d̃i, d̃ j

)
> dis

(
d̃s, d̃t

)
, where dis is a distance

measure.

Now, we can discuss some special cases of the DHPFHWA operator with respect to
the parameter γ.
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• When γ= 1, DHPFHPWA operator reduces to the dual hesitant Pythagorean fuzzy
power weighted average (DHPFPWA) operator as follows:

DHPFPWAAω

(
d̃1, d̃2, · · · , d̃n

)

=
n
⊕
j=1

 ω j

(
1+T

(
d̃ j

))
d̃ j

n
∑
j=1

ω j

(
1+T

(
d̃ j

))


= ∪γ j∈h j,η j∈g j



√√√√√1−

n

∏
j=1

(
1− (γ j)

2
)ω j(1+T(d̃ j))

/
n
∑
j=1

ω j(1+T(d̃ j))

 ,


n

∏
j=1

(η j)
ω j(1+T(d̃ j))

/
n
∑
j=1

ω j(1+T(d̃ j))




(27)

• When γ= 2, DHPFHPWA operator reduces to the dual hesitant Pythagorean fuzzy
Einstein power weighted average (DHPFEPWA) operator as follows:

DHPFEPWAω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

 ω j

(
1+T

(
d̃ j

))
d̃ j

n
∑
j=1

ω j

(
1+T

(
d̃ j

))
= ∪γ j∈h j,η j∈g j





√√√√√√√√√√
n
∏
j=1

(
1+(γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) −

n
∏
j=1

(
1− (γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))

n
∏
j=1

(
1+(γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +

n
∏
j=1

(
1− (γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))


,



√
2

n
∏
j=1

(η j)

ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))√√√√ n
∏
j=1

(
2− (η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +

n
∏
j=1

(η j)

2ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))




(28)
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4.2. Dual hesitant Pythagorean fuzzy Hamacher power weighted geometric
(DHPFHPWG) operator

Xu and Yager [44] developed power geometric (PG) operator on the basis of PA
operator [43] and geometric mean [45-46], which can be defined as follows:

PG(a1,a2, · · · ,an) =
n

∏
i=1

(ai)
(1+T (ai))

/
n
∑

i=1
(1+T (ai))

(29)

where T (ai) = ∑n
j=1
j ̸=i

Sup(ai,a j), and Sup(a,b) is the support for a from b, which satis-

fies the following three properties:

(1) Sup(a,b) ∈ [0,1];

(2) Sup(a,b) = Sup(b,a);

(3) Sup(a,b)> Sup(x,y), if |a−b|< |x− y|.

In this section, we shall propose the dual hesitant Pythagorean fuzzy Hamacher
power weighted geometric (DHPFHPWG) operator based on the power geometric [44]
operators and Hamacher operations [36].

Definition 12 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the
dual hesitant Pythagorean fuzzy Hamacher power weighted geometric (DHPFHPWG)
operator as follows:

DHPFHPWG
(

d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
d̃ j

)
= ∪γ j∈h j,η j∈g j


√γ

n
∏
j=1

(γ j)

ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))√√√√ n
∏
j=1

(
1+(γ−1)

(
1− (γ j)

2
)) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +(γ−1)

n
∏
j=1

(γ j)

2ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))


,



√√√√√√√√√√
n
∏
j=1

(
1+(γ−1)(η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) −

n
∏
j=1

(
1− (η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))

n
∏
j=1

(
1+(γ−1)(η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +(γ−1)

n
∏
j=1

(
1− (η j)

2
) 2ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))




(30)
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where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), γ > 0, and

T
(

d̃ j

)
=

n

∑
i=1
i̸= j

ωiSup
(

d̃ j, d̃i

)
(31)

and Sup
(

d̃ j, d̃i

)
is the support for d̃ j from d̃i, with the conditions:

(1) Sup
(

d̃i, d̃ j

)
∈ [0,1];

(2) Sup
(

d̃i, d̃ j

)
= Sup

(
d̃i, d̃ j

)
;

(3) Sup
(

d̃i, d̃ j

)
> Sup

(
d̃s, d̃t

)
, if dis

(
d̃i, d̃ j

)
> dis

(
d̃s, d̃t

)
where dis is a distance

measure.

Now, we can discuss some special cases of the DHPFHPWG operator with respect
to the parameter γ.

• When γ= 1, DHPFHPWG operator reduces to the dual hesitant Pythagorean fuzzy
power weighted geometric (DHPFPWG) operator as follows:

DHPFPWGGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j(1+T(d̃ j))

/
n
∑
j=1

ω j(1+T(d̃ j))

= ∪γ j∈h j,η j∈g j




n

∏
j=1

(γ j)
ω j(1+T(d̃ j))

/
n
∑
j=1

ω j(1+T(d̃ j))

 ,


√√√√√1−

n

∏
j=1

(
1− (η j)

2
)ω j(1+T(d̃ j))

/
n
∑
j=1

ω j(1+T(d̃ j))




(32)

• When γ= 2, DHPFHPWG operator reduces to the dual hesitant Pythagorean fuzzy
Einstein power weighted geometric (DHPFEPWG) operator as follows:

DHPFEPWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
d̃ j

)
= ∪γ j∈h j,η j∈g j



√
2

n
∏
j=1

(γ j)

ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))√√√√ n
∏
j=1

(
2− (γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +

n
∏
j=1

(γ j)

2ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))


,
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√√√√√√√√√√
n
∏
j=1

(
1+(η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) −

n
∏
j=1

(
1− (η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))

n
∏
j=1

(
1+(η)2

) ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j)) +
n
∏
j=1

(
1− (η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))




(33)

5. An approach to multiple attribute decision making with dual hesitant
Pythagorean fuzzy information

In this section, we shall utilize the dual hesitant aggregation operators to multi-
ple attribute decision making with dual hesitant Pythagorean fuzzy information. Let
A = {A1,A2, · · · ,Am} be a discrete set of alternatives, and G = {G1,G2, · · · ,Gn} be the
state of nature. If the decision makers provide several values for the alternative Ai under
the state of nature G j with anonymity, these values can be considered as a dual hesi-
tant Pythagorean fuzzy element d̃i j = (hi j,gi j). In the case where two decision makers
provide the same value, then the value emerges only once in d̃i j. Suppose that the deci-

sion matrix D̃ =
(

d̃i j

)
m×n

is the dual hesitant Pythagorean fuzzy decision matrix, where

d̃i j (i = 1,2, · · · ,m, j = 1,2, · · · ,n) are in the form of DHPFNs.
In the following, we apply the DHPFHWA (or DHPFHWG) operator to the MADM

problems for potential evaluation of emerging technology commercialization with dual
hesitant Pythagorean fuzzy information.

Step 1 We utilize the decision information given in matrix D̃, and the DHPFHWA oper-
ator

d̃i = DHPFHWA
(

d̃i1, d̃i2, · · · , d̃in

)
=

n
⊕
j=1

(
ω jd̃i j

)

= ∪γi j∈hi j,ηi j∈hi j



√√√√√√√

n
∏
j=1

(
1+(γ−1)(γi j)

2
)ω j

−
n
∏
j=1

(
1− (γi j)

2
)ω j

n
∏
j=1

(
1+(γ−1)(γi j)

2
)ω j

+(γ−1)
n
∏
j=1

(
1− (γi j)

2
)ω j

 ,


√γ

n
∏
j=1

(ηi j)
ω j√

n
∏
j=1

(
1+(γ−1)

(
1− (ηi j)

2
))ω j

+(γ−1)
n
∏
j=1

(ηi j)
2ω j





(34)
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Or the dual hesitant Pythagorean fuzzy weighted geometric (DHPFHWG) operator:

d̃i = DHPFHWG
(

d̃i1, d̃i2, · · · , d̃in

)
=

n
⊗
j=1

(
d̃i j

)ω j

= ∪γi j∈hi j,ηi j∈hi j




√γ

n
∏
j=1

(γi j)
ω j√

n
∏
j=1

(
1+(γ−1)

(
1− (γi j)

2
))ω j

+(γ−1)
n
∏
j=1

(γi j)
2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(γ−1)(ηi j)

2
)ω j

−
n
∏
j=1

(
1− (ηi j)

2
)ω j

n
∏
j=1

(
1+(γ−1)(ηi j)

2
)ω j

+(γ−1)
n
∏
j=1

(
1− (ηi j)

2
)ω j




(35)

to derive the overall preference values d̃i (i = 1,2, · · · ,m) of the alternative Ai.

Step 2 Calculate the scores S
(

d̃i

)
(i = 1,2, · · · ,m) of the overall dual hesitant

Pythagorean fuzzy preference values d̃i (i = 1,2, · · · ,m). If there is no difference
between two scores S

(
d̃i

)
and S

(
d̃ j

)
, then we need to calculate the accuracy degrees

S (p̃i) and S (p̃i) of the collective overall preference values d̃i and d̃ j, respectively, and

then rank the alternatives Ai and A j in accordance with the accuracy degrees p
(

d̃i

)
and

p
(

d̃i

)
.

Step 3 Rank all the alternatives Ai (i = 1,2, · · · ,m) and select the best one(s) in
accordance with the scores S

(
d̃i

)
(i = 1,2, · · · ,m).

Step 3 End.

6. Numerical example

Thus, in this section we shall present a numerical example for supplier selection in
supply chain management with dual hesitant Pythagorean fuzzy information in order
to illustrate the method proposed in this paper. Let us suppose there is a problem to
deal with the supplier selection in supply chain management which is classical multiple
attribute decision making problems. There are five prospect suppliers Ai (i = 1,2,3,4,5)
for four attributes G j ( j = 1,2,3,4). The four attributes include product quality (G1),
service (G2), delivery (G3) and price (G4), respectively. In order to avoid influence each
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other, the decision makers are required to evaluate the five suppliers Ai (i = 1,2,3,4,5)
under the above four attributes in anonymity and the decision matrix D̃ =

(
d̃i j

)
5×4

is

presented in Tab. 1, where d̃i j (i = 1,2,3,4,5, j = 1,2,3,4) are in the form of DHPFNs.

Table 1: Dual hesitant Pythagorean fuzzy decision matrix

G1 G2 G3 G4

A1 {{0.3,0.4},{0.6}} {{0.4,0.5},{0.3,0.4}} {{0.2,0.3},{0.7}} {{0.4,0.5},{0.5}}
A2 {{0.6},{0.4}} {{0.2,0.4,0.5},{0.4}} {{0.2},{0.6,0.7,0.8}} {{0.5},{0.4,0.5}}
A3 {{0.5,0.7},{0.2}} {{0.2},{0.7,0.8}} {{0.2,0.3,0.4},{0.6}} {{0.5,0.6,0.7},{0.3}}
A4 {{0.7},{0.3}} {{0.6,0.7,0.8},{0.2}} {{0.1,0.2},{0.3}} {{0.1},{0.6,0.7,0.8}}
A5 {{0.6,0.7},{0.2}} {{0.2,0.3,0.4},{0.5}} {{0.4,0.5},{0.2}} {{0.2,0.3,0.4},{0.5}}

The information about the attribute weights is known as follows: ω =
(0.20,0.15,0.35,0.30). In the following, we utilize the approach developed for
supplier selection in supply chain management with dual hesitant Pythagorean fuzzy
information.

Step 1 We utilize the decision information given in matrix D̃, and the DHPFHWA opera-
tor to obtain the overall preference values d̃i of the supplier in supply chain management
Ai (i = 1,2,3,4,5). Take alternative Ai for an example (here, we take γ = 3), we have

d̃1 = DHPFHWAω

(
d̃11, d̃12, d̃13, d̃14

)
=

4
⊕
j=1

(
ω jd̃1 j

)

= ∪γ1 j∈h1 j,η1 j∈h1 j





√√√√√√√√
4
∏
j=1

(
1+(γ−1)(γ1 j)

2
)ω j

−
4
∏
j=1

(
1− (γ1 j)

2
)ω j

4
∏
j=1

(
1+(γ−1)(γ1 j)

2
)ω j

+(γ−1)
4
∏
j=1

(
1− (γ1 j)

2
)ω j

 ,


√γ

4
∏
j=1

(η1 j)
ω j√

4
∏
j=1

(
1+(γ−1)

(
1− (η1 j)

2
))ω j

+(γ−1)
4
∏
j=1

(η1 j)
2ω j




= {{{0.3,0.4},{0.5}},{{0.4,0.5},{0.3,0.4}},{{0.2,0.3},{0.5}},{{0.4,0.5},{0.5}}}
= {{0.3005,0.3146,0.3281,0.3328,0.3333,0.3412,0.3457,0.3461,0.3582,0.3586,
0.3630,0.3703,0.3707,0.3749,0.3866,0.3979},{0.3097,0.3416}}
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Step 2 Calculate the scores s
(

d̃i

)
(i = 1,2,3,4,5) of the overall dual hesitant

Pythagorean fuzzy preference values d̃i (i = 1,2,3,4,5):

s
(

d̃1

)
= 0.3828,s

(
d̃2

)
= 0.4552,s

(
d̃3

)
= 0.5008

s
(

d̃4

)
= 0.4774,s

(
d̃5

)
= 0.6171

Step 3 Rank all the suppliers Ai (i = 1,2,3,4,5) in accordance with the scores
s
(

d̃i

)
(i = 1,2,3,4,5) of the overall dual hesitant Pythagorean fuzzy numbers: A5 ≻

A3 ≻ A4 ≻ A2 ≻ A1, and thus the most desirable supplier is A5.
Based on the DHPFHWG operator, then, in order to select the most desirable

supplier, we can develop an approach to multiple attribute decision making problems
with dual hesitant Pythagorean fuzzy information, which can be described as following:

Step 1’ Aggregate all dual hesitant Pythagorean fuzzy value h̃i j ( j = 1,2,3,4) by using
the dual hesitant Pythagorean fuzzy weighted geometric (DHPFHWG) operator to derive
the overall dual hesitant Pythagorean fuzzy values d̃i (i = 1,2, · · · ,5) of the supplier Ai.
Take supplier A1 for an example (here, we take γ = 3), we have

d̃1 = DHPFHWGω

(
d̃11, d̃12, d̃13, d̃14

)
=

4
⊗
j=1

(
d̃1 j

)ω j

= ∪γ1 j∈h1 j,η1 j∈h1 j




√γ

4
∏
j=1

(γ1 j)
ω j√

4
∏
j=1

(
1+(γ−1)

(
1− (γ1 j)

2
))ω j

+(γ−1)
4
∏
j=1

(γ1 j)
2ω j

 ,



√√√√√√√√
4
∏
j=1

(
1+(γ−1)(η1 j)

2
)ω j

−
4
∏
j=1

(
1− (η1 j)

2
)ω j

4
∏
j=1

(
1+(γ−1)(η1 j)

2
)ω j

+(γ−1)
4
∏
j=1

(
1− (η1 j)

2
)ω j




= {{{0.3,0.4},{0.5}},{{0.4,0.5},{0.3,0.4}},{{0.2,0.3},{0.5)},{{0.4,0.5},{0.5}}}
= {{0.2794,0.2863,0.2934,0.3006,0.3053,0.3128,0.3204,0.3275,0.3282,0.3354,
0.3435,0.3518,0.3572,0.3657,0.3743,0.3832},{0.5913,0.6031}}
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Step 2’ Calculate the scores s
(

d̃i

)
(i = 1,2,3,4,5) of the overall dual hesitant

Pythagorean fuzzy values d̃i (i = 1,2,3,4,5) of the supplier Ai:

s
(

d̃1

)
= 0.4862,s

(
d̃2

)
= 0.4084,s

(
d̃3

)
= 0.4076

s
(

d̃4

)
= 0.4941,s

(
d̃5

)
= 0.5502

Step 3’ Rank all the suppliers in supply chain management Ai (i = 1,2,3,4,5) in accor-
dance with the scores s

(
d̃i

)
(i = 1,2,3,4,5) of the overall dual hesitant Pythagorean

fuzzy values d̃i (i = 1,2, · · · ,5) by using definition 5: A5 ≻ A4 ≻ A1 ≻ A2 ≻ A3 and thus
the most desirable supplier in supply chain management is A5.

From the above analysis, it is easily seen that although the overall rating values of
the alternatives are slightly different by using two operators respectively. However, the
most desirable supplier in supply chain management is A5.

7. Conclusion

In this paper, we investigate the multiple attribute decision making (MADM) prob-
lem based on the Hamacher aggregation operators with dual Pythagorean hesitant fuzzy
information. Then, motivated by the ideal of Hamacher operation, we have developed
some Hamacher aggregation operators for aggregating dual hesitant Pythagorean fuzzy
information: dual hesitant Pythagorean fuzzy Hamacher weighted average (DHPFHWA)
operator, dual hesitant Pythagorean fuzzy Hamacher weighted geometric (DHPFHWG)
operator, dual hesitant Pythagorean fuzzy Hamacher ordered weighted average (DH-
PFHOWA) operator, dual hesitant Pythagorean fuzzy Hamacher ordered weighted geo-
metric (DHPFHOWG) operator, dual hesitant Pythagorean fuzzy Hamacher hybrid av-
erage (DHPFHHA) operator and dual hesitant Pythagorean fuzzy Hamacher hybrid geo-
metric (DHPFHHG) operator. The prominent characteristic of these proposed operators
are studied. Then, we have utilized these operators to develop some approaches to solve
the dual hesitant Pythagorean fuzzy multiple attribute decision making problems. Fi-
nally, a practical example for supplier selection in supply chain management is given to
verify the developed approach and to demonstrate its practicality and effectiveness. In
the future, we shall continue working in the extension and application of the developed
operators to other domains and uncertain environments [47-66].
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